Upgraded gradio and packages to latest. Switched Ctransformers with Llama.cpp Python
f301d67
# Import package | |
import os | |
from pathlib import Path | |
import re | |
import requests | |
import pandas as pd | |
import dateutil.parser | |
from typing import Type, List | |
from langchain_community.embeddings import HuggingFaceEmbeddings # HuggingFaceInstructEmbeddings, | |
from langchain_community.vectorstores.faiss import FAISS | |
#from langchain_community.vectorstores import Chroma | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.docstore.document import Document | |
from bs4 import BeautifulSoup | |
from docx import Document as Doc | |
from pypdf import PdfReader | |
PandasDataFrame = Type[pd.DataFrame] | |
split_strat = ["\n\n", "\n", ". ", "! ", "? "] | |
chunk_size = 300 | |
chunk_overlap = 0 | |
start_index = True | |
## Parse files | |
def determine_file_type(file_path): | |
""" | |
Determine the file type based on its extension. | |
Parameters: | |
file_path (str): Path to the file. | |
Returns: | |
str: File extension (e.g., '.pdf', '.docx', '.txt', '.html'). | |
""" | |
return os.path.splitext(file_path)[1].lower() | |
def parse_file(file_paths, text_column='text'): | |
""" | |
Accepts a list of file paths, determines each file's type based on its extension, | |
and passes it to the relevant parsing function. | |
Parameters: | |
file_paths (list): List of file paths. | |
text_column (str): Name of the column in CSV/Excel files that contains the text content. | |
Returns: | |
dict: A dictionary with file paths as keys and their parsed content (or error message) as values. | |
""" | |
if not isinstance(file_paths, list): | |
raise ValueError("Expected a list of file paths.") | |
extension_to_parser = { | |
'.pdf': parse_pdf, | |
'.docx': parse_docx, | |
'.txt': parse_txt, | |
'.html': parse_html, | |
'.htm': parse_html, # Considering both .html and .htm for HTML files | |
'.csv': lambda file_path: parse_csv_or_excel(file_path, text_column), | |
'.xlsx': lambda file_path: parse_csv_or_excel(file_path, text_column) | |
} | |
parsed_contents = {} | |
file_names = [] | |
for file_path in file_paths: | |
print(file_path.name) | |
#file = open(file_path.name, 'r') | |
#print(file) | |
file_extension = determine_file_type(file_path.name) | |
if file_extension in extension_to_parser: | |
parsed_contents[file_path.name] = extension_to_parser[file_extension](file_path.name) | |
else: | |
parsed_contents[file_path.name] = f"Unsupported file type: {file_extension}" | |
filename_end = get_file_path_end(file_path.name) | |
file_names.append(filename_end) | |
return parsed_contents, file_names | |
def text_regex_clean(text): | |
# Merge hyphenated words | |
text = re.sub(r"(\w+)-\n(\w+)", r"\1\2", text) | |
# If a double newline ends in a letter, add a full stop. | |
text = re.sub(r'(?<=[a-zA-Z])\n\n', '.\n\n', text) | |
# Fix newlines in the middle of sentences | |
text = re.sub(r"(?<!\n\s)\n(?!\s\n)", " ", text.strip()) | |
# Remove multiple newlines | |
text = re.sub(r"\n\s*\n", "\n\n", text) | |
text = re.sub(r" ", " ", text) | |
# Add full stops and new lines between words with no space between where the second one has a capital letter | |
text = re.sub(r'(?<=[a-z])(?=[A-Z])', '. \n\n', text) | |
return text | |
def parse_csv_or_excel(file_paths, text_column = "text"): | |
""" | |
Read in a CSV or Excel file. | |
Parameters: | |
file_path (str): Path to the CSV file. | |
text_column (str): Name of the column in the CSV file that contains the text content. | |
Returns: | |
Pandas DataFrame: Dataframe output from file read | |
""" | |
file_names = [] | |
out_df = pd.DataFrame() | |
for file_path in file_paths: | |
file_extension = determine_file_type(file_path.name) | |
file_name = get_file_path_end(file_path.name) | |
if file_extension == ".csv": | |
df = pd.read_csv(file_path.name) | |
if text_column not in df.columns: return pd.DataFrame(), ['Please choose a valid column name'] | |
df['source'] = file_name | |
df['page_section'] = "" | |
elif file_extension == ".xlsx": | |
df = pd.read_excel(file_path.name, engine='openpyxl') | |
if text_column not in df.columns: return pd.DataFrame(), ['Please choose a valid column name'] | |
df['source'] = file_name | |
df['page_section'] = "" | |
else: | |
print(f"Unsupported file type: {file_extension}") | |
return pd.DataFrame(), ['Please choose a valid file type'] | |
file_names.append(file_name) | |
out_df = pd.concat([out_df, df]) | |
#if text_column not in df.columns: | |
# return f"Column '{text_column}' not found in {file_path}" | |
#text_out = " ".join(df[text_column].dropna().astype(str)) | |
return out_df, file_names | |
def parse_excel(file_path, text_column): | |
""" | |
Read text from an Excel file. | |
Parameters: | |
file_path (str): Path to the Excel file. | |
text_column (str): Name of the column in the Excel file that contains the text content. | |
Returns: | |
Pandas DataFrame: Dataframe output from file read | |
""" | |
df = pd.read_excel(file_path, engine='openpyxl') | |
#if text_column not in df.columns: | |
# return f"Column '{text_column}' not found in {file_path}" | |
#text_out = " ".join(df[text_column].dropna().astype(str)) | |
return df | |
def parse_pdf(file) -> List[str]: | |
""" | |
Extract text from a PDF file. | |
Parameters: | |
file_path (str): Path to the PDF file. | |
Returns: | |
List[str]: Extracted text from the PDF. | |
""" | |
output = [] | |
#for file in files: | |
print(file) # .name | |
pdf = PdfReader(file) #[i] .name[i] | |
for page in pdf.pages: | |
text = page.extract_text() | |
text = text_regex_clean(text) | |
output.append(text) | |
return output | |
def parse_docx(file_path): | |
""" | |
Reads the content of a .docx file and returns it as a string. | |
Parameters: | |
- file_path (str): Path to the .docx file. | |
Returns: | |
- str: Content of the .docx file. | |
""" | |
doc = Doc(file_path) | |
full_text = [] | |
for para in doc.paragraphs: | |
para = text_regex_clean(para) | |
full_text.append(para.text.replace(" ", " ").strip()) | |
return '\n'.join(full_text) | |
def parse_txt(file_path): | |
""" | |
Read text from a TXT or HTML file. | |
Parameters: | |
file_path (str): Path to the TXT or HTML file. | |
Returns: | |
str: Text content of the file. | |
""" | |
with open(file_path, 'r', encoding="utf-8") as file: | |
file_contents = file.read().replace(" ", " ").strip() | |
file_contents = text_regex_clean(file_contents) | |
return file_contents | |
def parse_html(page_url, div_filter="p"): | |
""" | |
Determine if the source is a web URL or a local HTML file, extract the content based on the div of choice. Also tries to extract dates (WIP) | |
Parameters: | |
page_url (str): The web URL or local file path. | |
Returns: | |
str: Extracted content. | |
""" | |
def is_web_url(s): | |
""" | |
Check if the input string is a web URL. | |
""" | |
return s.startswith("http://") or s.startswith("https://") | |
def is_local_html_file(s): | |
""" | |
Check if the input string is a path to a local HTML file. | |
""" | |
return (s.endswith(".html") or s.endswith(".htm")) and os.path.isfile(s) | |
def extract_text_from_source(source): | |
""" | |
Determine if the source is a web URL or a local HTML file, | |
and then extract its content accordingly. | |
Parameters: | |
source (str): The web URL or local file path. | |
Returns: | |
str: Extracted content. | |
""" | |
if is_web_url(source): | |
response = requests.get(source) | |
response.raise_for_status() # Raise an HTTPError for bad responses | |
return response.text.replace(" ", " ").strip() | |
elif is_local_html_file(source): | |
with open(source, 'r', encoding='utf-8') as file: | |
file_out = file.read().replace | |
return file_out | |
else: | |
raise ValueError("Input is neither a valid web URL nor a local HTML file path.") | |
def clean_html_data(data, date_filter="", div_filt="p"): | |
""" | |
Extracts and cleans data from HTML content. | |
Parameters: | |
data (str): HTML content to be parsed. | |
date_filter (str, optional): Date string to filter results. If set, only content with a date greater than this will be returned. | |
div_filt (str, optional): HTML tag to search for text content. Defaults to "p". | |
Returns: | |
tuple: Contains extracted text and date as strings. Returns empty strings if not found. | |
""" | |
soup = BeautifulSoup(data, 'html.parser') | |
# Function to exclude div with id "bar" | |
def exclude_div_with_id_bar(tag): | |
return tag.has_attr('id') and tag['id'] == 'related-links' | |
text_elements = soup.find_all(div_filt) | |
date_elements = soup.find_all(div_filt, {"class": "page-neutral-intro__meta"}) | |
# Extract date | |
date_out = "" | |
if date_elements: | |
date_out = re.search(">(.*?)<", str(date_elements[0])).group(1) | |
date_dt = dateutil.parser.parse(date_out) | |
if date_filter: | |
date_filter_dt = dateutil.parser.parse(date_filter) | |
if date_dt < date_filter_dt: | |
return '', date_out | |
# Extract text | |
text_out_final = "" | |
if text_elements: | |
text_out_final = '\n'.join(paragraph.text for paragraph in text_elements) | |
text_out_final = text_regex_clean(text_out_final) | |
else: | |
print(f"No elements found with tag '{div_filt}'. No text returned.") | |
return text_out_final, date_out | |
#page_url = "https://pypi.org/project/InstructorEmbedding/" #'https://www.ons.gov.uk/visualisations/censusareachanges/E09000022/index.html' | |
html_text = extract_text_from_source(page_url) | |
#print(page.text) | |
texts = [] | |
metadatas = [] | |
clean_text, date = clean_html_data(html_text, date_filter="", div_filt=div_filter) | |
texts.append(clean_text) | |
metadatas.append({"source": page_url, "date":str(date)}) | |
#print(metadatas) | |
return texts, metadatas, page_url | |
def get_file_path_end(file_path): | |
match = re.search(r'(.*[\/\\])?(.+)$', file_path) | |
filename_end = match.group(2) if match else '' | |
return filename_end | |
# + | |
# Convert parsed text to docs | |
# - | |
def text_to_docs(text_dict: dict, chunk_size: int = chunk_size) -> List[Document]: | |
""" | |
Converts the output of parse_file (a dictionary of file paths to content) | |
to a list of Documents with metadata. | |
""" | |
doc_sections = [] | |
parent_doc_sections = [] | |
for file_path, content in text_dict.items(): | |
ext = os.path.splitext(file_path)[1].lower() | |
# Depending on the file extension, handle the content | |
if ext == '.pdf': | |
docs, page_docs = pdf_text_to_docs(content, chunk_size) | |
elif ext in ['.html', '.htm', '.txt', '.docx']: | |
docs = html_text_to_docs(content, chunk_size) | |
elif ext in ['.csv', '.xlsx']: | |
docs, page_docs = csv_excel_text_to_docs(content, chunk_size) | |
else: | |
print(f"Unsupported file type {ext} for {file_path}. Skipping.") | |
continue | |
filename_end = get_file_path_end(file_path) | |
#match = re.search(r'(.*[\/\\])?(.+)$', file_path) | |
#filename_end = match.group(2) if match else '' | |
# Add filename as metadata | |
for doc in docs: doc.metadata["source"] = filename_end | |
#for parent_doc in parent_docs: parent_doc.metadata["source"] = filename_end | |
doc_sections.extend(docs) | |
#parent_doc_sections.extend(parent_docs) | |
return doc_sections#, page_docs | |
def pdf_text_to_docs(text, chunk_size: int = chunk_size) -> List[Document]: | |
"""Converts a string or list of strings to a list of Documents | |
with metadata.""" | |
#print(text) | |
if isinstance(text, str): | |
# Take a single string as one page | |
text = [text] | |
page_docs = [Document(page_content=page, metadata={"page": page}) for page in text] | |
# Add page numbers as metadata | |
for i, doc in enumerate(page_docs): | |
doc.metadata["page"] = i + 1 | |
print("page docs are: ") | |
print(page_docs) | |
# Split pages into sections | |
doc_sections = [] | |
for doc in page_docs: | |
#print("page content: ") | |
#print(doc.page_content) | |
if doc.page_content == '': | |
sections = [''] | |
else: | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=chunk_size, | |
separators=split_strat,#["\n\n", "\n", ".", "!", "?", ",", " ", ""], | |
chunk_overlap=chunk_overlap, | |
add_start_index=True | |
) | |
sections = text_splitter.split_text(doc.page_content) | |
for i, section in enumerate(sections): | |
doc = Document( | |
page_content=section, metadata={"page": doc.metadata["page"], "section": i, "page_section": f"{doc.metadata['page']}-{i}"}) | |
doc_sections.append(doc) | |
return doc_sections, page_docs#, parent_doc | |
def html_text_to_docs(texts, metadatas, chunk_size:int = chunk_size): | |
text_splitter = RecursiveCharacterTextSplitter( | |
separators=split_strat,#["\n\n", "\n", ".", "!", "?", ",", " ", ""], | |
chunk_size=chunk_size, | |
chunk_overlap=chunk_overlap, | |
length_function=len, | |
add_start_index=True | |
) | |
#print(texts) | |
#print(metadatas) | |
documents = text_splitter.create_documents(texts, metadatas=metadatas) | |
for i, section in enumerate(documents): | |
section.metadata["page_section"] = i + 1 | |
return documents | |
def write_out_metadata_as_string(metadata_in): | |
# If metadata_in is a single dictionary, wrap it in a list | |
if isinstance(metadata_in, dict): | |
metadata_in = [metadata_in] | |
metadata_string = [f"{' '.join(f'{k}: {v}' for k, v in d.items() if k != 'page_section')}" for d in metadata_in] # ['metadata'] | |
return metadata_string | |
def csv_excel_text_to_docs(df, text_column='text', chunk_size=None) -> List[Document]: | |
"""Converts a DataFrame's content to a list of Documents with metadata.""" | |
doc_sections = [] | |
df[text_column] = df[text_column].astype(str) # Ensure column is a string column | |
# For each row in the dataframe | |
for idx, row in df.iterrows(): | |
# Extract the text content for the document | |
doc_content = row[text_column] | |
# Generate metadata containing other columns' data | |
metadata = {"row": idx + 1} | |
for col, value in row.items(): | |
if col != text_column: | |
metadata[col] = value | |
metadata_string = write_out_metadata_as_string(metadata)[0] | |
# If chunk_size is provided, split the text into chunks | |
if chunk_size: | |
# Assuming you have a text splitter function similar to the PDF handling | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=chunk_size, | |
# Other arguments as required by the splitter | |
) | |
sections = text_splitter.split_text(doc_content) | |
# For each section, create a Document object | |
for i, section in enumerate(sections): | |
section = '. '.join([metadata_string, section]) | |
doc = Document(page_content=section, | |
metadata={**metadata, "section": i, "row_section": f"{metadata['row']}-{i}"}) | |
doc_sections.append(doc) | |
else: | |
# If no chunk_size is provided, create a single Document object for the row | |
doc_content = '. '.join([metadata_string, doc_content]) | |
doc = Document(page_content=doc_content, metadata=metadata) | |
doc_sections.append(doc) | |
return doc_sections | |
# # Functions for working with documents after loading them back in | |
def pull_out_data(series): | |
# define a lambda function to convert each string into a tuple | |
to_tuple = lambda x: eval(x) | |
# apply the lambda function to each element of the series | |
series_tup = series.apply(to_tuple) | |
series_tup_content = list(zip(*series_tup))[1] | |
series = pd.Series(list(series_tup_content))#.str.replace("^Main post content", "", regex=True).str.strip() | |
return series | |
def docs_from_csv(df): | |
import ast | |
documents = [] | |
page_content = pull_out_data(df["0"]) | |
metadatas = pull_out_data(df["1"]) | |
for x in range(0,len(df)): | |
new_doc = Document(page_content=page_content[x], metadata=metadatas[x]) | |
documents.append(new_doc) | |
return documents | |
def docs_from_lists(docs, metadatas): | |
documents = [] | |
for x, doc in enumerate(docs): | |
new_doc = Document(page_content=doc, metadata=metadatas[x]) | |
documents.append(new_doc) | |
return documents | |
def docs_elements_from_csv_save(docs_path="documents.csv"): | |
documents = pd.read_csv(docs_path) | |
docs_out = docs_from_csv(documents) | |
out_df = pd.DataFrame(docs_out) | |
docs_content = pull_out_data(out_df[0].astype(str)) | |
docs_meta = pull_out_data(out_df[1].astype(str)) | |
doc_sources = [d['source'] for d in docs_meta] | |
return out_df, docs_content, docs_meta, doc_sources | |
# ## Create embeddings and save faiss vector store to the path specified in `save_to` | |
def load_embeddings(model_name = "BAAI/bge-base-en-v1.5"): | |
#if model_name == "hkunlp/instructor-large": | |
# embeddings_func = HuggingFaceInstructEmbeddings(model_name=model_name, | |
# embed_instruction="Represent the paragraph for retrieval: ", | |
# query_instruction="Represent the question for retrieving supporting documents: " | |
# ) | |
#else: | |
embeddings_func = HuggingFaceEmbeddings(model_name=model_name) | |
global embeddings | |
embeddings = embeddings_func | |
return embeddings_func | |
def embed_faiss_save_to_zip(docs_out, save_to="faiss_lambeth_census_embedding", model_name = "BAAI/bge-base-en-v1.5"): | |
load_embeddings(model_name=model_name) | |
#embeddings_fast = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") | |
print(f"> Total split documents: {len(docs_out)}") | |
vectorstore = FAISS.from_documents(documents=docs_out, embedding=embeddings) | |
if Path(save_to).exists(): | |
vectorstore.save_local(folder_path=save_to) | |
print("> DONE") | |
print(f"> Saved to: {save_to}") | |
### Save as zip, then remove faiss/pkl files to allow for upload to huggingface | |
import shutil | |
shutil.make_archive(save_to, 'zip', save_to) | |
os.remove(save_to + "/index.faiss") | |
os.remove(save_to + "/index.pkl") | |
shutil.move(save_to + '.zip', save_to + "/" + save_to + '.zip') | |
return vectorstore | |
def docs_to_chroma_save(embeddings, docs_out:PandasDataFrame, save_to:str): | |
print(f"> Total split documents: {len(docs_out)}") | |
vectordb = Chroma.from_documents(documents=docs_out, | |
embedding=embeddings, | |
persist_directory=save_to) | |
# persiste the db to disk | |
vectordb.persist() | |
print("> DONE") | |
print(f"> Saved to: {save_to}") | |
return vectordb | |
def sim_search_local_saved_vec(query, k_val, save_to="faiss_lambeth_census_embedding"): | |
load_embeddings() | |
docsearch = FAISS.load_local(folder_path=save_to, embeddings=embeddings) | |
display(Markdown(question)) | |
search = docsearch.similarity_search_with_score(query, k=k_val) | |
for item in search: | |
print(item[0].page_content) | |
print(f"Page: {item[0].metadata['source']}") | |
print(f"Date: {item[0].metadata['date']}") | |
print(f"Score: {item[1]}") | |
print("---") | |