File size: 20,402 Bytes
8aa3ebb 49e32ea 8aa3ebb 49e32ea 8aa3ebb 49e32ea 8aa3ebb 49e32ea d213c15 f301d67 49e32ea d4b0a2c 49e32ea d4b0a2c 49e32ea d4b0a2c 49e32ea d4b0a2c 49e32ea 9118536 49e32ea 9118536 49e32ea 9118536 49e32ea d4b0a2c 49e32ea 9118536 41ed1b7 9118536 49e32ea d4b0a2c 49e32ea 41ed1b7 9118536 49e32ea 41ed1b7 49e32ea 41ed1b7 49e32ea ee77123 d4b0a2c ee77123 d4b0a2c ee77123 d4b0a2c ee77123 d4b0a2c ee77123 d4b0a2c 49e32ea ee77123 49e32ea ee77123 49e32ea ee77123 49e32ea 41ed1b7 49e32ea ee77123 49e32ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 |
# Import package
import os
from pathlib import Path
import re
import requests
import pandas as pd
import dateutil.parser
from typing import Type, List
from langchain_community.embeddings import HuggingFaceEmbeddings # HuggingFaceInstructEmbeddings,
from langchain_community.vectorstores.faiss import FAISS
#from langchain_community.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.docstore.document import Document
from bs4 import BeautifulSoup
from docx import Document as Doc
from pypdf import PdfReader
PandasDataFrame = Type[pd.DataFrame]
split_strat = ["\n\n", "\n", ". ", "! ", "? "]
chunk_size = 300
chunk_overlap = 0
start_index = True
## Parse files
def determine_file_type(file_path):
"""
Determine the file type based on its extension.
Parameters:
file_path (str): Path to the file.
Returns:
str: File extension (e.g., '.pdf', '.docx', '.txt', '.html').
"""
return os.path.splitext(file_path)[1].lower()
def parse_file(file_paths, text_column='text'):
"""
Accepts a list of file paths, determines each file's type based on its extension,
and passes it to the relevant parsing function.
Parameters:
file_paths (list): List of file paths.
text_column (str): Name of the column in CSV/Excel files that contains the text content.
Returns:
dict: A dictionary with file paths as keys and their parsed content (or error message) as values.
"""
if not isinstance(file_paths, list):
raise ValueError("Expected a list of file paths.")
extension_to_parser = {
'.pdf': parse_pdf,
'.docx': parse_docx,
'.txt': parse_txt,
'.html': parse_html,
'.htm': parse_html, # Considering both .html and .htm for HTML files
'.csv': lambda file_path: parse_csv_or_excel(file_path, text_column),
'.xlsx': lambda file_path: parse_csv_or_excel(file_path, text_column)
}
parsed_contents = {}
file_names = []
for file_path in file_paths:
print(file_path.name)
#file = open(file_path.name, 'r')
#print(file)
file_extension = determine_file_type(file_path.name)
if file_extension in extension_to_parser:
parsed_contents[file_path.name] = extension_to_parser[file_extension](file_path.name)
else:
parsed_contents[file_path.name] = f"Unsupported file type: {file_extension}"
filename_end = get_file_path_end(file_path.name)
file_names.append(filename_end)
return parsed_contents, file_names
def text_regex_clean(text):
# Merge hyphenated words
text = re.sub(r"(\w+)-\n(\w+)", r"\1\2", text)
# If a double newline ends in a letter, add a full stop.
text = re.sub(r'(?<=[a-zA-Z])\n\n', '.\n\n', text)
# Fix newlines in the middle of sentences
text = re.sub(r"(?<!\n\s)\n(?!\s\n)", " ", text.strip())
# Remove multiple newlines
text = re.sub(r"\n\s*\n", "\n\n", text)
text = re.sub(r" ", " ", text)
# Add full stops and new lines between words with no space between where the second one has a capital letter
text = re.sub(r'(?<=[a-z])(?=[A-Z])', '. \n\n', text)
return text
def parse_csv_or_excel(file_paths, text_column = "text"):
"""
Read in a CSV or Excel file.
Parameters:
file_path (str): Path to the CSV file.
text_column (str): Name of the column in the CSV file that contains the text content.
Returns:
Pandas DataFrame: Dataframe output from file read
"""
file_names = []
out_df = pd.DataFrame()
for file_path in file_paths:
file_extension = determine_file_type(file_path.name)
file_name = get_file_path_end(file_path.name)
if file_extension == ".csv":
df = pd.read_csv(file_path.name)
if text_column not in df.columns: return pd.DataFrame(), ['Please choose a valid column name']
df['source'] = file_name
df['page_section'] = ""
elif file_extension == ".xlsx":
df = pd.read_excel(file_path.name, engine='openpyxl')
if text_column not in df.columns: return pd.DataFrame(), ['Please choose a valid column name']
df['source'] = file_name
df['page_section'] = ""
else:
print(f"Unsupported file type: {file_extension}")
return pd.DataFrame(), ['Please choose a valid file type']
file_names.append(file_name)
out_df = pd.concat([out_df, df])
#if text_column not in df.columns:
# return f"Column '{text_column}' not found in {file_path}"
#text_out = " ".join(df[text_column].dropna().astype(str))
return out_df, file_names
def parse_excel(file_path, text_column):
"""
Read text from an Excel file.
Parameters:
file_path (str): Path to the Excel file.
text_column (str): Name of the column in the Excel file that contains the text content.
Returns:
Pandas DataFrame: Dataframe output from file read
"""
df = pd.read_excel(file_path, engine='openpyxl')
#if text_column not in df.columns:
# return f"Column '{text_column}' not found in {file_path}"
#text_out = " ".join(df[text_column].dropna().astype(str))
return df
def parse_pdf(file) -> List[str]:
"""
Extract text from a PDF file.
Parameters:
file_path (str): Path to the PDF file.
Returns:
List[str]: Extracted text from the PDF.
"""
output = []
#for file in files:
print(file) # .name
pdf = PdfReader(file) #[i] .name[i]
for page in pdf.pages:
text = page.extract_text()
text = text_regex_clean(text)
output.append(text)
return output
def parse_docx(file_path):
"""
Reads the content of a .docx file and returns it as a string.
Parameters:
- file_path (str): Path to the .docx file.
Returns:
- str: Content of the .docx file.
"""
doc = Doc(file_path)
full_text = []
for para in doc.paragraphs:
para = text_regex_clean(para)
full_text.append(para.text.replace(" ", " ").strip())
return '\n'.join(full_text)
def parse_txt(file_path):
"""
Read text from a TXT or HTML file.
Parameters:
file_path (str): Path to the TXT or HTML file.
Returns:
str: Text content of the file.
"""
with open(file_path, 'r', encoding="utf-8") as file:
file_contents = file.read().replace(" ", " ").strip()
file_contents = text_regex_clean(file_contents)
return file_contents
def parse_html(page_url, div_filter="p"):
"""
Determine if the source is a web URL or a local HTML file, extract the content based on the div of choice. Also tries to extract dates (WIP)
Parameters:
page_url (str): The web URL or local file path.
Returns:
str: Extracted content.
"""
def is_web_url(s):
"""
Check if the input string is a web URL.
"""
return s.startswith("http://") or s.startswith("https://")
def is_local_html_file(s):
"""
Check if the input string is a path to a local HTML file.
"""
return (s.endswith(".html") or s.endswith(".htm")) and os.path.isfile(s)
def extract_text_from_source(source):
"""
Determine if the source is a web URL or a local HTML file,
and then extract its content accordingly.
Parameters:
source (str): The web URL or local file path.
Returns:
str: Extracted content.
"""
if is_web_url(source):
response = requests.get(source)
response.raise_for_status() # Raise an HTTPError for bad responses
return response.text.replace(" ", " ").strip()
elif is_local_html_file(source):
with open(source, 'r', encoding='utf-8') as file:
file_out = file.read().replace
return file_out
else:
raise ValueError("Input is neither a valid web URL nor a local HTML file path.")
def clean_html_data(data, date_filter="", div_filt="p"):
"""
Extracts and cleans data from HTML content.
Parameters:
data (str): HTML content to be parsed.
date_filter (str, optional): Date string to filter results. If set, only content with a date greater than this will be returned.
div_filt (str, optional): HTML tag to search for text content. Defaults to "p".
Returns:
tuple: Contains extracted text and date as strings. Returns empty strings if not found.
"""
soup = BeautifulSoup(data, 'html.parser')
# Function to exclude div with id "bar"
def exclude_div_with_id_bar(tag):
return tag.has_attr('id') and tag['id'] == 'related-links'
text_elements = soup.find_all(div_filt)
date_elements = soup.find_all(div_filt, {"class": "page-neutral-intro__meta"})
# Extract date
date_out = ""
if date_elements:
date_out = re.search(">(.*?)<", str(date_elements[0])).group(1)
date_dt = dateutil.parser.parse(date_out)
if date_filter:
date_filter_dt = dateutil.parser.parse(date_filter)
if date_dt < date_filter_dt:
return '', date_out
# Extract text
text_out_final = ""
if text_elements:
text_out_final = '\n'.join(paragraph.text for paragraph in text_elements)
text_out_final = text_regex_clean(text_out_final)
else:
print(f"No elements found with tag '{div_filt}'. No text returned.")
return text_out_final, date_out
#page_url = "https://pypi.org/project/InstructorEmbedding/" #'https://www.ons.gov.uk/visualisations/censusareachanges/E09000022/index.html'
html_text = extract_text_from_source(page_url)
#print(page.text)
texts = []
metadatas = []
clean_text, date = clean_html_data(html_text, date_filter="", div_filt=div_filter)
texts.append(clean_text)
metadatas.append({"source": page_url, "date":str(date)})
#print(metadatas)
return texts, metadatas, page_url
def get_file_path_end(file_path):
match = re.search(r'(.*[\/\\])?(.+)$', file_path)
filename_end = match.group(2) if match else ''
return filename_end
# +
# Convert parsed text to docs
# -
def text_to_docs(text_dict: dict, chunk_size: int = chunk_size) -> List[Document]:
"""
Converts the output of parse_file (a dictionary of file paths to content)
to a list of Documents with metadata.
"""
doc_sections = []
parent_doc_sections = []
for file_path, content in text_dict.items():
ext = os.path.splitext(file_path)[1].lower()
# Depending on the file extension, handle the content
if ext == '.pdf':
docs, page_docs = pdf_text_to_docs(content, chunk_size)
elif ext in ['.html', '.htm', '.txt', '.docx']:
docs = html_text_to_docs(content, chunk_size)
elif ext in ['.csv', '.xlsx']:
docs, page_docs = csv_excel_text_to_docs(content, chunk_size)
else:
print(f"Unsupported file type {ext} for {file_path}. Skipping.")
continue
filename_end = get_file_path_end(file_path)
#match = re.search(r'(.*[\/\\])?(.+)$', file_path)
#filename_end = match.group(2) if match else ''
# Add filename as metadata
for doc in docs: doc.metadata["source"] = filename_end
#for parent_doc in parent_docs: parent_doc.metadata["source"] = filename_end
doc_sections.extend(docs)
#parent_doc_sections.extend(parent_docs)
return doc_sections#, page_docs
def pdf_text_to_docs(text, chunk_size: int = chunk_size) -> List[Document]:
"""Converts a string or list of strings to a list of Documents
with metadata."""
#print(text)
if isinstance(text, str):
# Take a single string as one page
text = [text]
page_docs = [Document(page_content=page, metadata={"page": page}) for page in text]
# Add page numbers as metadata
for i, doc in enumerate(page_docs):
doc.metadata["page"] = i + 1
print("page docs are: ")
print(page_docs)
# Split pages into sections
doc_sections = []
for doc in page_docs:
#print("page content: ")
#print(doc.page_content)
if doc.page_content == '':
sections = ['']
else:
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
separators=split_strat,#["\n\n", "\n", ".", "!", "?", ",", " ", ""],
chunk_overlap=chunk_overlap,
add_start_index=True
)
sections = text_splitter.split_text(doc.page_content)
for i, section in enumerate(sections):
doc = Document(
page_content=section, metadata={"page": doc.metadata["page"], "section": i, "page_section": f"{doc.metadata['page']}-{i}"})
doc_sections.append(doc)
return doc_sections, page_docs#, parent_doc
def html_text_to_docs(texts, metadatas, chunk_size:int = chunk_size):
text_splitter = RecursiveCharacterTextSplitter(
separators=split_strat,#["\n\n", "\n", ".", "!", "?", ",", " ", ""],
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
length_function=len,
add_start_index=True
)
#print(texts)
#print(metadatas)
documents = text_splitter.create_documents(texts, metadatas=metadatas)
for i, section in enumerate(documents):
section.metadata["page_section"] = i + 1
return documents
def write_out_metadata_as_string(metadata_in):
# If metadata_in is a single dictionary, wrap it in a list
if isinstance(metadata_in, dict):
metadata_in = [metadata_in]
metadata_string = [f"{' '.join(f'{k}: {v}' for k, v in d.items() if k != 'page_section')}" for d in metadata_in] # ['metadata']
return metadata_string
def csv_excel_text_to_docs(df, text_column='text', chunk_size=None) -> List[Document]:
"""Converts a DataFrame's content to a list of Documents with metadata."""
doc_sections = []
df[text_column] = df[text_column].astype(str) # Ensure column is a string column
# For each row in the dataframe
for idx, row in df.iterrows():
# Extract the text content for the document
doc_content = row[text_column]
# Generate metadata containing other columns' data
metadata = {"row": idx + 1}
for col, value in row.items():
if col != text_column:
metadata[col] = value
metadata_string = write_out_metadata_as_string(metadata)[0]
# If chunk_size is provided, split the text into chunks
if chunk_size:
# Assuming you have a text splitter function similar to the PDF handling
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
# Other arguments as required by the splitter
)
sections = text_splitter.split_text(doc_content)
# For each section, create a Document object
for i, section in enumerate(sections):
section = '. '.join([metadata_string, section])
doc = Document(page_content=section,
metadata={**metadata, "section": i, "row_section": f"{metadata['row']}-{i}"})
doc_sections.append(doc)
else:
# If no chunk_size is provided, create a single Document object for the row
doc_content = '. '.join([metadata_string, doc_content])
doc = Document(page_content=doc_content, metadata=metadata)
doc_sections.append(doc)
return doc_sections
# # Functions for working with documents after loading them back in
def pull_out_data(series):
# define a lambda function to convert each string into a tuple
to_tuple = lambda x: eval(x)
# apply the lambda function to each element of the series
series_tup = series.apply(to_tuple)
series_tup_content = list(zip(*series_tup))[1]
series = pd.Series(list(series_tup_content))#.str.replace("^Main post content", "", regex=True).str.strip()
return series
def docs_from_csv(df):
import ast
documents = []
page_content = pull_out_data(df["0"])
metadatas = pull_out_data(df["1"])
for x in range(0,len(df)):
new_doc = Document(page_content=page_content[x], metadata=metadatas[x])
documents.append(new_doc)
return documents
def docs_from_lists(docs, metadatas):
documents = []
for x, doc in enumerate(docs):
new_doc = Document(page_content=doc, metadata=metadatas[x])
documents.append(new_doc)
return documents
def docs_elements_from_csv_save(docs_path="documents.csv"):
documents = pd.read_csv(docs_path)
docs_out = docs_from_csv(documents)
out_df = pd.DataFrame(docs_out)
docs_content = pull_out_data(out_df[0].astype(str))
docs_meta = pull_out_data(out_df[1].astype(str))
doc_sources = [d['source'] for d in docs_meta]
return out_df, docs_content, docs_meta, doc_sources
# ## Create embeddings and save faiss vector store to the path specified in `save_to`
def load_embeddings(model_name = "BAAI/bge-base-en-v1.5"):
#if model_name == "hkunlp/instructor-large":
# embeddings_func = HuggingFaceInstructEmbeddings(model_name=model_name,
# embed_instruction="Represent the paragraph for retrieval: ",
# query_instruction="Represent the question for retrieving supporting documents: "
# )
#else:
embeddings_func = HuggingFaceEmbeddings(model_name=model_name)
global embeddings
embeddings = embeddings_func
return embeddings_func
def embed_faiss_save_to_zip(docs_out, save_to="faiss_lambeth_census_embedding", model_name = "BAAI/bge-base-en-v1.5"):
load_embeddings(model_name=model_name)
#embeddings_fast = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
print(f"> Total split documents: {len(docs_out)}")
vectorstore = FAISS.from_documents(documents=docs_out, embedding=embeddings)
if Path(save_to).exists():
vectorstore.save_local(folder_path=save_to)
print("> DONE")
print(f"> Saved to: {save_to}")
### Save as zip, then remove faiss/pkl files to allow for upload to huggingface
import shutil
shutil.make_archive(save_to, 'zip', save_to)
os.remove(save_to + "/index.faiss")
os.remove(save_to + "/index.pkl")
shutil.move(save_to + '.zip', save_to + "/" + save_to + '.zip')
return vectorstore
def docs_to_chroma_save(embeddings, docs_out:PandasDataFrame, save_to:str):
print(f"> Total split documents: {len(docs_out)}")
vectordb = Chroma.from_documents(documents=docs_out,
embedding=embeddings,
persist_directory=save_to)
# persiste the db to disk
vectordb.persist()
print("> DONE")
print(f"> Saved to: {save_to}")
return vectordb
def sim_search_local_saved_vec(query, k_val, save_to="faiss_lambeth_census_embedding"):
load_embeddings()
docsearch = FAISS.load_local(folder_path=save_to, embeddings=embeddings)
display(Markdown(question))
search = docsearch.similarity_search_with_score(query, k=k_val)
for item in search:
print(item[0].page_content)
print(f"Page: {item[0].metadata['source']}")
print(f"Date: {item[0].metadata['date']}")
print(f"Score: {item[1]}")
print("---")
|