sdwalker62 commited on
Commit
ab0ae16
1 Parent(s): 26ccc67

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -467
README.md CHANGED
@@ -1,467 +1,11 @@
1
- <div align="center">
2
- <p>
3
- <a align="center" href="https://ultralytics.com/yolov5" target="_blank">
4
- <img width="850" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png"></a>
5
- </p>
6
-
7
- [English](README.md) | [简体中文](README.zh-CN.md)
8
- <br>
9
- <div>
10
- <a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI"></a>
11
- <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
12
- <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
13
- <br>
14
- <a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a>
15
- <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
16
- <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
17
- </div>
18
- <br>
19
-
20
- YOLOv5 🚀 is the world's most loved vision AI, representing <a href="https://ultralytics.com">Ultralytics</a> open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
21
-
22
- To request an Enterprise License please complete the form at <a href="https://ultralytics.com/license">Ultralytics Licensing</a>.
23
-
24
- <div align="center">
25
- <a href="https://github.com/ultralytics" style="text-decoration:none;">
26
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="" /></a>
27
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
28
- <a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;">
29
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="" /></a>
30
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
31
- <a href="https://twitter.com/ultralytics" style="text-decoration:none;">
32
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="" /></a>
33
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
34
- <a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;">
35
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-producthunt.png" width="2%" alt="" /></a>
36
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
37
- <a href="https://youtube.com/ultralytics" style="text-decoration:none;">
38
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="" /></a>
39
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
40
- <a href="https://www.facebook.com/ultralytics" style="text-decoration:none;">
41
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-facebook.png" width="2%" alt="" /></a>
42
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
43
- <a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
44
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="2%" alt="" /></a>
45
- </div>
46
- </div>
47
-
48
- ## <div align="center">Segmentation ⭐ NEW</div>
49
-
50
- <div align="center">
51
- <a align="center" href="https://ultralytics.com/yolov5" target="_blank">
52
- <img width="800" src="https://user-images.githubusercontent.com/61612323/204180385-84f3aca9-a5e9-43d8-a617-dda7ca12e54a.png"></a>
53
- </div>
54
-
55
- Our new YOLOv5 [release v7.0](https://github.com/ultralytics/yolov5/releases/v7.0) instance segmentation models are the fastest and most accurate in the world, beating all current [SOTA benchmarks](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco). We've made them super simple to train, validate and deploy. See full details in our [Release Notes](https://github.com/ultralytics/yolov5/releases/v7.0) and visit our [YOLOv5 Segmentation Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/segment/tutorial.ipynb) for quickstart tutorials.
56
-
57
- <details>
58
- <summary>Segmentation Checkpoints</summary>
59
-
60
- <br>
61
-
62
- We trained YOLOv5 segmentations models on COCO for 300 epochs at image size 640 using A100 GPUs. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on Google [Colab Pro](https://colab.research.google.com/signup) notebooks for easy reproducibility.
63
-
64
- | Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Train time<br><sup>300 epochs<br>A100 (hours) | Speed<br><sup>ONNX CPU<br>(ms) | Speed<br><sup>TRT A100<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@640 (B) |
65
- |----------------------------------------------------------------------------------------------------|-----------------------|----------------------|-----------------------|-----------------------------------------------|--------------------------------|--------------------------------|--------------------|------------------------|
66
- | [YOLOv5n-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-seg.pt) | 640 | 27.6 | 23.4 | 80:17 | **62.7** | **1.2** | **2.0** | **7.1** |
67
- | [YOLOv5s-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt) | 640 | 37.6 | 31.7 | 88:16 | 173.3 | 1.4 | 7.6 | 26.4 |
68
- | [YOLOv5m-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-seg.pt) | 640 | 45.0 | 37.1 | 108:36 | 427.0 | 2.2 | 22.0 | 70.8 |
69
- | [YOLOv5l-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-seg.pt) | 640 | 49.0 | 39.9 | 66:43 (2x) | 857.4 | 2.9 | 47.9 | 147.7 |
70
- | [YOLOv5x-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-seg.pt) | 640 | **50.7** | **41.4** | 62:56 (3x) | 1579.2 | 4.5 | 88.8 | 265.7 |
71
-
72
- - All checkpoints are trained to 300 epochs with SGD optimizer with `lr0=0.01` and `weight_decay=5e-5` at image size 640 and all default settings.<br>Runs logged to https://wandb.ai/glenn-jocher/YOLOv5_v70_official
73
- - **Accuracy** values are for single-model single-scale on COCO dataset.<br>Reproduce by `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt`
74
- - **Speed** averaged over 100 inference images using a [Colab Pro](https://colab.research.google.com/signup) A100 High-RAM instance. Values indicate inference speed only (NMS adds about 1ms per image). <br>Reproduce by `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt --batch 1`
75
- - **Export** to ONNX at FP32 and TensorRT at FP16 done with `export.py`. <br>Reproduce by `python export.py --weights yolov5s-seg.pt --include engine --device 0 --half`
76
-
77
- </details>
78
-
79
- <details>
80
- <summary>Segmentation Usage Examples &nbsp;<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/segment/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a></summary>
81
-
82
- ### Train
83
- YOLOv5 segmentation training supports auto-download COCO128-seg segmentation dataset with `--data coco128-seg.yaml` argument and manual download of COCO-segments dataset with `bash data/scripts/get_coco.sh --train --val --segments` and then `python train.py --data coco.yaml`.
84
-
85
- ```bash
86
- # Single-GPU
87
- python segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640
88
-
89
- # Multi-GPU DDP
90
- python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 --device 0,1,2,3
91
- ```
92
-
93
- ### Val
94
- Validate YOLOv5s-seg mask mAP on COCO dataset:
95
- ```bash
96
- bash data/scripts/get_coco.sh --val --segments # download COCO val segments split (780MB, 5000 images)
97
- python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640 # validate
98
- ```
99
-
100
- ### Predict
101
- Use pretrained YOLOv5m-seg.pt to predict bus.jpg:
102
- ```bash
103
- python segment/predict.py --weights yolov5m-seg.pt --data data/images/bus.jpg
104
- ```
105
- ```python
106
- model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5m-seg.pt') # load from PyTorch Hub (WARNING: inference not yet supported)
107
- ```
108
-
109
- ![zidane](https://user-images.githubusercontent.com/26833433/203113421-decef4c4-183d-4a0a-a6c2-6435b33bc5d3.jpg) | ![bus](https://user-images.githubusercontent.com/26833433/203113416-11fe0025-69f7-4874-a0a6-65d0bfe2999a.jpg)
110
- --- |---
111
-
112
- ### Export
113
- Export YOLOv5s-seg model to ONNX and TensorRT:
114
- ```bash
115
- python export.py --weights yolov5s-seg.pt --include onnx engine --img 640 --device 0
116
- ```
117
-
118
- </details>
119
-
120
-
121
- ## <div align="center">Documentation</div>
122
-
123
- See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment. See below for quickstart examples.
124
-
125
- <details open>
126
- <summary>Install</summary>
127
-
128
- Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a
129
- [**Python>=3.7.0**](https://www.python.org/) environment, including
130
- [**PyTorch>=1.7**](https://pytorch.org/get-started/locally/).
131
-
132
- ```bash
133
- git clone https://github.com/ultralytics/yolov5 # clone
134
- cd yolov5
135
- pip install -r requirements.txt # install
136
- ```
137
-
138
- </details>
139
-
140
- <details>
141
- <summary>Inference</summary>
142
-
143
- YOLOv5 [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest
144
- YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).
145
-
146
- ```python
147
- import torch
148
-
149
- # Model
150
- model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5n - yolov5x6, custom
151
-
152
- # Images
153
- img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
154
-
155
- # Inference
156
- results = model(img)
157
-
158
- # Results
159
- results.print() # or .show(), .save(), .crop(), .pandas(), etc.
160
- ```
161
-
162
- </details>
163
-
164
- <details>
165
- <summary>Inference with detect.py</summary>
166
-
167
- `detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from
168
- the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
169
-
170
- ```bash
171
- python detect.py --weights yolov5s.pt --source 0 # webcam
172
- img.jpg # image
173
- vid.mp4 # video
174
- screen # screenshot
175
- path/ # directory
176
- list.txt # list of images
177
- list.streams # list of streams
178
- 'path/*.jpg' # glob
179
- 'https://youtu.be/Zgi9g1ksQHc' # YouTube
180
- 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
181
- ```
182
-
183
- </details>
184
-
185
- <details>
186
- <summary>Training</summary>
187
-
188
- The commands below reproduce YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh)
189
- results. [Models](https://github.com/ultralytics/yolov5/tree/master/models)
190
- and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest
191
- YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are
192
- 1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://github.com/ultralytics/yolov5/issues/475) times faster). Use the
193
- largest `--batch-size` possible, or pass `--batch-size -1` for
194
- YOLOv5 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB.
195
-
196
- ```bash
197
- python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml --batch-size 128
198
- yolov5s 64
199
- yolov5m 40
200
- yolov5l 24
201
- yolov5x 16
202
- ```
203
-
204
- <img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
205
-
206
- </details>
207
-
208
- <details open>
209
- <summary>Tutorials</summary>
210
-
211
- - [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)  🚀 RECOMMENDED
212
- - [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results)  ☘️
213
- RECOMMENDED
214
- - [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
215
- - [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) 🌟 NEW
216
- - [TFLite, ONNX, CoreML, TensorRT Export](https://github.com/ultralytics/yolov5/issues/251) 🚀
217
- - [NVIDIA Jetson Nano Deployment](https://github.com/ultralytics/yolov5/issues/9627) 🌟 NEW
218
- - [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
219
- - [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
220
- - [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
221
- - [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
222
- - [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314)
223
- - [Architecture Summary](https://github.com/ultralytics/yolov5/issues/6998) 🌟 NEW
224
- - [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975)  🌟 NEW
225
- - [ClearML Logging](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml) 🌟 NEW
226
- - [YOLOv5 with Neural Magic's Deepsparse](https://bit.ly/yolov5-neuralmagic) 🌟 NEW
227
- - [Comet Logging](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/comet) 🌟 NEW
228
-
229
- </details>
230
-
231
-
232
- ## <div align="center">Integrations</div>
233
-
234
- <br>
235
- <a align="center" href="https://bit.ly/ultralytics_hub" target="_blank">
236
- <img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/integrations-loop.png"></a>
237
- <br>
238
- <br>
239
-
240
- <div align="center">
241
- <a href="https://roboflow.com/?ref=ultralytics">
242
- <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow.png" width="10%" /></a>
243
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
244
- <a href="https://cutt.ly/yolov5-readme-clearml">
245
- <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-clearml.png" width="10%" /></a>
246
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
247
- <a href="https://bit.ly/yolov5-readme-comet">
248
- <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-comet.png" width="10%" /></a>
249
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
250
- <a href="https://bit.ly/yolov5-neuralmagic">
251
- <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-neuralmagic.png" width="10%" /></a>
252
- </div>
253
-
254
- |Roboflow|ClearML ⭐ NEW|Comet ⭐ NEW|Neural Magic ⭐ NEW|
255
- |:-:|:-:|:-:|:-:|
256
- |Label and export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics)|Automatically track, visualize and even remotely train YOLOv5 using [ClearML](https://cutt.ly/yolov5-readme-clearml) (open-source!)|Free forever, [Comet](https://bit.ly/yolov5-readme-comet2) lets you save YOLOv5 models, resume training, and interactively visualise and debug predictions|Run YOLOv5 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic)|
257
-
258
-
259
- ## <div align="center">Ultralytics HUB</div>
260
-
261
- [Ultralytics HUB](https://bit.ly/ultralytics_hub) is our ⭐ **NEW** no-code solution to visualize datasets, train YOLOv5 🚀 models, and deploy to the real world in a seamless experience. Get started for **Free** now!
262
-
263
- <a align="center" href="https://bit.ly/ultralytics_hub" target="_blank">
264
- <img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png"></a>
265
-
266
-
267
- ## <div align="center">Why YOLOv5</div>
268
-
269
- YOLOv5 has been designed to be super easy to get started and simple to learn. We prioritize real-world results.
270
-
271
- <p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040763-93c22a27-347c-4e3c-847a-8094621d3f4e.png"></p>
272
- <details>
273
- <summary>YOLOv5-P5 640 Figure</summary>
274
-
275
- <p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040757-ce0934a3-06a6-43dc-a979-2edbbd69ea0e.png"></p>
276
- </details>
277
- <details>
278
- <summary>Figure Notes</summary>
279
-
280
- - **COCO AP val** denotes [email protected]:0.95 metric measured on the 5000-image [COCO val2017](http://cocodataset.org) dataset over various inference sizes from 256 to 1536.
281
- - **GPU Speed** measures average inference time per image on [COCO val2017](http://cocodataset.org) dataset using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100 instance at batch-size 32.
282
- - **EfficientDet** data from [google/automl](https://github.com/google/automl) at batch size 8.
283
- - **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
284
-
285
- </details>
286
-
287
- ### Pretrained Checkpoints
288
-
289
- | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | mAP<sup>val<br>50 | Speed<br><sup>CPU b1<br>(ms) | Speed<br><sup>V100 b1<br>(ms) | Speed<br><sup>V100 b32<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@640 (B) |
290
- |------------------------------------------------------------------------------------------------------|-----------------------|----------------------|-------------------|------------------------------|-------------------------------|--------------------------------|--------------------|------------------------|
291
- | [YOLOv5n](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5n.pt) | 640 | 28.0 | 45.7 | **45** | **6.3** | **0.6** | **1.9** | **4.5** |
292
- | [YOLOv5s](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s.pt) | 640 | 37.4 | 56.8 | 98 | 6.4 | 0.9 | 7.2 | 16.5 |
293
- | [YOLOv5m](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5m.pt) | 640 | 45.4 | 64.1 | 224 | 8.2 | 1.7 | 21.2 | 49.0 |
294
- | [YOLOv5l](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5l.pt) | 640 | 49.0 | 67.3 | 430 | 10.1 | 2.7 | 46.5 | 109.1 |
295
- | [YOLOv5x](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5x.pt) | 640 | 50.7 | 68.9 | 766 | 12.1 | 4.8 | 86.7 | 205.7 |
296
- | | | | | | | | | |
297
- | [YOLOv5n6](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5n6.pt) | 1280 | 36.0 | 54.4 | 153 | 8.1 | 2.1 | 3.2 | 4.6 |
298
- | [YOLOv5s6](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s6.pt) | 1280 | 44.8 | 63.7 | 385 | 8.2 | 3.6 | 12.6 | 16.8 |
299
- | [YOLOv5m6](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5m6.pt) | 1280 | 51.3 | 69.3 | 887 | 11.1 | 6.8 | 35.7 | 50.0 |
300
- | [YOLOv5l6](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5l6.pt) | 1280 | 53.7 | 71.3 | 1784 | 15.8 | 10.5 | 76.8 | 111.4 |
301
- | [YOLOv5x6](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5x6.pt)<br>+ [TTA][tta] | 1280<br>1536 | 55.0<br>**55.8** | 72.7<br>**72.7** | 3136<br>- | 26.2<br>- | 19.4<br>- | 140.7<br>- | 209.8<br>- |
302
-
303
- <details>
304
- <summary>Table Notes</summary>
305
-
306
- - All checkpoints are trained to 300 epochs with default settings. Nano and Small models use [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) hyps, all others use [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml).
307
- - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.<br>Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
308
- - **Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) instance. NMS times (~1 ms/img) not included.<br>Reproduce by `python val.py --data coco.yaml --img 640 --task speed --batch 1`
309
- - **TTA** [Test Time Augmentation](https://github.com/ultralytics/yolov5/issues/303) includes reflection and scale augmentations.<br>Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
310
-
311
- </details>
312
-
313
-
314
- ## <div align="center">Classification ⭐ NEW</div>
315
-
316
- YOLOv5 [release v6.2](https://github.com/ultralytics/yolov5/releases) brings support for classification model training, validation and deployment! See full details in our [Release Notes](https://github.com/ultralytics/yolov5/releases/v6.2) and visit our [YOLOv5 Classification Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/classify/tutorial.ipynb) for quickstart tutorials.
317
-
318
- <details>
319
- <summary>Classification Checkpoints</summary>
320
-
321
- <br>
322
-
323
- We trained YOLOv5-cls classification models on ImageNet for 90 epochs using a 4xA100 instance, and we trained ResNet and EfficientNet models alongside with the same default training settings to compare. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on Google [Colab Pro](https://colab.research.google.com/signup) for easy reproducibility.
324
-
325
- | Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Training<br><sup>90 epochs<br>4xA100 (hours) | Speed<br><sup>ONNX CPU<br>(ms) | Speed<br><sup>TensorRT V100<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@224 (B) |
326
- |----------------------------------------------------------------------------------------------------|-----------------------|------------------|------------------|----------------------------------------------|--------------------------------|-------------------------------------|--------------------|------------------------|
327
- | [YOLOv5n-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5n-cls.pt) | 224 | 64.6 | 85.4 | 7:59 | **3.3** | **0.5** | **2.5** | **0.5** |
328
- | [YOLOv5s-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s-cls.pt) | 224 | 71.5 | 90.2 | 8:09 | 6.6 | 0.6 | 5.4 | 1.4 |
329
- | [YOLOv5m-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5m-cls.pt) | 224 | 75.9 | 92.9 | 10:06 | 15.5 | 0.9 | 12.9 | 3.9 |
330
- | [YOLOv5l-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5l-cls.pt) | 224 | 78.0 | 94.0 | 11:56 | 26.9 | 1.4 | 26.5 | 8.5 |
331
- | [YOLOv5x-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5x-cls.pt) | 224 | **79.0** | **94.4** | 15:04 | 54.3 | 1.8 | 48.1 | 15.9 |
332
- | |
333
- | [ResNet18](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet18.pt) | 224 | 70.3 | 89.5 | **6:47** | 11.2 | 0.5 | 11.7 | 3.7 |
334
- | [ResNet34](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet34.pt) | 224 | 73.9 | 91.8 | 8:33 | 20.6 | 0.9 | 21.8 | 7.4 |
335
- | [ResNet50](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet50.pt) | 224 | 76.8 | 93.4 | 11:10 | 23.4 | 1.0 | 25.6 | 8.5 |
336
- | [ResNet101](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet101.pt) | 224 | 78.5 | 94.3 | 17:10 | 42.1 | 1.9 | 44.5 | 15.9 |
337
- | |
338
- | [EfficientNet_b0](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b0.pt) | 224 | 75.1 | 92.4 | 13:03 | 12.5 | 1.3 | 5.3 | 1.0 |
339
- | [EfficientNet_b1](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b1.pt) | 224 | 76.4 | 93.2 | 17:04 | 14.9 | 1.6 | 7.8 | 1.5 |
340
- | [EfficientNet_b2](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b2.pt) | 224 | 76.6 | 93.4 | 17:10 | 15.9 | 1.6 | 9.1 | 1.7 |
341
- | [EfficientNet_b3](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b3.pt) | 224 | 77.7 | 94.0 | 19:19 | 18.9 | 1.9 | 12.2 | 2.4 |
342
-
343
- <details>
344
- <summary>Table Notes (click to expand)</summary>
345
-
346
- - All checkpoints are trained to 90 epochs with SGD optimizer with `lr0=0.001` and `weight_decay=5e-5` at image size 224 and all default settings.<br>Runs logged to https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2
347
- - **Accuracy** values are for single-model single-scale on [ImageNet-1k](https://www.image-net.org/index.php) dataset.<br>Reproduce by `python classify/val.py --data ../datasets/imagenet --img 224`
348
- - **Speed** averaged over 100 inference images using a Google [Colab Pro](https://colab.research.google.com/signup) V100 High-RAM instance.<br>Reproduce by `python classify/val.py --data ../datasets/imagenet --img 224 --batch 1`
349
- - **Export** to ONNX at FP32 and TensorRT at FP16 done with `export.py`. <br>Reproduce by `python export.py --weights yolov5s-cls.pt --include engine onnx --imgsz 224`
350
- </details>
351
- </details>
352
-
353
- <details>
354
- <summary>Classification Usage Examples &nbsp;<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/classify/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a></summary>
355
-
356
- ### Train
357
- YOLOv5 classification training supports auto-download of MNIST, Fashion-MNIST, CIFAR10, CIFAR100, Imagenette, Imagewoof, and ImageNet datasets with the `--data` argument. To start training on MNIST for example use `--data mnist`.
358
-
359
- ```bash
360
- # Single-GPU
361
- python classify/train.py --model yolov5s-cls.pt --data cifar100 --epochs 5 --img 224 --batch 128
362
-
363
- # Multi-GPU DDP
364
- python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
365
- ```
366
-
367
- ### Val
368
- Validate YOLOv5m-cls accuracy on ImageNet-1k dataset:
369
- ```bash
370
- bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images)
371
- python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224 # validate
372
- ```
373
-
374
- ### Predict
375
- Use pretrained YOLOv5s-cls.pt to predict bus.jpg:
376
- ```bash
377
- python classify/predict.py --weights yolov5s-cls.pt --data data/images/bus.jpg
378
- ```
379
- ```python
380
- model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s-cls.pt') # load from PyTorch Hub
381
- ```
382
-
383
- ### Export
384
- Export a group of trained YOLOv5s-cls, ResNet and EfficientNet models to ONNX and TensorRT:
385
- ```bash
386
- python export.py --weights yolov5s-cls.pt resnet50.pt efficientnet_b0.pt --include onnx engine --img 224
387
- ```
388
- </details>
389
-
390
-
391
- ## <div align="center">Environments</div>
392
-
393
- Get started in seconds with our verified environments. Click each icon below for details.
394
-
395
- <div align="center">
396
- <a href="https://bit.ly/yolov5-paperspace-notebook">
397
- <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gradient.png" width="10%" /></a>
398
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
399
- <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
400
- <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="10%" /></a>
401
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
402
- <a href="https://www.kaggle.com/ultralytics/yolov5">
403
- <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="10%" /></a>
404
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
405
- <a href="https://hub.docker.com/r/ultralytics/yolov5">
406
- <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="10%" /></a>
407
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
408
- <a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart">
409
- <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="10%" /></a>
410
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
411
- <a href="https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart">
412
- <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="10%" /></a>
413
- </div>
414
-
415
- ## <div align="center">App</div>
416
-
417
- Run YOLOv5 models on your iOS or Android device by downloading the [Ultralytics App](https://ultralytics.com/app_install)!
418
-
419
- <a align="center" href="https://ultralytics.com/app_install" target="_blank">
420
- <img width="100%" alt="Ultralytics mobile app" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-app.png">
421
-
422
-
423
- ## <div align="center">Contribute</div>
424
-
425
- We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our [Contributing Guide](CONTRIBUTING.md) to get started, and fill out the [YOLOv5 Survey](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experiences. Thank you to all our contributors!
426
-
427
- <!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
428
- <a href="https://github.com/ultralytics/yolov5/graphs/contributors"><img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/image-contributors-1280.png" /></a>
429
-
430
-
431
- ## <div align="center">License</div>
432
-
433
- YOLOv5 is available under two different licenses:
434
-
435
- - **GPL-3.0 License**: See [LICENSE](https://github.com/ultralytics/yolov5/blob/master/LICENSE) file for details.
436
- - **Enterprise License**: Provides greater flexibility for commercial product development without the open-source requirements of GPL-3.0. Typical use cases are embedding Ultralytics software and AI models in commercial products and applications. Request an Enterprise License at [Ultralytics Licensing](https://ultralytics.com/license).
437
-
438
-
439
- ## <div align="center">Contact</div>
440
-
441
- For YOLOv5 bugs and feature requests please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues). For professional support please [Contact Us](https://ultralytics.com/contact).
442
-
443
- <br>
444
- <div align="center">
445
- <a href="https://github.com/ultralytics" style="text-decoration:none;">
446
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="3%" alt="" /></a>
447
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
448
- <a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;">
449
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="3%" alt="" /></a>
450
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
451
- <a href="https://twitter.com/ultralytics" style="text-decoration:none;">
452
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="3%" alt="" /></a>
453
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
454
- <a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;">
455
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-producthunt.png" width="3%" alt="" /></a>
456
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
457
- <a href="https://youtube.com/ultralytics" style="text-decoration:none;">
458
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="3%" alt="" /></a>
459
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
460
- <a href="https://www.facebook.com/ultralytics" style="text-decoration:none;">
461
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-facebook.png" width="3%" alt="" /></a>
462
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
463
- <a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
464
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="3%" alt="" /></a>
465
- </div>
466
-
467
- [tta]: https://github.com/ultralytics/yolov5/issues/303
 
1
+ ---
2
+ title: Unreal Engine 5 Tank Demo
3
+ emoji:
4
+ colorFrom: blue
5
+ colorTo: purple
6
+ sdk: streamlit
7
+ sdk_version: 1.15.2
8
+ app_file: app.py
9
+ pinned: true
10
+ license: apache-2.0
11
+ ---