Spaces:
Runtime error
Runtime error
sdwalker62
commited on
Commit
•
26ccc67
1
Parent(s):
ebdaf41
Upload 416 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- CITATION.cff +14 -0
- CONTRIBUTING.md +93 -0
- LICENSE +674 -0
- README.md +467 -13
- app.py +122 -0
- benchmarks.py +169 -0
- classify/predict.py +226 -0
- classify/train.py +333 -0
- classify/tutorial.ipynb +0 -0
- classify/val.py +170 -0
- data.yaml +13 -0
- data/Argoverse.yaml +74 -0
- data/GlobalWheat2020.yaml +54 -0
- data/ImageNet.yaml +1022 -0
- data/Objects365.yaml +438 -0
- data/SKU-110K.yaml +53 -0
- data/VOC.yaml +100 -0
- data/VisDrone.yaml +70 -0
- data/coco.yaml +116 -0
- data/coco128-seg.yaml +101 -0
- data/coco128.yaml +101 -0
- data/hyps/hyp.Objects365.yaml +34 -0
- data/hyps/hyp.VOC.yaml +40 -0
- data/hyps/hyp.no-augmentation.yaml +35 -0
- data/hyps/hyp.scratch-high.yaml +34 -0
- data/hyps/hyp.scratch-low.yaml +34 -0
- data/hyps/hyp.scratch-med.yaml +34 -0
- data/scripts/download_weights.sh +22 -0
- data/scripts/get_coco.sh +56 -0
- data/scripts/get_coco128.sh +17 -0
- data/scripts/get_imagenet.sh +51 -0
- data/xView.yaml +153 -0
- detect.py +261 -0
- export.py +653 -0
- hubconf.py +169 -0
- models/__init__.py +0 -0
- models/__pycache__/__init__.cpython-310.pyc +0 -0
- models/__pycache__/__init__.cpython-38.pyc +0 -0
- models/__pycache__/common.cpython-310.pyc +0 -0
- models/__pycache__/common.cpython-38.pyc +0 -0
- models/__pycache__/experimental.cpython-310.pyc +0 -0
- models/__pycache__/experimental.cpython-38.pyc +0 -0
- models/__pycache__/yolo.cpython-310.pyc +0 -0
- models/__pycache__/yolo.cpython-38.pyc +0 -0
- models/common.py +860 -0
- models/experimental.py +111 -0
- models/hub/anchors.yaml +59 -0
- models/hub/yolov3-spp.yaml +51 -0
- models/hub/yolov3-tiny.yaml +41 -0
- models/hub/yolov3.yaml +51 -0
CITATION.cff
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
cff-version: 1.2.0
|
2 |
+
preferred-citation:
|
3 |
+
type: software
|
4 |
+
message: If you use YOLOv5, please cite it as below.
|
5 |
+
authors:
|
6 |
+
- family-names: Jocher
|
7 |
+
given-names: Glenn
|
8 |
+
orcid: "https://orcid.org/0000-0001-5950-6979"
|
9 |
+
title: "YOLOv5 by Ultralytics"
|
10 |
+
version: 7.0
|
11 |
+
doi: 10.5281/zenodo.3908559
|
12 |
+
date-released: 2020-5-29
|
13 |
+
license: GPL-3.0
|
14 |
+
url: "https://github.com/ultralytics/yolov5"
|
CONTRIBUTING.md
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Contributing to YOLOv5 🚀
|
2 |
+
|
3 |
+
We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible, whether it's:
|
4 |
+
|
5 |
+
- Reporting a bug
|
6 |
+
- Discussing the current state of the code
|
7 |
+
- Submitting a fix
|
8 |
+
- Proposing a new feature
|
9 |
+
- Becoming a maintainer
|
10 |
+
|
11 |
+
YOLOv5 works so well due to our combined community effort, and for every small improvement you contribute you will be
|
12 |
+
helping push the frontiers of what's possible in AI 😃!
|
13 |
+
|
14 |
+
## Submitting a Pull Request (PR) 🛠️
|
15 |
+
|
16 |
+
Submitting a PR is easy! This example shows how to submit a PR for updating `requirements.txt` in 4 steps:
|
17 |
+
|
18 |
+
### 1. Select File to Update
|
19 |
+
|
20 |
+
Select `requirements.txt` to update by clicking on it in GitHub.
|
21 |
+
|
22 |
+
<p align="center"><img width="800" alt="PR_step1" src="https://user-images.githubusercontent.com/26833433/122260847-08be2600-ced4-11eb-828b-8287ace4136c.png"></p>
|
23 |
+
|
24 |
+
### 2. Click 'Edit this file'
|
25 |
+
|
26 |
+
Button is in top-right corner.
|
27 |
+
|
28 |
+
<p align="center"><img width="800" alt="PR_step2" src="https://user-images.githubusercontent.com/26833433/122260844-06f46280-ced4-11eb-9eec-b8a24be519ca.png"></p>
|
29 |
+
|
30 |
+
### 3. Make Changes
|
31 |
+
|
32 |
+
Change `matplotlib` version from `3.2.2` to `3.3`.
|
33 |
+
|
34 |
+
<p align="center"><img width="800" alt="PR_step3" src="https://user-images.githubusercontent.com/26833433/122260853-0a87e980-ced4-11eb-9fd2-3650fb6e0842.png"></p>
|
35 |
+
|
36 |
+
### 4. Preview Changes and Submit PR
|
37 |
+
|
38 |
+
Click on the **Preview changes** tab to verify your updates. At the bottom of the screen select 'Create a **new branch**
|
39 |
+
for this commit', assign your branch a descriptive name such as `fix/matplotlib_version` and click the green **Propose
|
40 |
+
changes** button. All done, your PR is now submitted to YOLOv5 for review and approval 😃!
|
41 |
+
|
42 |
+
<p align="center"><img width="800" alt="PR_step4" src="https://user-images.githubusercontent.com/26833433/122260856-0b208000-ced4-11eb-8e8e-77b6151cbcc3.png"></p>
|
43 |
+
|
44 |
+
### PR recommendations
|
45 |
+
|
46 |
+
To allow your work to be integrated as seamlessly as possible, we advise you to:
|
47 |
+
|
48 |
+
- ✅ Verify your PR is **up-to-date** with `ultralytics/yolov5` `master` branch. If your PR is behind you can update
|
49 |
+
your code by clicking the 'Update branch' button or by running `git pull` and `git merge master` locally.
|
50 |
+
|
51 |
+
<p align="center"><img width="751" alt="Screenshot 2022-08-29 at 22 47 15" src="https://user-images.githubusercontent.com/26833433/187295893-50ed9f44-b2c9-4138-a614-de69bd1753d7.png"></p>
|
52 |
+
|
53 |
+
- ✅ Verify all YOLOv5 Continuous Integration (CI) **checks are passing**.
|
54 |
+
|
55 |
+
<p align="center"><img width="751" alt="Screenshot 2022-08-29 at 22 47 03" src="https://user-images.githubusercontent.com/26833433/187296922-545c5498-f64a-4d8c-8300-5fa764360da6.png"></p>
|
56 |
+
|
57 |
+
- ✅ Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase
|
58 |
+
but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_ — Bruce Lee
|
59 |
+
|
60 |
+
## Submitting a Bug Report 🐛
|
61 |
+
|
62 |
+
If you spot a problem with YOLOv5 please submit a Bug Report!
|
63 |
+
|
64 |
+
For us to start investigating a possible problem we need to be able to reproduce it ourselves first. We've created a few
|
65 |
+
short guidelines below to help users provide what we need in order to get started.
|
66 |
+
|
67 |
+
When asking a question, people will be better able to provide help if you provide **code** that they can easily
|
68 |
+
understand and use to **reproduce** the problem. This is referred to by community members as creating
|
69 |
+
a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example). Your code that reproduces
|
70 |
+
the problem should be:
|
71 |
+
|
72 |
+
- ✅ **Minimal** – Use as little code as possible that still produces the same problem
|
73 |
+
- ✅ **Complete** – Provide **all** parts someone else needs to reproduce your problem in the question itself
|
74 |
+
- ✅ **Reproducible** – Test the code you're about to provide to make sure it reproduces the problem
|
75 |
+
|
76 |
+
In addition to the above requirements, for [Ultralytics](https://ultralytics.com/) to provide assistance your code
|
77 |
+
should be:
|
78 |
+
|
79 |
+
- ✅ **Current** – Verify that your code is up-to-date with current
|
80 |
+
GitHub [master](https://github.com/ultralytics/yolov5/tree/master), and if necessary `git pull` or `git clone` a new
|
81 |
+
copy to ensure your problem has not already been resolved by previous commits.
|
82 |
+
- ✅ **Unmodified** – Your problem must be reproducible without any modifications to the codebase in this
|
83 |
+
repository. [Ultralytics](https://ultralytics.com/) does not provide support for custom code ⚠️.
|
84 |
+
|
85 |
+
If you believe your problem meets all of the above criteria, please close this issue and raise a new one using the 🐛
|
86 |
+
**Bug Report** [template](https://github.com/ultralytics/yolov5/issues/new/choose) and providing
|
87 |
+
a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) to help us better
|
88 |
+
understand and diagnose your problem.
|
89 |
+
|
90 |
+
## License
|
91 |
+
|
92 |
+
By contributing, you agree that your contributions will be licensed under
|
93 |
+
the [GPL-3.0 license](https://choosealicense.com/licenses/gpl-3.0/)
|
LICENSE
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GNU GENERAL PUBLIC LICENSE
|
2 |
+
Version 3, 29 June 2007
|
3 |
+
|
4 |
+
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
|
5 |
+
Everyone is permitted to copy and distribute verbatim copies
|
6 |
+
of this license document, but changing it is not allowed.
|
7 |
+
|
8 |
+
Preamble
|
9 |
+
|
10 |
+
The GNU General Public License is a free, copyleft license for
|
11 |
+
software and other kinds of works.
|
12 |
+
|
13 |
+
The licenses for most software and other practical works are designed
|
14 |
+
to take away your freedom to share and change the works. By contrast,
|
15 |
+
the GNU General Public License is intended to guarantee your freedom to
|
16 |
+
share and change all versions of a program--to make sure it remains free
|
17 |
+
software for all its users. We, the Free Software Foundation, use the
|
18 |
+
GNU General Public License for most of our software; it applies also to
|
19 |
+
any other work released this way by its authors. You can apply it to
|
20 |
+
your programs, too.
|
21 |
+
|
22 |
+
When we speak of free software, we are referring to freedom, not
|
23 |
+
price. Our General Public Licenses are designed to make sure that you
|
24 |
+
have the freedom to distribute copies of free software (and charge for
|
25 |
+
them if you wish), that you receive source code or can get it if you
|
26 |
+
want it, that you can change the software or use pieces of it in new
|
27 |
+
free programs, and that you know you can do these things.
|
28 |
+
|
29 |
+
To protect your rights, we need to prevent others from denying you
|
30 |
+
these rights or asking you to surrender the rights. Therefore, you have
|
31 |
+
certain responsibilities if you distribute copies of the software, or if
|
32 |
+
you modify it: responsibilities to respect the freedom of others.
|
33 |
+
|
34 |
+
For example, if you distribute copies of such a program, whether
|
35 |
+
gratis or for a fee, you must pass on to the recipients the same
|
36 |
+
freedoms that you received. You must make sure that they, too, receive
|
37 |
+
or can get the source code. And you must show them these terms so they
|
38 |
+
know their rights.
|
39 |
+
|
40 |
+
Developers that use the GNU GPL protect your rights with two steps:
|
41 |
+
(1) assert copyright on the software, and (2) offer you this License
|
42 |
+
giving you legal permission to copy, distribute and/or modify it.
|
43 |
+
|
44 |
+
For the developers' and authors' protection, the GPL clearly explains
|
45 |
+
that there is no warranty for this free software. For both users' and
|
46 |
+
authors' sake, the GPL requires that modified versions be marked as
|
47 |
+
changed, so that their problems will not be attributed erroneously to
|
48 |
+
authors of previous versions.
|
49 |
+
|
50 |
+
Some devices are designed to deny users access to install or run
|
51 |
+
modified versions of the software inside them, although the manufacturer
|
52 |
+
can do so. This is fundamentally incompatible with the aim of
|
53 |
+
protecting users' freedom to change the software. The systematic
|
54 |
+
pattern of such abuse occurs in the area of products for individuals to
|
55 |
+
use, which is precisely where it is most unacceptable. Therefore, we
|
56 |
+
have designed this version of the GPL to prohibit the practice for those
|
57 |
+
products. If such problems arise substantially in other domains, we
|
58 |
+
stand ready to extend this provision to those domains in future versions
|
59 |
+
of the GPL, as needed to protect the freedom of users.
|
60 |
+
|
61 |
+
Finally, every program is threatened constantly by software patents.
|
62 |
+
States should not allow patents to restrict development and use of
|
63 |
+
software on general-purpose computers, but in those that do, we wish to
|
64 |
+
avoid the special danger that patents applied to a free program could
|
65 |
+
make it effectively proprietary. To prevent this, the GPL assures that
|
66 |
+
patents cannot be used to render the program non-free.
|
67 |
+
|
68 |
+
The precise terms and conditions for copying, distribution and
|
69 |
+
modification follow.
|
70 |
+
|
71 |
+
TERMS AND CONDITIONS
|
72 |
+
|
73 |
+
0. Definitions.
|
74 |
+
|
75 |
+
"This License" refers to version 3 of the GNU General Public License.
|
76 |
+
|
77 |
+
"Copyright" also means copyright-like laws that apply to other kinds of
|
78 |
+
works, such as semiconductor masks.
|
79 |
+
|
80 |
+
"The Program" refers to any copyrightable work licensed under this
|
81 |
+
License. Each licensee is addressed as "you". "Licensees" and
|
82 |
+
"recipients" may be individuals or organizations.
|
83 |
+
|
84 |
+
To "modify" a work means to copy from or adapt all or part of the work
|
85 |
+
in a fashion requiring copyright permission, other than the making of an
|
86 |
+
exact copy. The resulting work is called a "modified version" of the
|
87 |
+
earlier work or a work "based on" the earlier work.
|
88 |
+
|
89 |
+
A "covered work" means either the unmodified Program or a work based
|
90 |
+
on the Program.
|
91 |
+
|
92 |
+
To "propagate" a work means to do anything with it that, without
|
93 |
+
permission, would make you directly or secondarily liable for
|
94 |
+
infringement under applicable copyright law, except executing it on a
|
95 |
+
computer or modifying a private copy. Propagation includes copying,
|
96 |
+
distribution (with or without modification), making available to the
|
97 |
+
public, and in some countries other activities as well.
|
98 |
+
|
99 |
+
To "convey" a work means any kind of propagation that enables other
|
100 |
+
parties to make or receive copies. Mere interaction with a user through
|
101 |
+
a computer network, with no transfer of a copy, is not conveying.
|
102 |
+
|
103 |
+
An interactive user interface displays "Appropriate Legal Notices"
|
104 |
+
to the extent that it includes a convenient and prominently visible
|
105 |
+
feature that (1) displays an appropriate copyright notice, and (2)
|
106 |
+
tells the user that there is no warranty for the work (except to the
|
107 |
+
extent that warranties are provided), that licensees may convey the
|
108 |
+
work under this License, and how to view a copy of this License. If
|
109 |
+
the interface presents a list of user commands or options, such as a
|
110 |
+
menu, a prominent item in the list meets this criterion.
|
111 |
+
|
112 |
+
1. Source Code.
|
113 |
+
|
114 |
+
The "source code" for a work means the preferred form of the work
|
115 |
+
for making modifications to it. "Object code" means any non-source
|
116 |
+
form of a work.
|
117 |
+
|
118 |
+
A "Standard Interface" means an interface that either is an official
|
119 |
+
standard defined by a recognized standards body, or, in the case of
|
120 |
+
interfaces specified for a particular programming language, one that
|
121 |
+
is widely used among developers working in that language.
|
122 |
+
|
123 |
+
The "System Libraries" of an executable work include anything, other
|
124 |
+
than the work as a whole, that (a) is included in the normal form of
|
125 |
+
packaging a Major Component, but which is not part of that Major
|
126 |
+
Component, and (b) serves only to enable use of the work with that
|
127 |
+
Major Component, or to implement a Standard Interface for which an
|
128 |
+
implementation is available to the public in source code form. A
|
129 |
+
"Major Component", in this context, means a major essential component
|
130 |
+
(kernel, window system, and so on) of the specific operating system
|
131 |
+
(if any) on which the executable work runs, or a compiler used to
|
132 |
+
produce the work, or an object code interpreter used to run it.
|
133 |
+
|
134 |
+
The "Corresponding Source" for a work in object code form means all
|
135 |
+
the source code needed to generate, install, and (for an executable
|
136 |
+
work) run the object code and to modify the work, including scripts to
|
137 |
+
control those activities. However, it does not include the work's
|
138 |
+
System Libraries, or general-purpose tools or generally available free
|
139 |
+
programs which are used unmodified in performing those activities but
|
140 |
+
which are not part of the work. For example, Corresponding Source
|
141 |
+
includes interface definition files associated with source files for
|
142 |
+
the work, and the source code for shared libraries and dynamically
|
143 |
+
linked subprograms that the work is specifically designed to require,
|
144 |
+
such as by intimate data communication or control flow between those
|
145 |
+
subprograms and other parts of the work.
|
146 |
+
|
147 |
+
The Corresponding Source need not include anything that users
|
148 |
+
can regenerate automatically from other parts of the Corresponding
|
149 |
+
Source.
|
150 |
+
|
151 |
+
The Corresponding Source for a work in source code form is that
|
152 |
+
same work.
|
153 |
+
|
154 |
+
2. Basic Permissions.
|
155 |
+
|
156 |
+
All rights granted under this License are granted for the term of
|
157 |
+
copyright on the Program, and are irrevocable provided the stated
|
158 |
+
conditions are met. This License explicitly affirms your unlimited
|
159 |
+
permission to run the unmodified Program. The output from running a
|
160 |
+
covered work is covered by this License only if the output, given its
|
161 |
+
content, constitutes a covered work. This License acknowledges your
|
162 |
+
rights of fair use or other equivalent, as provided by copyright law.
|
163 |
+
|
164 |
+
You may make, run and propagate covered works that you do not
|
165 |
+
convey, without conditions so long as your license otherwise remains
|
166 |
+
in force. You may convey covered works to others for the sole purpose
|
167 |
+
of having them make modifications exclusively for you, or provide you
|
168 |
+
with facilities for running those works, provided that you comply with
|
169 |
+
the terms of this License in conveying all material for which you do
|
170 |
+
not control copyright. Those thus making or running the covered works
|
171 |
+
for you must do so exclusively on your behalf, under your direction
|
172 |
+
and control, on terms that prohibit them from making any copies of
|
173 |
+
your copyrighted material outside their relationship with you.
|
174 |
+
|
175 |
+
Conveying under any other circumstances is permitted solely under
|
176 |
+
the conditions stated below. Sublicensing is not allowed; section 10
|
177 |
+
makes it unnecessary.
|
178 |
+
|
179 |
+
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
180 |
+
|
181 |
+
No covered work shall be deemed part of an effective technological
|
182 |
+
measure under any applicable law fulfilling obligations under article
|
183 |
+
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
184 |
+
similar laws prohibiting or restricting circumvention of such
|
185 |
+
measures.
|
186 |
+
|
187 |
+
When you convey a covered work, you waive any legal power to forbid
|
188 |
+
circumvention of technological measures to the extent such circumvention
|
189 |
+
is effected by exercising rights under this License with respect to
|
190 |
+
the covered work, and you disclaim any intention to limit operation or
|
191 |
+
modification of the work as a means of enforcing, against the work's
|
192 |
+
users, your or third parties' legal rights to forbid circumvention of
|
193 |
+
technological measures.
|
194 |
+
|
195 |
+
4. Conveying Verbatim Copies.
|
196 |
+
|
197 |
+
You may convey verbatim copies of the Program's source code as you
|
198 |
+
receive it, in any medium, provided that you conspicuously and
|
199 |
+
appropriately publish on each copy an appropriate copyright notice;
|
200 |
+
keep intact all notices stating that this License and any
|
201 |
+
non-permissive terms added in accord with section 7 apply to the code;
|
202 |
+
keep intact all notices of the absence of any warranty; and give all
|
203 |
+
recipients a copy of this License along with the Program.
|
204 |
+
|
205 |
+
You may charge any price or no price for each copy that you convey,
|
206 |
+
and you may offer support or warranty protection for a fee.
|
207 |
+
|
208 |
+
5. Conveying Modified Source Versions.
|
209 |
+
|
210 |
+
You may convey a work based on the Program, or the modifications to
|
211 |
+
produce it from the Program, in the form of source code under the
|
212 |
+
terms of section 4, provided that you also meet all of these conditions:
|
213 |
+
|
214 |
+
a) The work must carry prominent notices stating that you modified
|
215 |
+
it, and giving a relevant date.
|
216 |
+
|
217 |
+
b) The work must carry prominent notices stating that it is
|
218 |
+
released under this License and any conditions added under section
|
219 |
+
7. This requirement modifies the requirement in section 4 to
|
220 |
+
"keep intact all notices".
|
221 |
+
|
222 |
+
c) You must license the entire work, as a whole, under this
|
223 |
+
License to anyone who comes into possession of a copy. This
|
224 |
+
License will therefore apply, along with any applicable section 7
|
225 |
+
additional terms, to the whole of the work, and all its parts,
|
226 |
+
regardless of how they are packaged. This License gives no
|
227 |
+
permission to license the work in any other way, but it does not
|
228 |
+
invalidate such permission if you have separately received it.
|
229 |
+
|
230 |
+
d) If the work has interactive user interfaces, each must display
|
231 |
+
Appropriate Legal Notices; however, if the Program has interactive
|
232 |
+
interfaces that do not display Appropriate Legal Notices, your
|
233 |
+
work need not make them do so.
|
234 |
+
|
235 |
+
A compilation of a covered work with other separate and independent
|
236 |
+
works, which are not by their nature extensions of the covered work,
|
237 |
+
and which are not combined with it such as to form a larger program,
|
238 |
+
in or on a volume of a storage or distribution medium, is called an
|
239 |
+
"aggregate" if the compilation and its resulting copyright are not
|
240 |
+
used to limit the access or legal rights of the compilation's users
|
241 |
+
beyond what the individual works permit. Inclusion of a covered work
|
242 |
+
in an aggregate does not cause this License to apply to the other
|
243 |
+
parts of the aggregate.
|
244 |
+
|
245 |
+
6. Conveying Non-Source Forms.
|
246 |
+
|
247 |
+
You may convey a covered work in object code form under the terms
|
248 |
+
of sections 4 and 5, provided that you also convey the
|
249 |
+
machine-readable Corresponding Source under the terms of this License,
|
250 |
+
in one of these ways:
|
251 |
+
|
252 |
+
a) Convey the object code in, or embodied in, a physical product
|
253 |
+
(including a physical distribution medium), accompanied by the
|
254 |
+
Corresponding Source fixed on a durable physical medium
|
255 |
+
customarily used for software interchange.
|
256 |
+
|
257 |
+
b) Convey the object code in, or embodied in, a physical product
|
258 |
+
(including a physical distribution medium), accompanied by a
|
259 |
+
written offer, valid for at least three years and valid for as
|
260 |
+
long as you offer spare parts or customer support for that product
|
261 |
+
model, to give anyone who possesses the object code either (1) a
|
262 |
+
copy of the Corresponding Source for all the software in the
|
263 |
+
product that is covered by this License, on a durable physical
|
264 |
+
medium customarily used for software interchange, for a price no
|
265 |
+
more than your reasonable cost of physically performing this
|
266 |
+
conveying of source, or (2) access to copy the
|
267 |
+
Corresponding Source from a network server at no charge.
|
268 |
+
|
269 |
+
c) Convey individual copies of the object code with a copy of the
|
270 |
+
written offer to provide the Corresponding Source. This
|
271 |
+
alternative is allowed only occasionally and noncommercially, and
|
272 |
+
only if you received the object code with such an offer, in accord
|
273 |
+
with subsection 6b.
|
274 |
+
|
275 |
+
d) Convey the object code by offering access from a designated
|
276 |
+
place (gratis or for a charge), and offer equivalent access to the
|
277 |
+
Corresponding Source in the same way through the same place at no
|
278 |
+
further charge. You need not require recipients to copy the
|
279 |
+
Corresponding Source along with the object code. If the place to
|
280 |
+
copy the object code is a network server, the Corresponding Source
|
281 |
+
may be on a different server (operated by you or a third party)
|
282 |
+
that supports equivalent copying facilities, provided you maintain
|
283 |
+
clear directions next to the object code saying where to find the
|
284 |
+
Corresponding Source. Regardless of what server hosts the
|
285 |
+
Corresponding Source, you remain obligated to ensure that it is
|
286 |
+
available for as long as needed to satisfy these requirements.
|
287 |
+
|
288 |
+
e) Convey the object code using peer-to-peer transmission, provided
|
289 |
+
you inform other peers where the object code and Corresponding
|
290 |
+
Source of the work are being offered to the general public at no
|
291 |
+
charge under subsection 6d.
|
292 |
+
|
293 |
+
A separable portion of the object code, whose source code is excluded
|
294 |
+
from the Corresponding Source as a System Library, need not be
|
295 |
+
included in conveying the object code work.
|
296 |
+
|
297 |
+
A "User Product" is either (1) a "consumer product", which means any
|
298 |
+
tangible personal property which is normally used for personal, family,
|
299 |
+
or household purposes, or (2) anything designed or sold for incorporation
|
300 |
+
into a dwelling. In determining whether a product is a consumer product,
|
301 |
+
doubtful cases shall be resolved in favor of coverage. For a particular
|
302 |
+
product received by a particular user, "normally used" refers to a
|
303 |
+
typical or common use of that class of product, regardless of the status
|
304 |
+
of the particular user or of the way in which the particular user
|
305 |
+
actually uses, or expects or is expected to use, the product. A product
|
306 |
+
is a consumer product regardless of whether the product has substantial
|
307 |
+
commercial, industrial or non-consumer uses, unless such uses represent
|
308 |
+
the only significant mode of use of the product.
|
309 |
+
|
310 |
+
"Installation Information" for a User Product means any methods,
|
311 |
+
procedures, authorization keys, or other information required to install
|
312 |
+
and execute modified versions of a covered work in that User Product from
|
313 |
+
a modified version of its Corresponding Source. The information must
|
314 |
+
suffice to ensure that the continued functioning of the modified object
|
315 |
+
code is in no case prevented or interfered with solely because
|
316 |
+
modification has been made.
|
317 |
+
|
318 |
+
If you convey an object code work under this section in, or with, or
|
319 |
+
specifically for use in, a User Product, and the conveying occurs as
|
320 |
+
part of a transaction in which the right of possession and use of the
|
321 |
+
User Product is transferred to the recipient in perpetuity or for a
|
322 |
+
fixed term (regardless of how the transaction is characterized), the
|
323 |
+
Corresponding Source conveyed under this section must be accompanied
|
324 |
+
by the Installation Information. But this requirement does not apply
|
325 |
+
if neither you nor any third party retains the ability to install
|
326 |
+
modified object code on the User Product (for example, the work has
|
327 |
+
been installed in ROM).
|
328 |
+
|
329 |
+
The requirement to provide Installation Information does not include a
|
330 |
+
requirement to continue to provide support service, warranty, or updates
|
331 |
+
for a work that has been modified or installed by the recipient, or for
|
332 |
+
the User Product in which it has been modified or installed. Access to a
|
333 |
+
network may be denied when the modification itself materially and
|
334 |
+
adversely affects the operation of the network or violates the rules and
|
335 |
+
protocols for communication across the network.
|
336 |
+
|
337 |
+
Corresponding Source conveyed, and Installation Information provided,
|
338 |
+
in accord with this section must be in a format that is publicly
|
339 |
+
documented (and with an implementation available to the public in
|
340 |
+
source code form), and must require no special password or key for
|
341 |
+
unpacking, reading or copying.
|
342 |
+
|
343 |
+
7. Additional Terms.
|
344 |
+
|
345 |
+
"Additional permissions" are terms that supplement the terms of this
|
346 |
+
License by making exceptions from one or more of its conditions.
|
347 |
+
Additional permissions that are applicable to the entire Program shall
|
348 |
+
be treated as though they were included in this License, to the extent
|
349 |
+
that they are valid under applicable law. If additional permissions
|
350 |
+
apply only to part of the Program, that part may be used separately
|
351 |
+
under those permissions, but the entire Program remains governed by
|
352 |
+
this License without regard to the additional permissions.
|
353 |
+
|
354 |
+
When you convey a copy of a covered work, you may at your option
|
355 |
+
remove any additional permissions from that copy, or from any part of
|
356 |
+
it. (Additional permissions may be written to require their own
|
357 |
+
removal in certain cases when you modify the work.) You may place
|
358 |
+
additional permissions on material, added by you to a covered work,
|
359 |
+
for which you have or can give appropriate copyright permission.
|
360 |
+
|
361 |
+
Notwithstanding any other provision of this License, for material you
|
362 |
+
add to a covered work, you may (if authorized by the copyright holders of
|
363 |
+
that material) supplement the terms of this License with terms:
|
364 |
+
|
365 |
+
a) Disclaiming warranty or limiting liability differently from the
|
366 |
+
terms of sections 15 and 16 of this License; or
|
367 |
+
|
368 |
+
b) Requiring preservation of specified reasonable legal notices or
|
369 |
+
author attributions in that material or in the Appropriate Legal
|
370 |
+
Notices displayed by works containing it; or
|
371 |
+
|
372 |
+
c) Prohibiting misrepresentation of the origin of that material, or
|
373 |
+
requiring that modified versions of such material be marked in
|
374 |
+
reasonable ways as different from the original version; or
|
375 |
+
|
376 |
+
d) Limiting the use for publicity purposes of names of licensors or
|
377 |
+
authors of the material; or
|
378 |
+
|
379 |
+
e) Declining to grant rights under trademark law for use of some
|
380 |
+
trade names, trademarks, or service marks; or
|
381 |
+
|
382 |
+
f) Requiring indemnification of licensors and authors of that
|
383 |
+
material by anyone who conveys the material (or modified versions of
|
384 |
+
it) with contractual assumptions of liability to the recipient, for
|
385 |
+
any liability that these contractual assumptions directly impose on
|
386 |
+
those licensors and authors.
|
387 |
+
|
388 |
+
All other non-permissive additional terms are considered "further
|
389 |
+
restrictions" within the meaning of section 10. If the Program as you
|
390 |
+
received it, or any part of it, contains a notice stating that it is
|
391 |
+
governed by this License along with a term that is a further
|
392 |
+
restriction, you may remove that term. If a license document contains
|
393 |
+
a further restriction but permits relicensing or conveying under this
|
394 |
+
License, you may add to a covered work material governed by the terms
|
395 |
+
of that license document, provided that the further restriction does
|
396 |
+
not survive such relicensing or conveying.
|
397 |
+
|
398 |
+
If you add terms to a covered work in accord with this section, you
|
399 |
+
must place, in the relevant source files, a statement of the
|
400 |
+
additional terms that apply to those files, or a notice indicating
|
401 |
+
where to find the applicable terms.
|
402 |
+
|
403 |
+
Additional terms, permissive or non-permissive, may be stated in the
|
404 |
+
form of a separately written license, or stated as exceptions;
|
405 |
+
the above requirements apply either way.
|
406 |
+
|
407 |
+
8. Termination.
|
408 |
+
|
409 |
+
You may not propagate or modify a covered work except as expressly
|
410 |
+
provided under this License. Any attempt otherwise to propagate or
|
411 |
+
modify it is void, and will automatically terminate your rights under
|
412 |
+
this License (including any patent licenses granted under the third
|
413 |
+
paragraph of section 11).
|
414 |
+
|
415 |
+
However, if you cease all violation of this License, then your
|
416 |
+
license from a particular copyright holder is reinstated (a)
|
417 |
+
provisionally, unless and until the copyright holder explicitly and
|
418 |
+
finally terminates your license, and (b) permanently, if the copyright
|
419 |
+
holder fails to notify you of the violation by some reasonable means
|
420 |
+
prior to 60 days after the cessation.
|
421 |
+
|
422 |
+
Moreover, your license from a particular copyright holder is
|
423 |
+
reinstated permanently if the copyright holder notifies you of the
|
424 |
+
violation by some reasonable means, this is the first time you have
|
425 |
+
received notice of violation of this License (for any work) from that
|
426 |
+
copyright holder, and you cure the violation prior to 30 days after
|
427 |
+
your receipt of the notice.
|
428 |
+
|
429 |
+
Termination of your rights under this section does not terminate the
|
430 |
+
licenses of parties who have received copies or rights from you under
|
431 |
+
this License. If your rights have been terminated and not permanently
|
432 |
+
reinstated, you do not qualify to receive new licenses for the same
|
433 |
+
material under section 10.
|
434 |
+
|
435 |
+
9. Acceptance Not Required for Having Copies.
|
436 |
+
|
437 |
+
You are not required to accept this License in order to receive or
|
438 |
+
run a copy of the Program. Ancillary propagation of a covered work
|
439 |
+
occurring solely as a consequence of using peer-to-peer transmission
|
440 |
+
to receive a copy likewise does not require acceptance. However,
|
441 |
+
nothing other than this License grants you permission to propagate or
|
442 |
+
modify any covered work. These actions infringe copyright if you do
|
443 |
+
not accept this License. Therefore, by modifying or propagating a
|
444 |
+
covered work, you indicate your acceptance of this License to do so.
|
445 |
+
|
446 |
+
10. Automatic Licensing of Downstream Recipients.
|
447 |
+
|
448 |
+
Each time you convey a covered work, the recipient automatically
|
449 |
+
receives a license from the original licensors, to run, modify and
|
450 |
+
propagate that work, subject to this License. You are not responsible
|
451 |
+
for enforcing compliance by third parties with this License.
|
452 |
+
|
453 |
+
An "entity transaction" is a transaction transferring control of an
|
454 |
+
organization, or substantially all assets of one, or subdividing an
|
455 |
+
organization, or merging organizations. If propagation of a covered
|
456 |
+
work results from an entity transaction, each party to that
|
457 |
+
transaction who receives a copy of the work also receives whatever
|
458 |
+
licenses to the work the party's predecessor in interest had or could
|
459 |
+
give under the previous paragraph, plus a right to possession of the
|
460 |
+
Corresponding Source of the work from the predecessor in interest, if
|
461 |
+
the predecessor has it or can get it with reasonable efforts.
|
462 |
+
|
463 |
+
You may not impose any further restrictions on the exercise of the
|
464 |
+
rights granted or affirmed under this License. For example, you may
|
465 |
+
not impose a license fee, royalty, or other charge for exercise of
|
466 |
+
rights granted under this License, and you may not initiate litigation
|
467 |
+
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
468 |
+
any patent claim is infringed by making, using, selling, offering for
|
469 |
+
sale, or importing the Program or any portion of it.
|
470 |
+
|
471 |
+
11. Patents.
|
472 |
+
|
473 |
+
A "contributor" is a copyright holder who authorizes use under this
|
474 |
+
License of the Program or a work on which the Program is based. The
|
475 |
+
work thus licensed is called the contributor's "contributor version".
|
476 |
+
|
477 |
+
A contributor's "essential patent claims" are all patent claims
|
478 |
+
owned or controlled by the contributor, whether already acquired or
|
479 |
+
hereafter acquired, that would be infringed by some manner, permitted
|
480 |
+
by this License, of making, using, or selling its contributor version,
|
481 |
+
but do not include claims that would be infringed only as a
|
482 |
+
consequence of further modification of the contributor version. For
|
483 |
+
purposes of this definition, "control" includes the right to grant
|
484 |
+
patent sublicenses in a manner consistent with the requirements of
|
485 |
+
this License.
|
486 |
+
|
487 |
+
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
488 |
+
patent license under the contributor's essential patent claims, to
|
489 |
+
make, use, sell, offer for sale, import and otherwise run, modify and
|
490 |
+
propagate the contents of its contributor version.
|
491 |
+
|
492 |
+
In the following three paragraphs, a "patent license" is any express
|
493 |
+
agreement or commitment, however denominated, not to enforce a patent
|
494 |
+
(such as an express permission to practice a patent or covenant not to
|
495 |
+
sue for patent infringement). To "grant" such a patent license to a
|
496 |
+
party means to make such an agreement or commitment not to enforce a
|
497 |
+
patent against the party.
|
498 |
+
|
499 |
+
If you convey a covered work, knowingly relying on a patent license,
|
500 |
+
and the Corresponding Source of the work is not available for anyone
|
501 |
+
to copy, free of charge and under the terms of this License, through a
|
502 |
+
publicly available network server or other readily accessible means,
|
503 |
+
then you must either (1) cause the Corresponding Source to be so
|
504 |
+
available, or (2) arrange to deprive yourself of the benefit of the
|
505 |
+
patent license for this particular work, or (3) arrange, in a manner
|
506 |
+
consistent with the requirements of this License, to extend the patent
|
507 |
+
license to downstream recipients. "Knowingly relying" means you have
|
508 |
+
actual knowledge that, but for the patent license, your conveying the
|
509 |
+
covered work in a country, or your recipient's use of the covered work
|
510 |
+
in a country, would infringe one or more identifiable patents in that
|
511 |
+
country that you have reason to believe are valid.
|
512 |
+
|
513 |
+
If, pursuant to or in connection with a single transaction or
|
514 |
+
arrangement, you convey, or propagate by procuring conveyance of, a
|
515 |
+
covered work, and grant a patent license to some of the parties
|
516 |
+
receiving the covered work authorizing them to use, propagate, modify
|
517 |
+
or convey a specific copy of the covered work, then the patent license
|
518 |
+
you grant is automatically extended to all recipients of the covered
|
519 |
+
work and works based on it.
|
520 |
+
|
521 |
+
A patent license is "discriminatory" if it does not include within
|
522 |
+
the scope of its coverage, prohibits the exercise of, or is
|
523 |
+
conditioned on the non-exercise of one or more of the rights that are
|
524 |
+
specifically granted under this License. You may not convey a covered
|
525 |
+
work if you are a party to an arrangement with a third party that is
|
526 |
+
in the business of distributing software, under which you make payment
|
527 |
+
to the third party based on the extent of your activity of conveying
|
528 |
+
the work, and under which the third party grants, to any of the
|
529 |
+
parties who would receive the covered work from you, a discriminatory
|
530 |
+
patent license (a) in connection with copies of the covered work
|
531 |
+
conveyed by you (or copies made from those copies), or (b) primarily
|
532 |
+
for and in connection with specific products or compilations that
|
533 |
+
contain the covered work, unless you entered into that arrangement,
|
534 |
+
or that patent license was granted, prior to 28 March 2007.
|
535 |
+
|
536 |
+
Nothing in this License shall be construed as excluding or limiting
|
537 |
+
any implied license or other defenses to infringement that may
|
538 |
+
otherwise be available to you under applicable patent law.
|
539 |
+
|
540 |
+
12. No Surrender of Others' Freedom.
|
541 |
+
|
542 |
+
If conditions are imposed on you (whether by court order, agreement or
|
543 |
+
otherwise) that contradict the conditions of this License, they do not
|
544 |
+
excuse you from the conditions of this License. If you cannot convey a
|
545 |
+
covered work so as to satisfy simultaneously your obligations under this
|
546 |
+
License and any other pertinent obligations, then as a consequence you may
|
547 |
+
not convey it at all. For example, if you agree to terms that obligate you
|
548 |
+
to collect a royalty for further conveying from those to whom you convey
|
549 |
+
the Program, the only way you could satisfy both those terms and this
|
550 |
+
License would be to refrain entirely from conveying the Program.
|
551 |
+
|
552 |
+
13. Use with the GNU Affero General Public License.
|
553 |
+
|
554 |
+
Notwithstanding any other provision of this License, you have
|
555 |
+
permission to link or combine any covered work with a work licensed
|
556 |
+
under version 3 of the GNU Affero General Public License into a single
|
557 |
+
combined work, and to convey the resulting work. The terms of this
|
558 |
+
License will continue to apply to the part which is the covered work,
|
559 |
+
but the special requirements of the GNU Affero General Public License,
|
560 |
+
section 13, concerning interaction through a network will apply to the
|
561 |
+
combination as such.
|
562 |
+
|
563 |
+
14. Revised Versions of this License.
|
564 |
+
|
565 |
+
The Free Software Foundation may publish revised and/or new versions of
|
566 |
+
the GNU General Public License from time to time. Such new versions will
|
567 |
+
be similar in spirit to the present version, but may differ in detail to
|
568 |
+
address new problems or concerns.
|
569 |
+
|
570 |
+
Each version is given a distinguishing version number. If the
|
571 |
+
Program specifies that a certain numbered version of the GNU General
|
572 |
+
Public License "or any later version" applies to it, you have the
|
573 |
+
option of following the terms and conditions either of that numbered
|
574 |
+
version or of any later version published by the Free Software
|
575 |
+
Foundation. If the Program does not specify a version number of the
|
576 |
+
GNU General Public License, you may choose any version ever published
|
577 |
+
by the Free Software Foundation.
|
578 |
+
|
579 |
+
If the Program specifies that a proxy can decide which future
|
580 |
+
versions of the GNU General Public License can be used, that proxy's
|
581 |
+
public statement of acceptance of a version permanently authorizes you
|
582 |
+
to choose that version for the Program.
|
583 |
+
|
584 |
+
Later license versions may give you additional or different
|
585 |
+
permissions. However, no additional obligations are imposed on any
|
586 |
+
author or copyright holder as a result of your choosing to follow a
|
587 |
+
later version.
|
588 |
+
|
589 |
+
15. Disclaimer of Warranty.
|
590 |
+
|
591 |
+
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
592 |
+
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
593 |
+
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
594 |
+
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
595 |
+
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
596 |
+
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
597 |
+
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
598 |
+
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
599 |
+
|
600 |
+
16. Limitation of Liability.
|
601 |
+
|
602 |
+
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
603 |
+
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
604 |
+
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
605 |
+
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
606 |
+
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
607 |
+
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
608 |
+
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
609 |
+
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
610 |
+
SUCH DAMAGES.
|
611 |
+
|
612 |
+
17. Interpretation of Sections 15 and 16.
|
613 |
+
|
614 |
+
If the disclaimer of warranty and limitation of liability provided
|
615 |
+
above cannot be given local legal effect according to their terms,
|
616 |
+
reviewing courts shall apply local law that most closely approximates
|
617 |
+
an absolute waiver of all civil liability in connection with the
|
618 |
+
Program, unless a warranty or assumption of liability accompanies a
|
619 |
+
copy of the Program in return for a fee.
|
620 |
+
|
621 |
+
END OF TERMS AND CONDITIONS
|
622 |
+
|
623 |
+
How to Apply These Terms to Your New Programs
|
624 |
+
|
625 |
+
If you develop a new program, and you want it to be of the greatest
|
626 |
+
possible use to the public, the best way to achieve this is to make it
|
627 |
+
free software which everyone can redistribute and change under these terms.
|
628 |
+
|
629 |
+
To do so, attach the following notices to the program. It is safest
|
630 |
+
to attach them to the start of each source file to most effectively
|
631 |
+
state the exclusion of warranty; and each file should have at least
|
632 |
+
the "copyright" line and a pointer to where the full notice is found.
|
633 |
+
|
634 |
+
<one line to give the program's name and a brief idea of what it does.>
|
635 |
+
Copyright (C) <year> <name of author>
|
636 |
+
|
637 |
+
This program is free software: you can redistribute it and/or modify
|
638 |
+
it under the terms of the GNU General Public License as published by
|
639 |
+
the Free Software Foundation, either version 3 of the License, or
|
640 |
+
(at your option) any later version.
|
641 |
+
|
642 |
+
This program is distributed in the hope that it will be useful,
|
643 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
644 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
645 |
+
GNU General Public License for more details.
|
646 |
+
|
647 |
+
You should have received a copy of the GNU General Public License
|
648 |
+
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
649 |
+
|
650 |
+
Also add information on how to contact you by electronic and paper mail.
|
651 |
+
|
652 |
+
If the program does terminal interaction, make it output a short
|
653 |
+
notice like this when it starts in an interactive mode:
|
654 |
+
|
655 |
+
<program> Copyright (C) <year> <name of author>
|
656 |
+
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
657 |
+
This is free software, and you are welcome to redistribute it
|
658 |
+
under certain conditions; type `show c' for details.
|
659 |
+
|
660 |
+
The hypothetical commands `show w' and `show c' should show the appropriate
|
661 |
+
parts of the General Public License. Of course, your program's commands
|
662 |
+
might be different; for a GUI interface, you would use an "about box".
|
663 |
+
|
664 |
+
You should also get your employer (if you work as a programmer) or school,
|
665 |
+
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
666 |
+
For more information on this, and how to apply and follow the GNU GPL, see
|
667 |
+
<http://www.gnu.org/licenses/>.
|
668 |
+
|
669 |
+
The GNU General Public License does not permit incorporating your program
|
670 |
+
into proprietary programs. If your program is a subroutine library, you
|
671 |
+
may consider it more useful to permit linking proprietary applications with
|
672 |
+
the library. If this is what you want to do, use the GNU Lesser General
|
673 |
+
Public License instead of this License. But first, please read
|
674 |
+
<http://www.gnu.org/philosophy/why-not-lgpl.html>.
|
README.md
CHANGED
@@ -1,13 +1,467 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<div align="center">
|
2 |
+
<p>
|
3 |
+
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
|
4 |
+
<img width="850" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png"></a>
|
5 |
+
</p>
|
6 |
+
|
7 |
+
[English](README.md) | [简体中文](README.zh-CN.md)
|
8 |
+
<br>
|
9 |
+
<div>
|
10 |
+
<a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI"></a>
|
11 |
+
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
|
12 |
+
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
|
13 |
+
<br>
|
14 |
+
<a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a>
|
15 |
+
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
|
16 |
+
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
|
17 |
+
</div>
|
18 |
+
<br>
|
19 |
+
|
20 |
+
YOLOv5 🚀 is the world's most loved vision AI, representing <a href="https://ultralytics.com">Ultralytics</a> open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
|
21 |
+
|
22 |
+
To request an Enterprise License please complete the form at <a href="https://ultralytics.com/license">Ultralytics Licensing</a>.
|
23 |
+
|
24 |
+
<div align="center">
|
25 |
+
<a href="https://github.com/ultralytics" style="text-decoration:none;">
|
26 |
+
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="" /></a>
|
27 |
+
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
|
28 |
+
<a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;">
|
29 |
+
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="" /></a>
|
30 |
+
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
|
31 |
+
<a href="https://twitter.com/ultralytics" style="text-decoration:none;">
|
32 |
+
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="" /></a>
|
33 |
+
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
|
34 |
+
<a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;">
|
35 |
+
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-producthunt.png" width="2%" alt="" /></a>
|
36 |
+
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
|
37 |
+
<a href="https://youtube.com/ultralytics" style="text-decoration:none;">
|
38 |
+
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="" /></a>
|
39 |
+
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
|
40 |
+
<a href="https://www.facebook.com/ultralytics" style="text-decoration:none;">
|
41 |
+
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-facebook.png" width="2%" alt="" /></a>
|
42 |
+
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
|
43 |
+
<a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
|
44 |
+
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="2%" alt="" /></a>
|
45 |
+
</div>
|
46 |
+
</div>
|
47 |
+
|
48 |
+
## <div align="center">Segmentation ⭐ NEW</div>
|
49 |
+
|
50 |
+
<div align="center">
|
51 |
+
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
|
52 |
+
<img width="800" src="https://user-images.githubusercontent.com/61612323/204180385-84f3aca9-a5e9-43d8-a617-dda7ca12e54a.png"></a>
|
53 |
+
</div>
|
54 |
+
|
55 |
+
Our new YOLOv5 [release v7.0](https://github.com/ultralytics/yolov5/releases/v7.0) instance segmentation models are the fastest and most accurate in the world, beating all current [SOTA benchmarks](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco). We've made them super simple to train, validate and deploy. See full details in our [Release Notes](https://github.com/ultralytics/yolov5/releases/v7.0) and visit our [YOLOv5 Segmentation Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/segment/tutorial.ipynb) for quickstart tutorials.
|
56 |
+
|
57 |
+
<details>
|
58 |
+
<summary>Segmentation Checkpoints</summary>
|
59 |
+
|
60 |
+
<br>
|
61 |
+
|
62 |
+
We trained YOLOv5 segmentations models on COCO for 300 epochs at image size 640 using A100 GPUs. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on Google [Colab Pro](https://colab.research.google.com/signup) notebooks for easy reproducibility.
|
63 |
+
|
64 |
+
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Train time<br><sup>300 epochs<br>A100 (hours) | Speed<br><sup>ONNX CPU<br>(ms) | Speed<br><sup>TRT A100<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@640 (B) |
|
65 |
+
|----------------------------------------------------------------------------------------------------|-----------------------|----------------------|-----------------------|-----------------------------------------------|--------------------------------|--------------------------------|--------------------|------------------------|
|
66 |
+
| [YOLOv5n-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-seg.pt) | 640 | 27.6 | 23.4 | 80:17 | **62.7** | **1.2** | **2.0** | **7.1** |
|
67 |
+
| [YOLOv5s-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt) | 640 | 37.6 | 31.7 | 88:16 | 173.3 | 1.4 | 7.6 | 26.4 |
|
68 |
+
| [YOLOv5m-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-seg.pt) | 640 | 45.0 | 37.1 | 108:36 | 427.0 | 2.2 | 22.0 | 70.8 |
|
69 |
+
| [YOLOv5l-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-seg.pt) | 640 | 49.0 | 39.9 | 66:43 (2x) | 857.4 | 2.9 | 47.9 | 147.7 |
|
70 |
+
| [YOLOv5x-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-seg.pt) | 640 | **50.7** | **41.4** | 62:56 (3x) | 1579.2 | 4.5 | 88.8 | 265.7 |
|
71 |
+
|
72 |
+
- All checkpoints are trained to 300 epochs with SGD optimizer with `lr0=0.01` and `weight_decay=5e-5` at image size 640 and all default settings.<br>Runs logged to https://wandb.ai/glenn-jocher/YOLOv5_v70_official
|
73 |
+
- **Accuracy** values are for single-model single-scale on COCO dataset.<br>Reproduce by `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt`
|
74 |
+
- **Speed** averaged over 100 inference images using a [Colab Pro](https://colab.research.google.com/signup) A100 High-RAM instance. Values indicate inference speed only (NMS adds about 1ms per image). <br>Reproduce by `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt --batch 1`
|
75 |
+
- **Export** to ONNX at FP32 and TensorRT at FP16 done with `export.py`. <br>Reproduce by `python export.py --weights yolov5s-seg.pt --include engine --device 0 --half`
|
76 |
+
|
77 |
+
</details>
|
78 |
+
|
79 |
+
<details>
|
80 |
+
<summary>Segmentation Usage Examples <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/segment/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a></summary>
|
81 |
+
|
82 |
+
### Train
|
83 |
+
YOLOv5 segmentation training supports auto-download COCO128-seg segmentation dataset with `--data coco128-seg.yaml` argument and manual download of COCO-segments dataset with `bash data/scripts/get_coco.sh --train --val --segments` and then `python train.py --data coco.yaml`.
|
84 |
+
|
85 |
+
```bash
|
86 |
+
# Single-GPU
|
87 |
+
python segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640
|
88 |
+
|
89 |
+
# Multi-GPU DDP
|
90 |
+
python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 --device 0,1,2,3
|
91 |
+
```
|
92 |
+
|
93 |
+
### Val
|
94 |
+
Validate YOLOv5s-seg mask mAP on COCO dataset:
|
95 |
+
```bash
|
96 |
+
bash data/scripts/get_coco.sh --val --segments # download COCO val segments split (780MB, 5000 images)
|
97 |
+
python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640 # validate
|
98 |
+
```
|
99 |
+
|
100 |
+
### Predict
|
101 |
+
Use pretrained YOLOv5m-seg.pt to predict bus.jpg:
|
102 |
+
```bash
|
103 |
+
python segment/predict.py --weights yolov5m-seg.pt --data data/images/bus.jpg
|
104 |
+
```
|
105 |
+
```python
|
106 |
+
model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5m-seg.pt') # load from PyTorch Hub (WARNING: inference not yet supported)
|
107 |
+
```
|
108 |
+
|
109 |
+
![zidane](https://user-images.githubusercontent.com/26833433/203113421-decef4c4-183d-4a0a-a6c2-6435b33bc5d3.jpg) | ![bus](https://user-images.githubusercontent.com/26833433/203113416-11fe0025-69f7-4874-a0a6-65d0bfe2999a.jpg)
|
110 |
+
--- |---
|
111 |
+
|
112 |
+
### Export
|
113 |
+
Export YOLOv5s-seg model to ONNX and TensorRT:
|
114 |
+
```bash
|
115 |
+
python export.py --weights yolov5s-seg.pt --include onnx engine --img 640 --device 0
|
116 |
+
```
|
117 |
+
|
118 |
+
</details>
|
119 |
+
|
120 |
+
|
121 |
+
## <div align="center">Documentation</div>
|
122 |
+
|
123 |
+
See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment. See below for quickstart examples.
|
124 |
+
|
125 |
+
<details open>
|
126 |
+
<summary>Install</summary>
|
127 |
+
|
128 |
+
Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a
|
129 |
+
[**Python>=3.7.0**](https://www.python.org/) environment, including
|
130 |
+
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/).
|
131 |
+
|
132 |
+
```bash
|
133 |
+
git clone https://github.com/ultralytics/yolov5 # clone
|
134 |
+
cd yolov5
|
135 |
+
pip install -r requirements.txt # install
|
136 |
+
```
|
137 |
+
|
138 |
+
</details>
|
139 |
+
|
140 |
+
<details>
|
141 |
+
<summary>Inference</summary>
|
142 |
+
|
143 |
+
YOLOv5 [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest
|
144 |
+
YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).
|
145 |
+
|
146 |
+
```python
|
147 |
+
import torch
|
148 |
+
|
149 |
+
# Model
|
150 |
+
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5n - yolov5x6, custom
|
151 |
+
|
152 |
+
# Images
|
153 |
+
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
|
154 |
+
|
155 |
+
# Inference
|
156 |
+
results = model(img)
|
157 |
+
|
158 |
+
# Results
|
159 |
+
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
|
160 |
+
```
|
161 |
+
|
162 |
+
</details>
|
163 |
+
|
164 |
+
<details>
|
165 |
+
<summary>Inference with detect.py</summary>
|
166 |
+
|
167 |
+
`detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from
|
168 |
+
the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
|
169 |
+
|
170 |
+
```bash
|
171 |
+
python detect.py --weights yolov5s.pt --source 0 # webcam
|
172 |
+
img.jpg # image
|
173 |
+
vid.mp4 # video
|
174 |
+
screen # screenshot
|
175 |
+
path/ # directory
|
176 |
+
list.txt # list of images
|
177 |
+
list.streams # list of streams
|
178 |
+
'path/*.jpg' # glob
|
179 |
+
'https://youtu.be/Zgi9g1ksQHc' # YouTube
|
180 |
+
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
|
181 |
+
```
|
182 |
+
|
183 |
+
</details>
|
184 |
+
|
185 |
+
<details>
|
186 |
+
<summary>Training</summary>
|
187 |
+
|
188 |
+
The commands below reproduce YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh)
|
189 |
+
results. [Models](https://github.com/ultralytics/yolov5/tree/master/models)
|
190 |
+
and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest
|
191 |
+
YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are
|
192 |
+
1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://github.com/ultralytics/yolov5/issues/475) times faster). Use the
|
193 |
+
largest `--batch-size` possible, or pass `--batch-size -1` for
|
194 |
+
YOLOv5 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB.
|
195 |
+
|
196 |
+
```bash
|
197 |
+
python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml --batch-size 128
|
198 |
+
yolov5s 64
|
199 |
+
yolov5m 40
|
200 |
+
yolov5l 24
|
201 |
+
yolov5x 16
|
202 |
+
```
|
203 |
+
|
204 |
+
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
|
205 |
+
|
206 |
+
</details>
|
207 |
+
|
208 |
+
<details open>
|
209 |
+
<summary>Tutorials</summary>
|
210 |
+
|
211 |
+
- [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) 🚀 RECOMMENDED
|
212 |
+
- [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) ☘️
|
213 |
+
RECOMMENDED
|
214 |
+
- [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
|
215 |
+
- [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) 🌟 NEW
|
216 |
+
- [TFLite, ONNX, CoreML, TensorRT Export](https://github.com/ultralytics/yolov5/issues/251) 🚀
|
217 |
+
- [NVIDIA Jetson Nano Deployment](https://github.com/ultralytics/yolov5/issues/9627) 🌟 NEW
|
218 |
+
- [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
|
219 |
+
- [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
|
220 |
+
- [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
|
221 |
+
- [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
|
222 |
+
- [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314)
|
223 |
+
- [Architecture Summary](https://github.com/ultralytics/yolov5/issues/6998) 🌟 NEW
|
224 |
+
- [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975) 🌟 NEW
|
225 |
+
- [ClearML Logging](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml) 🌟 NEW
|
226 |
+
- [YOLOv5 with Neural Magic's Deepsparse](https://bit.ly/yolov5-neuralmagic) 🌟 NEW
|
227 |
+
- [Comet Logging](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/comet) 🌟 NEW
|
228 |
+
|
229 |
+
</details>
|
230 |
+
|
231 |
+
|
232 |
+
## <div align="center">Integrations</div>
|
233 |
+
|
234 |
+
<br>
|
235 |
+
<a align="center" href="https://bit.ly/ultralytics_hub" target="_blank">
|
236 |
+
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/integrations-loop.png"></a>
|
237 |
+
<br>
|
238 |
+
<br>
|
239 |
+
|
240 |
+
<div align="center">
|
241 |
+
<a href="https://roboflow.com/?ref=ultralytics">
|
242 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow.png" width="10%" /></a>
|
243 |
+
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
|
244 |
+
<a href="https://cutt.ly/yolov5-readme-clearml">
|
245 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-clearml.png" width="10%" /></a>
|
246 |
+
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
|
247 |
+
<a href="https://bit.ly/yolov5-readme-comet">
|
248 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-comet.png" width="10%" /></a>
|
249 |
+
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
|
250 |
+
<a href="https://bit.ly/yolov5-neuralmagic">
|
251 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-neuralmagic.png" width="10%" /></a>
|
252 |
+
</div>
|
253 |
+
|
254 |
+
|Roboflow|ClearML ⭐ NEW|Comet ⭐ NEW|Neural Magic ⭐ NEW|
|
255 |
+
|:-:|:-:|:-:|:-:|
|
256 |
+
|Label and export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics)|Automatically track, visualize and even remotely train YOLOv5 using [ClearML](https://cutt.ly/yolov5-readme-clearml) (open-source!)|Free forever, [Comet](https://bit.ly/yolov5-readme-comet2) lets you save YOLOv5 models, resume training, and interactively visualise and debug predictions|Run YOLOv5 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic)|
|
257 |
+
|
258 |
+
|
259 |
+
## <div align="center">Ultralytics HUB</div>
|
260 |
+
|
261 |
+
[Ultralytics HUB](https://bit.ly/ultralytics_hub) is our ⭐ **NEW** no-code solution to visualize datasets, train YOLOv5 🚀 models, and deploy to the real world in a seamless experience. Get started for **Free** now!
|
262 |
+
|
263 |
+
<a align="center" href="https://bit.ly/ultralytics_hub" target="_blank">
|
264 |
+
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png"></a>
|
265 |
+
|
266 |
+
|
267 |
+
## <div align="center">Why YOLOv5</div>
|
268 |
+
|
269 |
+
YOLOv5 has been designed to be super easy to get started and simple to learn. We prioritize real-world results.
|
270 |
+
|
271 |
+
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040763-93c22a27-347c-4e3c-847a-8094621d3f4e.png"></p>
|
272 |
+
<details>
|
273 |
+
<summary>YOLOv5-P5 640 Figure</summary>
|
274 |
+
|
275 |
+
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040757-ce0934a3-06a6-43dc-a979-2edbbd69ea0e.png"></p>
|
276 |
+
</details>
|
277 |
+
<details>
|
278 |
+
<summary>Figure Notes</summary>
|
279 |
+
|
280 |
+
- **COCO AP val** denotes [email protected]:0.95 metric measured on the 5000-image [COCO val2017](http://cocodataset.org) dataset over various inference sizes from 256 to 1536.
|
281 |
+
- **GPU Speed** measures average inference time per image on [COCO val2017](http://cocodataset.org) dataset using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100 instance at batch-size 32.
|
282 |
+
- **EfficientDet** data from [google/automl](https://github.com/google/automl) at batch size 8.
|
283 |
+
- **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
|
284 |
+
|
285 |
+
</details>
|
286 |
+
|
287 |
+
### Pretrained Checkpoints
|
288 |
+
|
289 |
+
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | mAP<sup>val<br>50 | Speed<br><sup>CPU b1<br>(ms) | Speed<br><sup>V100 b1<br>(ms) | Speed<br><sup>V100 b32<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@640 (B) |
|
290 |
+
|------------------------------------------------------------------------------------------------------|-----------------------|----------------------|-------------------|------------------------------|-------------------------------|--------------------------------|--------------------|------------------------|
|
291 |
+
| [YOLOv5n](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5n.pt) | 640 | 28.0 | 45.7 | **45** | **6.3** | **0.6** | **1.9** | **4.5** |
|
292 |
+
| [YOLOv5s](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s.pt) | 640 | 37.4 | 56.8 | 98 | 6.4 | 0.9 | 7.2 | 16.5 |
|
293 |
+
| [YOLOv5m](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5m.pt) | 640 | 45.4 | 64.1 | 224 | 8.2 | 1.7 | 21.2 | 49.0 |
|
294 |
+
| [YOLOv5l](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5l.pt) | 640 | 49.0 | 67.3 | 430 | 10.1 | 2.7 | 46.5 | 109.1 |
|
295 |
+
| [YOLOv5x](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5x.pt) | 640 | 50.7 | 68.9 | 766 | 12.1 | 4.8 | 86.7 | 205.7 |
|
296 |
+
| | | | | | | | | |
|
297 |
+
| [YOLOv5n6](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5n6.pt) | 1280 | 36.0 | 54.4 | 153 | 8.1 | 2.1 | 3.2 | 4.6 |
|
298 |
+
| [YOLOv5s6](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s6.pt) | 1280 | 44.8 | 63.7 | 385 | 8.2 | 3.6 | 12.6 | 16.8 |
|
299 |
+
| [YOLOv5m6](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5m6.pt) | 1280 | 51.3 | 69.3 | 887 | 11.1 | 6.8 | 35.7 | 50.0 |
|
300 |
+
| [YOLOv5l6](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5l6.pt) | 1280 | 53.7 | 71.3 | 1784 | 15.8 | 10.5 | 76.8 | 111.4 |
|
301 |
+
| [YOLOv5x6](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5x6.pt)<br>+ [TTA][tta] | 1280<br>1536 | 55.0<br>**55.8** | 72.7<br>**72.7** | 3136<br>- | 26.2<br>- | 19.4<br>- | 140.7<br>- | 209.8<br>- |
|
302 |
+
|
303 |
+
<details>
|
304 |
+
<summary>Table Notes</summary>
|
305 |
+
|
306 |
+
- All checkpoints are trained to 300 epochs with default settings. Nano and Small models use [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) hyps, all others use [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml).
|
307 |
+
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.<br>Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
|
308 |
+
- **Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) instance. NMS times (~1 ms/img) not included.<br>Reproduce by `python val.py --data coco.yaml --img 640 --task speed --batch 1`
|
309 |
+
- **TTA** [Test Time Augmentation](https://github.com/ultralytics/yolov5/issues/303) includes reflection and scale augmentations.<br>Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
|
310 |
+
|
311 |
+
</details>
|
312 |
+
|
313 |
+
|
314 |
+
## <div align="center">Classification ⭐ NEW</div>
|
315 |
+
|
316 |
+
YOLOv5 [release v6.2](https://github.com/ultralytics/yolov5/releases) brings support for classification model training, validation and deployment! See full details in our [Release Notes](https://github.com/ultralytics/yolov5/releases/v6.2) and visit our [YOLOv5 Classification Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/classify/tutorial.ipynb) for quickstart tutorials.
|
317 |
+
|
318 |
+
<details>
|
319 |
+
<summary>Classification Checkpoints</summary>
|
320 |
+
|
321 |
+
<br>
|
322 |
+
|
323 |
+
We trained YOLOv5-cls classification models on ImageNet for 90 epochs using a 4xA100 instance, and we trained ResNet and EfficientNet models alongside with the same default training settings to compare. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on Google [Colab Pro](https://colab.research.google.com/signup) for easy reproducibility.
|
324 |
+
|
325 |
+
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Training<br><sup>90 epochs<br>4xA100 (hours) | Speed<br><sup>ONNX CPU<br>(ms) | Speed<br><sup>TensorRT V100<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@224 (B) |
|
326 |
+
|----------------------------------------------------------------------------------------------------|-----------------------|------------------|------------------|----------------------------------------------|--------------------------------|-------------------------------------|--------------------|------------------------|
|
327 |
+
| [YOLOv5n-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5n-cls.pt) | 224 | 64.6 | 85.4 | 7:59 | **3.3** | **0.5** | **2.5** | **0.5** |
|
328 |
+
| [YOLOv5s-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s-cls.pt) | 224 | 71.5 | 90.2 | 8:09 | 6.6 | 0.6 | 5.4 | 1.4 |
|
329 |
+
| [YOLOv5m-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5m-cls.pt) | 224 | 75.9 | 92.9 | 10:06 | 15.5 | 0.9 | 12.9 | 3.9 |
|
330 |
+
| [YOLOv5l-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5l-cls.pt) | 224 | 78.0 | 94.0 | 11:56 | 26.9 | 1.4 | 26.5 | 8.5 |
|
331 |
+
| [YOLOv5x-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5x-cls.pt) | 224 | **79.0** | **94.4** | 15:04 | 54.3 | 1.8 | 48.1 | 15.9 |
|
332 |
+
| |
|
333 |
+
| [ResNet18](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet18.pt) | 224 | 70.3 | 89.5 | **6:47** | 11.2 | 0.5 | 11.7 | 3.7 |
|
334 |
+
| [ResNet34](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet34.pt) | 224 | 73.9 | 91.8 | 8:33 | 20.6 | 0.9 | 21.8 | 7.4 |
|
335 |
+
| [ResNet50](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet50.pt) | 224 | 76.8 | 93.4 | 11:10 | 23.4 | 1.0 | 25.6 | 8.5 |
|
336 |
+
| [ResNet101](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet101.pt) | 224 | 78.5 | 94.3 | 17:10 | 42.1 | 1.9 | 44.5 | 15.9 |
|
337 |
+
| |
|
338 |
+
| [EfficientNet_b0](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b0.pt) | 224 | 75.1 | 92.4 | 13:03 | 12.5 | 1.3 | 5.3 | 1.0 |
|
339 |
+
| [EfficientNet_b1](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b1.pt) | 224 | 76.4 | 93.2 | 17:04 | 14.9 | 1.6 | 7.8 | 1.5 |
|
340 |
+
| [EfficientNet_b2](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b2.pt) | 224 | 76.6 | 93.4 | 17:10 | 15.9 | 1.6 | 9.1 | 1.7 |
|
341 |
+
| [EfficientNet_b3](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b3.pt) | 224 | 77.7 | 94.0 | 19:19 | 18.9 | 1.9 | 12.2 | 2.4 |
|
342 |
+
|
343 |
+
<details>
|
344 |
+
<summary>Table Notes (click to expand)</summary>
|
345 |
+
|
346 |
+
- All checkpoints are trained to 90 epochs with SGD optimizer with `lr0=0.001` and `weight_decay=5e-5` at image size 224 and all default settings.<br>Runs logged to https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2
|
347 |
+
- **Accuracy** values are for single-model single-scale on [ImageNet-1k](https://www.image-net.org/index.php) dataset.<br>Reproduce by `python classify/val.py --data ../datasets/imagenet --img 224`
|
348 |
+
- **Speed** averaged over 100 inference images using a Google [Colab Pro](https://colab.research.google.com/signup) V100 High-RAM instance.<br>Reproduce by `python classify/val.py --data ../datasets/imagenet --img 224 --batch 1`
|
349 |
+
- **Export** to ONNX at FP32 and TensorRT at FP16 done with `export.py`. <br>Reproduce by `python export.py --weights yolov5s-cls.pt --include engine onnx --imgsz 224`
|
350 |
+
</details>
|
351 |
+
</details>
|
352 |
+
|
353 |
+
<details>
|
354 |
+
<summary>Classification Usage Examples <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/classify/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a></summary>
|
355 |
+
|
356 |
+
### Train
|
357 |
+
YOLOv5 classification training supports auto-download of MNIST, Fashion-MNIST, CIFAR10, CIFAR100, Imagenette, Imagewoof, and ImageNet datasets with the `--data` argument. To start training on MNIST for example use `--data mnist`.
|
358 |
+
|
359 |
+
```bash
|
360 |
+
# Single-GPU
|
361 |
+
python classify/train.py --model yolov5s-cls.pt --data cifar100 --epochs 5 --img 224 --batch 128
|
362 |
+
|
363 |
+
# Multi-GPU DDP
|
364 |
+
python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
|
365 |
+
```
|
366 |
+
|
367 |
+
### Val
|
368 |
+
Validate YOLOv5m-cls accuracy on ImageNet-1k dataset:
|
369 |
+
```bash
|
370 |
+
bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images)
|
371 |
+
python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224 # validate
|
372 |
+
```
|
373 |
+
|
374 |
+
### Predict
|
375 |
+
Use pretrained YOLOv5s-cls.pt to predict bus.jpg:
|
376 |
+
```bash
|
377 |
+
python classify/predict.py --weights yolov5s-cls.pt --data data/images/bus.jpg
|
378 |
+
```
|
379 |
+
```python
|
380 |
+
model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s-cls.pt') # load from PyTorch Hub
|
381 |
+
```
|
382 |
+
|
383 |
+
### Export
|
384 |
+
Export a group of trained YOLOv5s-cls, ResNet and EfficientNet models to ONNX and TensorRT:
|
385 |
+
```bash
|
386 |
+
python export.py --weights yolov5s-cls.pt resnet50.pt efficientnet_b0.pt --include onnx engine --img 224
|
387 |
+
```
|
388 |
+
</details>
|
389 |
+
|
390 |
+
|
391 |
+
## <div align="center">Environments</div>
|
392 |
+
|
393 |
+
Get started in seconds with our verified environments. Click each icon below for details.
|
394 |
+
|
395 |
+
<div align="center">
|
396 |
+
<a href="https://bit.ly/yolov5-paperspace-notebook">
|
397 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gradient.png" width="10%" /></a>
|
398 |
+
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
|
399 |
+
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
|
400 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="10%" /></a>
|
401 |
+
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
|
402 |
+
<a href="https://www.kaggle.com/ultralytics/yolov5">
|
403 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="10%" /></a>
|
404 |
+
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
|
405 |
+
<a href="https://hub.docker.com/r/ultralytics/yolov5">
|
406 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="10%" /></a>
|
407 |
+
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
|
408 |
+
<a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart">
|
409 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="10%" /></a>
|
410 |
+
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
|
411 |
+
<a href="https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart">
|
412 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="10%" /></a>
|
413 |
+
</div>
|
414 |
+
|
415 |
+
## <div align="center">App</div>
|
416 |
+
|
417 |
+
Run YOLOv5 models on your iOS or Android device by downloading the [Ultralytics App](https://ultralytics.com/app_install)!
|
418 |
+
|
419 |
+
<a align="center" href="https://ultralytics.com/app_install" target="_blank">
|
420 |
+
<img width="100%" alt="Ultralytics mobile app" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-app.png">
|
421 |
+
|
422 |
+
|
423 |
+
## <div align="center">Contribute</div>
|
424 |
+
|
425 |
+
We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our [Contributing Guide](CONTRIBUTING.md) to get started, and fill out the [YOLOv5 Survey](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experiences. Thank you to all our contributors!
|
426 |
+
|
427 |
+
<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
|
428 |
+
<a href="https://github.com/ultralytics/yolov5/graphs/contributors"><img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/image-contributors-1280.png" /></a>
|
429 |
+
|
430 |
+
|
431 |
+
## <div align="center">License</div>
|
432 |
+
|
433 |
+
YOLOv5 is available under two different licenses:
|
434 |
+
|
435 |
+
- **GPL-3.0 License**: See [LICENSE](https://github.com/ultralytics/yolov5/blob/master/LICENSE) file for details.
|
436 |
+
- **Enterprise License**: Provides greater flexibility for commercial product development without the open-source requirements of GPL-3.0. Typical use cases are embedding Ultralytics software and AI models in commercial products and applications. Request an Enterprise License at [Ultralytics Licensing](https://ultralytics.com/license).
|
437 |
+
|
438 |
+
|
439 |
+
## <div align="center">Contact</div>
|
440 |
+
|
441 |
+
For YOLOv5 bugs and feature requests please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues). For professional support please [Contact Us](https://ultralytics.com/contact).
|
442 |
+
|
443 |
+
<br>
|
444 |
+
<div align="center">
|
445 |
+
<a href="https://github.com/ultralytics" style="text-decoration:none;">
|
446 |
+
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="3%" alt="" /></a>
|
447 |
+
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
|
448 |
+
<a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;">
|
449 |
+
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="3%" alt="" /></a>
|
450 |
+
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
|
451 |
+
<a href="https://twitter.com/ultralytics" style="text-decoration:none;">
|
452 |
+
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="3%" alt="" /></a>
|
453 |
+
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
|
454 |
+
<a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;">
|
455 |
+
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-producthunt.png" width="3%" alt="" /></a>
|
456 |
+
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
|
457 |
+
<a href="https://youtube.com/ultralytics" style="text-decoration:none;">
|
458 |
+
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="3%" alt="" /></a>
|
459 |
+
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
|
460 |
+
<a href="https://www.facebook.com/ultralytics" style="text-decoration:none;">
|
461 |
+
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-facebook.png" width="3%" alt="" /></a>
|
462 |
+
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
|
463 |
+
<a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
|
464 |
+
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="3%" alt="" /></a>
|
465 |
+
</div>
|
466 |
+
|
467 |
+
[tta]: https://github.com/ultralytics/yolov5/issues/303
|
app.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from detect import detect
|
4 |
+
from PIL import Image
|
5 |
+
from io import *
|
6 |
+
import glob
|
7 |
+
from datetime import datetime
|
8 |
+
import os
|
9 |
+
import wget
|
10 |
+
import time
|
11 |
+
|
12 |
+
def imageInput(device, src):
|
13 |
+
|
14 |
+
if src == 'Upload your own data.':
|
15 |
+
image_file = st.file_uploader("Upload An Image", type=['png', 'jpeg', 'jpg'])
|
16 |
+
col1, col2 = st.columns(2)
|
17 |
+
if image_file is not None:
|
18 |
+
img = Image.open(image_file)
|
19 |
+
with col1:
|
20 |
+
st.image(img, caption='Uploaded Image', use_column_width='always')
|
21 |
+
ts = datetime.timestamp(datetime.now())
|
22 |
+
imgpath = os.path.join('data/uploads', str(ts)+image_file.name)
|
23 |
+
outputpath = os.path.join('data/outputs', os.path.basename(imgpath))
|
24 |
+
with open(imgpath, mode="wb") as f:
|
25 |
+
f.write(image_file.getbuffer())
|
26 |
+
|
27 |
+
#call Model prediction--
|
28 |
+
model = torch.hub.load('ultralytics/yolov5', 'custom', path='models/YOLOv5m.pt', force_reload=True)
|
29 |
+
model.cuda() if device == 'cuda' else model.cpu()
|
30 |
+
pred = model(imgpath)
|
31 |
+
pred.render() # render bbox in image
|
32 |
+
for im in pred.ims:
|
33 |
+
im_base64 = Image.fromarray(im)
|
34 |
+
im_base64.save(outputpath)
|
35 |
+
|
36 |
+
#--Display predicton
|
37 |
+
|
38 |
+
img_ = Image.open(outputpath)
|
39 |
+
with col2:
|
40 |
+
st.image(img_, caption='Model Prediction(s)', use_column_width='always')
|
41 |
+
|
42 |
+
elif src == 'From test set.':
|
43 |
+
# Image selector slider
|
44 |
+
imgpath = glob.glob('data/images/*')
|
45 |
+
imgsel = st.slider('Select random images from test set.', min_value=1, max_value=len(imgpath), step=1)
|
46 |
+
image_file = imgpath[imgsel-1]
|
47 |
+
submit = st.button("Predict!")
|
48 |
+
col1, col2 = st.columns(2)
|
49 |
+
with col1:
|
50 |
+
img = Image.open(image_file)
|
51 |
+
st.image(img, caption='Selected Image', use_column_width='always')
|
52 |
+
with col2:
|
53 |
+
if image_file is not None and submit:
|
54 |
+
#call Model prediction--
|
55 |
+
model = torch.hub.load('ultralytics/yolov5', 'custom', path='models/YOLOv5m.pt', force_reload=True)
|
56 |
+
pred = model(image_file)
|
57 |
+
pred.render() # render bbox in image
|
58 |
+
for im in pred.ims:
|
59 |
+
im_base64 = Image.fromarray(im)
|
60 |
+
im_base64.save(os.path.join('data/outputs', os.path.basename(image_file)))
|
61 |
+
#--Display predicton
|
62 |
+
img_ = Image.open(os.path.join('data/outputs', os.path.basename(image_file)))
|
63 |
+
st.image(img_, caption='Model Prediction(s)')
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
def videoInput(device, src):
|
69 |
+
uploaded_video = st.file_uploader("Upload Video", type=['mp4', 'mpeg', 'mov'])
|
70 |
+
if uploaded_video != None:
|
71 |
+
|
72 |
+
ts = datetime.timestamp(datetime.now())
|
73 |
+
imgpath = os.path.join('data/uploads', str(ts)+uploaded_video.name)
|
74 |
+
outputpath = os.path.join('data/video_output', os.path.basename(imgpath))
|
75 |
+
|
76 |
+
with open(imgpath, mode='wb') as f:
|
77 |
+
f.write(uploaded_video.read()) # save video to disk
|
78 |
+
|
79 |
+
st_video = open(imgpath, 'rb')
|
80 |
+
video_bytes = st_video.read()
|
81 |
+
st.video(video_bytes)
|
82 |
+
st.write("Uploaded Video")
|
83 |
+
detect(weights="models/yoloTrained.pt", source=imgpath, device=0) if device == 'cuda' else detect(weights="models/YOLOv5m.pt", source=imgpath, device='cpu')
|
84 |
+
st_video2 = open(outputpath, 'rb')
|
85 |
+
video_bytes2 = st_video2.read()
|
86 |
+
st.video(video_bytes2)
|
87 |
+
st.write("Model Prediction")
|
88 |
+
|
89 |
+
|
90 |
+
def main():
|
91 |
+
# -- Sidebar
|
92 |
+
st.sidebar.title('⚙️Options')
|
93 |
+
datasrc = st.sidebar.radio("Select input source.", ['From test set.', 'Upload your own data.'])
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
option = st.sidebar.radio("Select input type.", ['Image', 'Video'], disabled = True)
|
98 |
+
if torch.cuda.is_available():
|
99 |
+
deviceoption = st.sidebar.radio("Select compute Device.", ['cpu', 'cuda'], disabled = False, index=1)
|
100 |
+
else:
|
101 |
+
deviceoption = st.sidebar.radio("Select compute Device.", ['cpu', 'cuda'], disabled = True, index=0)
|
102 |
+
# -- End of Sidebar
|
103 |
+
|
104 |
+
st.header('Unreal Engine 5 Tank Demo')
|
105 |
+
st.subheader('Select the options')
|
106 |
+
if option == "Image":
|
107 |
+
imageInput(deviceoption, datasrc)
|
108 |
+
elif option == "Video":
|
109 |
+
videoInput(deviceoption, datasrc)
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
+
if __name__ == '__main__':
|
114 |
+
|
115 |
+
main()
|
116 |
+
@st.cache
|
117 |
+
def loadModel():
|
118 |
+
start_dl = time.time()
|
119 |
+
model_file = wget.download('https://huggingface.co/sigil-ml/Unreal-Engine-5-Tanks-YOLOv5/blob/main/YOLOv5m.pt', out="models/")
|
120 |
+
finished_dl = time.time()
|
121 |
+
print(f"Model Downloaded, ETA:{finished_dl-start_dl}")
|
122 |
+
loadModel()
|
benchmarks.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Run YOLOv5 benchmarks on all supported export formats
|
4 |
+
|
5 |
+
Format | `export.py --include` | Model
|
6 |
+
--- | --- | ---
|
7 |
+
PyTorch | - | yolov5s.pt
|
8 |
+
TorchScript | `torchscript` | yolov5s.torchscript
|
9 |
+
ONNX | `onnx` | yolov5s.onnx
|
10 |
+
OpenVINO | `openvino` | yolov5s_openvino_model/
|
11 |
+
TensorRT | `engine` | yolov5s.engine
|
12 |
+
CoreML | `coreml` | yolov5s.mlmodel
|
13 |
+
TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
|
14 |
+
TensorFlow GraphDef | `pb` | yolov5s.pb
|
15 |
+
TensorFlow Lite | `tflite` | yolov5s.tflite
|
16 |
+
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
|
17 |
+
TensorFlow.js | `tfjs` | yolov5s_web_model/
|
18 |
+
|
19 |
+
Requirements:
|
20 |
+
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
|
21 |
+
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
|
22 |
+
$ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT
|
23 |
+
|
24 |
+
Usage:
|
25 |
+
$ python benchmarks.py --weights yolov5s.pt --img 640
|
26 |
+
"""
|
27 |
+
|
28 |
+
import argparse
|
29 |
+
import platform
|
30 |
+
import sys
|
31 |
+
import time
|
32 |
+
from pathlib import Path
|
33 |
+
|
34 |
+
import pandas as pd
|
35 |
+
|
36 |
+
FILE = Path(__file__).resolve()
|
37 |
+
ROOT = FILE.parents[0] # YOLOv5 root directory
|
38 |
+
if str(ROOT) not in sys.path:
|
39 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
40 |
+
# ROOT = ROOT.relative_to(Path.cwd()) # relative
|
41 |
+
|
42 |
+
import export
|
43 |
+
from models.experimental import attempt_load
|
44 |
+
from models.yolo import SegmentationModel
|
45 |
+
from segment.val import run as val_seg
|
46 |
+
from utils import notebook_init
|
47 |
+
from utils.general import LOGGER, check_yaml, file_size, print_args
|
48 |
+
from utils.torch_utils import select_device
|
49 |
+
from val import run as val_det
|
50 |
+
|
51 |
+
|
52 |
+
def run(
|
53 |
+
weights=ROOT / 'yolov5s.pt', # weights path
|
54 |
+
imgsz=640, # inference size (pixels)
|
55 |
+
batch_size=1, # batch size
|
56 |
+
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
|
57 |
+
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
58 |
+
half=False, # use FP16 half-precision inference
|
59 |
+
test=False, # test exports only
|
60 |
+
pt_only=False, # test PyTorch only
|
61 |
+
hard_fail=False, # throw error on benchmark failure
|
62 |
+
):
|
63 |
+
y, t = [], time.time()
|
64 |
+
device = select_device(device)
|
65 |
+
model_type = type(attempt_load(weights, fuse=False)) # DetectionModel, SegmentationModel, etc.
|
66 |
+
for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, CPU, GPU)
|
67 |
+
try:
|
68 |
+
assert i not in (9, 10), 'inference not supported' # Edge TPU and TF.js are unsupported
|
69 |
+
assert i != 5 or platform.system() == 'Darwin', 'inference only supported on macOS>=10.13' # CoreML
|
70 |
+
if 'cpu' in device.type:
|
71 |
+
assert cpu, 'inference not supported on CPU'
|
72 |
+
if 'cuda' in device.type:
|
73 |
+
assert gpu, 'inference not supported on GPU'
|
74 |
+
|
75 |
+
# Export
|
76 |
+
if f == '-':
|
77 |
+
w = weights # PyTorch format
|
78 |
+
else:
|
79 |
+
w = export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # all others
|
80 |
+
assert suffix in str(w), 'export failed'
|
81 |
+
|
82 |
+
# Validate
|
83 |
+
if model_type == SegmentationModel:
|
84 |
+
result = val_seg(data, w, batch_size, imgsz, plots=False, device=device, task='speed', half=half)
|
85 |
+
metric = result[0][7] # (box(p, r, map50, map), mask(p, r, map50, map), *loss(box, obj, cls))
|
86 |
+
else: # DetectionModel:
|
87 |
+
result = val_det(data, w, batch_size, imgsz, plots=False, device=device, task='speed', half=half)
|
88 |
+
metric = result[0][3] # (p, r, map50, map, *loss(box, obj, cls))
|
89 |
+
speed = result[2][1] # times (preprocess, inference, postprocess)
|
90 |
+
y.append([name, round(file_size(w), 1), round(metric, 4), round(speed, 2)]) # MB, mAP, t_inference
|
91 |
+
except Exception as e:
|
92 |
+
if hard_fail:
|
93 |
+
assert type(e) is AssertionError, f'Benchmark --hard-fail for {name}: {e}'
|
94 |
+
LOGGER.warning(f'WARNING ⚠️ Benchmark failure for {name}: {e}')
|
95 |
+
y.append([name, None, None, None]) # mAP, t_inference
|
96 |
+
if pt_only and i == 0:
|
97 |
+
break # break after PyTorch
|
98 |
+
|
99 |
+
# Print results
|
100 |
+
LOGGER.info('\n')
|
101 |
+
parse_opt()
|
102 |
+
notebook_init() # print system info
|
103 |
+
c = ['Format', 'Size (MB)', 'mAP50-95', 'Inference time (ms)'] if map else ['Format', 'Export', '', '']
|
104 |
+
py = pd.DataFrame(y, columns=c)
|
105 |
+
LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)')
|
106 |
+
LOGGER.info(str(py if map else py.iloc[:, :2]))
|
107 |
+
if hard_fail and isinstance(hard_fail, str):
|
108 |
+
metrics = py['mAP50-95'].array # values to compare to floor
|
109 |
+
floor = eval(hard_fail) # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n
|
110 |
+
assert all(x > floor for x in metrics if pd.notna(x)), f'HARD FAIL: mAP50-95 < floor {floor}'
|
111 |
+
return py
|
112 |
+
|
113 |
+
|
114 |
+
def test(
|
115 |
+
weights=ROOT / 'yolov5s.pt', # weights path
|
116 |
+
imgsz=640, # inference size (pixels)
|
117 |
+
batch_size=1, # batch size
|
118 |
+
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
|
119 |
+
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
120 |
+
half=False, # use FP16 half-precision inference
|
121 |
+
test=False, # test exports only
|
122 |
+
pt_only=False, # test PyTorch only
|
123 |
+
hard_fail=False, # throw error on benchmark failure
|
124 |
+
):
|
125 |
+
y, t = [], time.time()
|
126 |
+
device = select_device(device)
|
127 |
+
for i, (name, f, suffix, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, gpu-capable)
|
128 |
+
try:
|
129 |
+
w = weights if f == '-' else \
|
130 |
+
export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # weights
|
131 |
+
assert suffix in str(w), 'export failed'
|
132 |
+
y.append([name, True])
|
133 |
+
except Exception:
|
134 |
+
y.append([name, False]) # mAP, t_inference
|
135 |
+
|
136 |
+
# Print results
|
137 |
+
LOGGER.info('\n')
|
138 |
+
parse_opt()
|
139 |
+
notebook_init() # print system info
|
140 |
+
py = pd.DataFrame(y, columns=['Format', 'Export'])
|
141 |
+
LOGGER.info(f'\nExports complete ({time.time() - t:.2f}s)')
|
142 |
+
LOGGER.info(str(py))
|
143 |
+
return py
|
144 |
+
|
145 |
+
|
146 |
+
def parse_opt():
|
147 |
+
parser = argparse.ArgumentParser()
|
148 |
+
parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
|
149 |
+
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
|
150 |
+
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
151 |
+
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
|
152 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
153 |
+
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
|
154 |
+
parser.add_argument('--test', action='store_true', help='test exports only')
|
155 |
+
parser.add_argument('--pt-only', action='store_true', help='test PyTorch only')
|
156 |
+
parser.add_argument('--hard-fail', nargs='?', const=True, default=False, help='Exception on error or < min metric')
|
157 |
+
opt = parser.parse_args()
|
158 |
+
opt.data = check_yaml(opt.data) # check YAML
|
159 |
+
print_args(vars(opt))
|
160 |
+
return opt
|
161 |
+
|
162 |
+
|
163 |
+
def main(opt):
|
164 |
+
test(**vars(opt)) if opt.test else run(**vars(opt))
|
165 |
+
|
166 |
+
|
167 |
+
if __name__ == "__main__":
|
168 |
+
opt = parse_opt()
|
169 |
+
main(opt)
|
classify/predict.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Run YOLOv5 classification inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
|
4 |
+
|
5 |
+
Usage - sources:
|
6 |
+
$ python classify/predict.py --weights yolov5s-cls.pt --source 0 # webcam
|
7 |
+
img.jpg # image
|
8 |
+
vid.mp4 # video
|
9 |
+
screen # screenshot
|
10 |
+
path/ # directory
|
11 |
+
list.txt # list of images
|
12 |
+
list.streams # list of streams
|
13 |
+
'path/*.jpg' # glob
|
14 |
+
'https://youtu.be/Zgi9g1ksQHc' # YouTube
|
15 |
+
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
|
16 |
+
|
17 |
+
Usage - formats:
|
18 |
+
$ python classify/predict.py --weights yolov5s-cls.pt # PyTorch
|
19 |
+
yolov5s-cls.torchscript # TorchScript
|
20 |
+
yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn
|
21 |
+
yolov5s-cls_openvino_model # OpenVINO
|
22 |
+
yolov5s-cls.engine # TensorRT
|
23 |
+
yolov5s-cls.mlmodel # CoreML (macOS-only)
|
24 |
+
yolov5s-cls_saved_model # TensorFlow SavedModel
|
25 |
+
yolov5s-cls.pb # TensorFlow GraphDef
|
26 |
+
yolov5s-cls.tflite # TensorFlow Lite
|
27 |
+
yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU
|
28 |
+
yolov5s-cls_paddle_model # PaddlePaddle
|
29 |
+
"""
|
30 |
+
|
31 |
+
import argparse
|
32 |
+
import os
|
33 |
+
import platform
|
34 |
+
import sys
|
35 |
+
from pathlib import Path
|
36 |
+
|
37 |
+
import torch
|
38 |
+
import torch.nn.functional as F
|
39 |
+
|
40 |
+
FILE = Path(__file__).resolve()
|
41 |
+
ROOT = FILE.parents[1] # YOLOv5 root directory
|
42 |
+
if str(ROOT) not in sys.path:
|
43 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
44 |
+
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
45 |
+
|
46 |
+
from models.common import DetectMultiBackend
|
47 |
+
from utils.augmentations import classify_transforms
|
48 |
+
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
|
49 |
+
from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
|
50 |
+
increment_path, print_args, strip_optimizer)
|
51 |
+
from utils.plots import Annotator
|
52 |
+
from utils.torch_utils import select_device, smart_inference_mode
|
53 |
+
|
54 |
+
|
55 |
+
@smart_inference_mode()
|
56 |
+
def run(
|
57 |
+
weights=ROOT / 'yolov5s-cls.pt', # model.pt path(s)
|
58 |
+
source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam)
|
59 |
+
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
|
60 |
+
imgsz=(224, 224), # inference size (height, width)
|
61 |
+
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
62 |
+
view_img=False, # show results
|
63 |
+
save_txt=False, # save results to *.txt
|
64 |
+
nosave=False, # do not save images/videos
|
65 |
+
augment=False, # augmented inference
|
66 |
+
visualize=False, # visualize features
|
67 |
+
update=False, # update all models
|
68 |
+
project=ROOT / 'runs/predict-cls', # save results to project/name
|
69 |
+
name='exp', # save results to project/name
|
70 |
+
exist_ok=False, # existing project/name ok, do not increment
|
71 |
+
half=False, # use FP16 half-precision inference
|
72 |
+
dnn=False, # use OpenCV DNN for ONNX inference
|
73 |
+
vid_stride=1, # video frame-rate stride
|
74 |
+
):
|
75 |
+
source = str(source)
|
76 |
+
save_img = not nosave and not source.endswith('.txt') # save inference images
|
77 |
+
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
|
78 |
+
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
|
79 |
+
webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file)
|
80 |
+
screenshot = source.lower().startswith('screen')
|
81 |
+
if is_url and is_file:
|
82 |
+
source = check_file(source) # download
|
83 |
+
|
84 |
+
# Directories
|
85 |
+
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
|
86 |
+
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
87 |
+
|
88 |
+
# Load model
|
89 |
+
device = select_device(device)
|
90 |
+
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
|
91 |
+
stride, names, pt = model.stride, model.names, model.pt
|
92 |
+
imgsz = check_img_size(imgsz, s=stride) # check image size
|
93 |
+
|
94 |
+
# Dataloader
|
95 |
+
bs = 1 # batch_size
|
96 |
+
if webcam:
|
97 |
+
view_img = check_imshow(warn=True)
|
98 |
+
dataset = LoadStreams(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
|
99 |
+
bs = len(dataset)
|
100 |
+
elif screenshot:
|
101 |
+
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
|
102 |
+
else:
|
103 |
+
dataset = LoadImages(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
|
104 |
+
vid_path, vid_writer = [None] * bs, [None] * bs
|
105 |
+
|
106 |
+
# Run inference
|
107 |
+
model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup
|
108 |
+
seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
|
109 |
+
for path, im, im0s, vid_cap, s in dataset:
|
110 |
+
with dt[0]:
|
111 |
+
im = torch.Tensor(im).to(model.device)
|
112 |
+
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
|
113 |
+
if len(im.shape) == 3:
|
114 |
+
im = im[None] # expand for batch dim
|
115 |
+
|
116 |
+
# Inference
|
117 |
+
with dt[1]:
|
118 |
+
results = model(im)
|
119 |
+
|
120 |
+
# Post-process
|
121 |
+
with dt[2]:
|
122 |
+
pred = F.softmax(results, dim=1) # probabilities
|
123 |
+
|
124 |
+
# Process predictions
|
125 |
+
for i, prob in enumerate(pred): # per image
|
126 |
+
seen += 1
|
127 |
+
if webcam: # batch_size >= 1
|
128 |
+
p, im0, frame = path[i], im0s[i].copy(), dataset.count
|
129 |
+
s += f'{i}: '
|
130 |
+
else:
|
131 |
+
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
|
132 |
+
|
133 |
+
p = Path(p) # to Path
|
134 |
+
save_path = str(save_dir / p.name) # im.jpg
|
135 |
+
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
|
136 |
+
|
137 |
+
s += '%gx%g ' % im.shape[2:] # print string
|
138 |
+
annotator = Annotator(im0, example=str(names), pil=True)
|
139 |
+
|
140 |
+
# Print results
|
141 |
+
top5i = prob.argsort(0, descending=True)[:5].tolist() # top 5 indices
|
142 |
+
s += f"{', '.join(f'{names[j]} {prob[j]:.2f}' for j in top5i)}, "
|
143 |
+
|
144 |
+
# Write results
|
145 |
+
text = '\n'.join(f'{prob[j]:.2f} {names[j]}' for j in top5i)
|
146 |
+
if save_img or view_img: # Add bbox to image
|
147 |
+
annotator.text((32, 32), text, txt_color=(255, 255, 255))
|
148 |
+
if save_txt: # Write to file
|
149 |
+
with open(f'{txt_path}.txt', 'a') as f:
|
150 |
+
f.write(text + '\n')
|
151 |
+
|
152 |
+
# Stream results
|
153 |
+
im0 = annotator.result()
|
154 |
+
if view_img:
|
155 |
+
if platform.system() == 'Linux' and p not in windows:
|
156 |
+
windows.append(p)
|
157 |
+
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
|
158 |
+
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
|
159 |
+
cv2.imshow(str(p), im0)
|
160 |
+
cv2.waitKey(1) # 1 millisecond
|
161 |
+
|
162 |
+
# Save results (image with detections)
|
163 |
+
if save_img:
|
164 |
+
if dataset.mode == 'image':
|
165 |
+
cv2.imwrite(save_path, im0)
|
166 |
+
else: # 'video' or 'stream'
|
167 |
+
if vid_path[i] != save_path: # new video
|
168 |
+
vid_path[i] = save_path
|
169 |
+
if isinstance(vid_writer[i], cv2.VideoWriter):
|
170 |
+
vid_writer[i].release() # release previous video writer
|
171 |
+
if vid_cap: # video
|
172 |
+
fps = vid_cap.get(cv2.CAP_PROP_FPS)
|
173 |
+
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
174 |
+
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
175 |
+
else: # stream
|
176 |
+
fps, w, h = 30, im0.shape[1], im0.shape[0]
|
177 |
+
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
|
178 |
+
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
179 |
+
vid_writer[i].write(im0)
|
180 |
+
|
181 |
+
# Print time (inference-only)
|
182 |
+
LOGGER.info(f"{s}{dt[1].dt * 1E3:.1f}ms")
|
183 |
+
|
184 |
+
# Print results
|
185 |
+
t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
|
186 |
+
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
|
187 |
+
if save_txt or save_img:
|
188 |
+
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
189 |
+
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
|
190 |
+
if update:
|
191 |
+
strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
|
192 |
+
|
193 |
+
|
194 |
+
def parse_opt():
|
195 |
+
parser = argparse.ArgumentParser()
|
196 |
+
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-cls.pt', help='model path(s)')
|
197 |
+
parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)')
|
198 |
+
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
|
199 |
+
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[224], help='inference size h,w')
|
200 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
201 |
+
parser.add_argument('--view-img', action='store_true', help='show results')
|
202 |
+
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
203 |
+
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
|
204 |
+
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
205 |
+
parser.add_argument('--visualize', action='store_true', help='visualize features')
|
206 |
+
parser.add_argument('--update', action='store_true', help='update all models')
|
207 |
+
parser.add_argument('--project', default=ROOT / 'runs/predict-cls', help='save results to project/name')
|
208 |
+
parser.add_argument('--name', default='exp', help='save results to project/name')
|
209 |
+
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
210 |
+
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
|
211 |
+
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
|
212 |
+
parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
|
213 |
+
opt = parser.parse_args()
|
214 |
+
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
|
215 |
+
print_args(vars(opt))
|
216 |
+
return opt
|
217 |
+
|
218 |
+
|
219 |
+
def main(opt):
|
220 |
+
check_requirements(exclude=('tensorboard', 'thop'))
|
221 |
+
run(**vars(opt))
|
222 |
+
|
223 |
+
|
224 |
+
if __name__ == "__main__":
|
225 |
+
opt = parse_opt()
|
226 |
+
main(opt)
|
classify/train.py
ADDED
@@ -0,0 +1,333 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Train a YOLOv5 classifier model on a classification dataset
|
4 |
+
|
5 |
+
Usage - Single-GPU training:
|
6 |
+
$ python classify/train.py --model yolov5s-cls.pt --data imagenette160 --epochs 5 --img 224
|
7 |
+
|
8 |
+
Usage - Multi-GPU DDP training:
|
9 |
+
$ python -m torch.distributed.run --nproc_per_node 4 --master_port 2022 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
|
10 |
+
|
11 |
+
Datasets: --data mnist, fashion-mnist, cifar10, cifar100, imagenette, imagewoof, imagenet, or 'path/to/data'
|
12 |
+
YOLOv5-cls models: --model yolov5n-cls.pt, yolov5s-cls.pt, yolov5m-cls.pt, yolov5l-cls.pt, yolov5x-cls.pt
|
13 |
+
Torchvision models: --model resnet50, efficientnet_b0, etc. See https://pytorch.org/vision/stable/models.html
|
14 |
+
"""
|
15 |
+
|
16 |
+
import argparse
|
17 |
+
import os
|
18 |
+
import subprocess
|
19 |
+
import sys
|
20 |
+
import time
|
21 |
+
from copy import deepcopy
|
22 |
+
from datetime import datetime
|
23 |
+
from pathlib import Path
|
24 |
+
|
25 |
+
import torch
|
26 |
+
import torch.distributed as dist
|
27 |
+
import torch.hub as hub
|
28 |
+
import torch.optim.lr_scheduler as lr_scheduler
|
29 |
+
import torchvision
|
30 |
+
from torch.cuda import amp
|
31 |
+
from tqdm import tqdm
|
32 |
+
|
33 |
+
FILE = Path(__file__).resolve()
|
34 |
+
ROOT = FILE.parents[1] # YOLOv5 root directory
|
35 |
+
if str(ROOT) not in sys.path:
|
36 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
37 |
+
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
38 |
+
|
39 |
+
from classify import val as validate
|
40 |
+
from models.experimental import attempt_load
|
41 |
+
from models.yolo import ClassificationModel, DetectionModel
|
42 |
+
from utils.dataloaders import create_classification_dataloader
|
43 |
+
from utils.general import (DATASETS_DIR, LOGGER, TQDM_BAR_FORMAT, WorkingDirectory, check_git_info, check_git_status,
|
44 |
+
check_requirements, colorstr, download, increment_path, init_seeds, print_args, yaml_save)
|
45 |
+
from utils.loggers import GenericLogger
|
46 |
+
from utils.plots import imshow_cls
|
47 |
+
from utils.torch_utils import (ModelEMA, model_info, reshape_classifier_output, select_device, smart_DDP,
|
48 |
+
smart_optimizer, smartCrossEntropyLoss, torch_distributed_zero_first)
|
49 |
+
|
50 |
+
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
|
51 |
+
RANK = int(os.getenv('RANK', -1))
|
52 |
+
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
|
53 |
+
GIT_INFO = check_git_info()
|
54 |
+
|
55 |
+
|
56 |
+
def train(opt, device):
|
57 |
+
init_seeds(opt.seed + 1 + RANK, deterministic=True)
|
58 |
+
save_dir, data, bs, epochs, nw, imgsz, pretrained = \
|
59 |
+
opt.save_dir, Path(opt.data), opt.batch_size, opt.epochs, min(os.cpu_count() - 1, opt.workers), \
|
60 |
+
opt.imgsz, str(opt.pretrained).lower() == 'true'
|
61 |
+
cuda = device.type != 'cpu'
|
62 |
+
|
63 |
+
# Directories
|
64 |
+
wdir = save_dir / 'weights'
|
65 |
+
wdir.mkdir(parents=True, exist_ok=True) # make dir
|
66 |
+
last, best = wdir / 'last.pt', wdir / 'best.pt'
|
67 |
+
|
68 |
+
# Save run settings
|
69 |
+
yaml_save(save_dir / 'opt.yaml', vars(opt))
|
70 |
+
|
71 |
+
# Logger
|
72 |
+
logger = GenericLogger(opt=opt, console_logger=LOGGER) if RANK in {-1, 0} else None
|
73 |
+
|
74 |
+
# Download Dataset
|
75 |
+
with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT):
|
76 |
+
data_dir = data if data.is_dir() else (DATASETS_DIR / data)
|
77 |
+
if not data_dir.is_dir():
|
78 |
+
LOGGER.info(f'\nDataset not found ⚠️, missing path {data_dir}, attempting download...')
|
79 |
+
t = time.time()
|
80 |
+
if str(data) == 'imagenet':
|
81 |
+
subprocess.run(f"bash {ROOT / 'data/scripts/get_imagenet.sh'}", shell=True, check=True)
|
82 |
+
else:
|
83 |
+
url = f'https://github.com/ultralytics/yolov5/releases/download/v1.0/{data}.zip'
|
84 |
+
download(url, dir=data_dir.parent)
|
85 |
+
s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n"
|
86 |
+
LOGGER.info(s)
|
87 |
+
|
88 |
+
# Dataloaders
|
89 |
+
nc = len([x for x in (data_dir / 'train').glob('*') if x.is_dir()]) # number of classes
|
90 |
+
trainloader = create_classification_dataloader(path=data_dir / 'train',
|
91 |
+
imgsz=imgsz,
|
92 |
+
batch_size=bs // WORLD_SIZE,
|
93 |
+
augment=True,
|
94 |
+
cache=opt.cache,
|
95 |
+
rank=LOCAL_RANK,
|
96 |
+
workers=nw)
|
97 |
+
|
98 |
+
test_dir = data_dir / 'test' if (data_dir / 'test').exists() else data_dir / 'val' # data/test or data/val
|
99 |
+
if RANK in {-1, 0}:
|
100 |
+
testloader = create_classification_dataloader(path=test_dir,
|
101 |
+
imgsz=imgsz,
|
102 |
+
batch_size=bs // WORLD_SIZE * 2,
|
103 |
+
augment=False,
|
104 |
+
cache=opt.cache,
|
105 |
+
rank=-1,
|
106 |
+
workers=nw)
|
107 |
+
|
108 |
+
# Model
|
109 |
+
with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT):
|
110 |
+
if Path(opt.model).is_file() or opt.model.endswith('.pt'):
|
111 |
+
model = attempt_load(opt.model, device='cpu', fuse=False)
|
112 |
+
elif opt.model in torchvision.models.__dict__: # TorchVision models i.e. resnet50, efficientnet_b0
|
113 |
+
model = torchvision.models.__dict__[opt.model](weights='IMAGENET1K_V1' if pretrained else None)
|
114 |
+
else:
|
115 |
+
m = hub.list('ultralytics/yolov5') # + hub.list('pytorch/vision') # models
|
116 |
+
raise ModuleNotFoundError(f'--model {opt.model} not found. Available models are: \n' + '\n'.join(m))
|
117 |
+
if isinstance(model, DetectionModel):
|
118 |
+
LOGGER.warning("WARNING ⚠️ pass YOLOv5 classifier model with '-cls' suffix, i.e. '--model yolov5s-cls.pt'")
|
119 |
+
model = ClassificationModel(model=model, nc=nc, cutoff=opt.cutoff or 10) # convert to classification model
|
120 |
+
reshape_classifier_output(model, nc) # update class count
|
121 |
+
for m in model.modules():
|
122 |
+
if not pretrained and hasattr(m, 'reset_parameters'):
|
123 |
+
m.reset_parameters()
|
124 |
+
if isinstance(m, torch.nn.Dropout) and opt.dropout is not None:
|
125 |
+
m.p = opt.dropout # set dropout
|
126 |
+
for p in model.parameters():
|
127 |
+
p.requires_grad = True # for training
|
128 |
+
model = model.to(device)
|
129 |
+
|
130 |
+
# Info
|
131 |
+
if RANK in {-1, 0}:
|
132 |
+
model.names = trainloader.dataset.classes # attach class names
|
133 |
+
model.transforms = testloader.dataset.torch_transforms # attach inference transforms
|
134 |
+
model_info(model)
|
135 |
+
if opt.verbose:
|
136 |
+
LOGGER.info(model)
|
137 |
+
images, labels = next(iter(trainloader))
|
138 |
+
file = imshow_cls(images[:25], labels[:25], names=model.names, f=save_dir / 'train_images.jpg')
|
139 |
+
logger.log_images(file, name='Train Examples')
|
140 |
+
logger.log_graph(model, imgsz) # log model
|
141 |
+
|
142 |
+
# Optimizer
|
143 |
+
optimizer = smart_optimizer(model, opt.optimizer, opt.lr0, momentum=0.9, decay=opt.decay)
|
144 |
+
|
145 |
+
# Scheduler
|
146 |
+
lrf = 0.01 # final lr (fraction of lr0)
|
147 |
+
# lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - lrf) + lrf # cosine
|
148 |
+
lf = lambda x: (1 - x / epochs) * (1 - lrf) + lrf # linear
|
149 |
+
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
|
150 |
+
# scheduler = lr_scheduler.OneCycleLR(optimizer, max_lr=lr0, total_steps=epochs, pct_start=0.1,
|
151 |
+
# final_div_factor=1 / 25 / lrf)
|
152 |
+
|
153 |
+
# EMA
|
154 |
+
ema = ModelEMA(model) if RANK in {-1, 0} else None
|
155 |
+
|
156 |
+
# DDP mode
|
157 |
+
if cuda and RANK != -1:
|
158 |
+
model = smart_DDP(model)
|
159 |
+
|
160 |
+
# Train
|
161 |
+
t0 = time.time()
|
162 |
+
criterion = smartCrossEntropyLoss(label_smoothing=opt.label_smoothing) # loss function
|
163 |
+
best_fitness = 0.0
|
164 |
+
scaler = amp.GradScaler(enabled=cuda)
|
165 |
+
val = test_dir.stem # 'val' or 'test'
|
166 |
+
LOGGER.info(f'Image sizes {imgsz} train, {imgsz} test\n'
|
167 |
+
f'Using {nw * WORLD_SIZE} dataloader workers\n'
|
168 |
+
f"Logging results to {colorstr('bold', save_dir)}\n"
|
169 |
+
f'Starting {opt.model} training on {data} dataset with {nc} classes for {epochs} epochs...\n\n'
|
170 |
+
f"{'Epoch':>10}{'GPU_mem':>10}{'train_loss':>12}{f'{val}_loss':>12}{'top1_acc':>12}{'top5_acc':>12}")
|
171 |
+
for epoch in range(epochs): # loop over the dataset multiple times
|
172 |
+
tloss, vloss, fitness = 0.0, 0.0, 0.0 # train loss, val loss, fitness
|
173 |
+
model.train()
|
174 |
+
if RANK != -1:
|
175 |
+
trainloader.sampler.set_epoch(epoch)
|
176 |
+
pbar = enumerate(trainloader)
|
177 |
+
if RANK in {-1, 0}:
|
178 |
+
pbar = tqdm(enumerate(trainloader), total=len(trainloader), bar_format=TQDM_BAR_FORMAT)
|
179 |
+
for i, (images, labels) in pbar: # progress bar
|
180 |
+
images, labels = images.to(device, non_blocking=True), labels.to(device)
|
181 |
+
|
182 |
+
# Forward
|
183 |
+
with amp.autocast(enabled=cuda): # stability issues when enabled
|
184 |
+
loss = criterion(model(images), labels)
|
185 |
+
|
186 |
+
# Backward
|
187 |
+
scaler.scale(loss).backward()
|
188 |
+
|
189 |
+
# Optimize
|
190 |
+
scaler.unscale_(optimizer) # unscale gradients
|
191 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients
|
192 |
+
scaler.step(optimizer)
|
193 |
+
scaler.update()
|
194 |
+
optimizer.zero_grad()
|
195 |
+
if ema:
|
196 |
+
ema.update(model)
|
197 |
+
|
198 |
+
if RANK in {-1, 0}:
|
199 |
+
# Print
|
200 |
+
tloss = (tloss * i + loss.item()) / (i + 1) # update mean losses
|
201 |
+
mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
|
202 |
+
pbar.desc = f"{f'{epoch + 1}/{epochs}':>10}{mem:>10}{tloss:>12.3g}" + ' ' * 36
|
203 |
+
|
204 |
+
# Test
|
205 |
+
if i == len(pbar) - 1: # last batch
|
206 |
+
top1, top5, vloss = validate.run(model=ema.ema,
|
207 |
+
dataloader=testloader,
|
208 |
+
criterion=criterion,
|
209 |
+
pbar=pbar) # test accuracy, loss
|
210 |
+
fitness = top1 # define fitness as top1 accuracy
|
211 |
+
|
212 |
+
# Scheduler
|
213 |
+
scheduler.step()
|
214 |
+
|
215 |
+
# Log metrics
|
216 |
+
if RANK in {-1, 0}:
|
217 |
+
# Best fitness
|
218 |
+
if fitness > best_fitness:
|
219 |
+
best_fitness = fitness
|
220 |
+
|
221 |
+
# Log
|
222 |
+
metrics = {
|
223 |
+
"train/loss": tloss,
|
224 |
+
f"{val}/loss": vloss,
|
225 |
+
"metrics/accuracy_top1": top1,
|
226 |
+
"metrics/accuracy_top5": top5,
|
227 |
+
"lr/0": optimizer.param_groups[0]['lr']} # learning rate
|
228 |
+
logger.log_metrics(metrics, epoch)
|
229 |
+
|
230 |
+
# Save model
|
231 |
+
final_epoch = epoch + 1 == epochs
|
232 |
+
if (not opt.nosave) or final_epoch:
|
233 |
+
ckpt = {
|
234 |
+
'epoch': epoch,
|
235 |
+
'best_fitness': best_fitness,
|
236 |
+
'model': deepcopy(ema.ema).half(), # deepcopy(de_parallel(model)).half(),
|
237 |
+
'ema': None, # deepcopy(ema.ema).half(),
|
238 |
+
'updates': ema.updates,
|
239 |
+
'optimizer': None, # optimizer.state_dict(),
|
240 |
+
'opt': vars(opt),
|
241 |
+
'git': GIT_INFO, # {remote, branch, commit} if a git repo
|
242 |
+
'date': datetime.now().isoformat()}
|
243 |
+
|
244 |
+
# Save last, best and delete
|
245 |
+
torch.save(ckpt, last)
|
246 |
+
if best_fitness == fitness:
|
247 |
+
torch.save(ckpt, best)
|
248 |
+
del ckpt
|
249 |
+
|
250 |
+
# Train complete
|
251 |
+
if RANK in {-1, 0} and final_epoch:
|
252 |
+
LOGGER.info(f'\nTraining complete ({(time.time() - t0) / 3600:.3f} hours)'
|
253 |
+
f"\nResults saved to {colorstr('bold', save_dir)}"
|
254 |
+
f"\nPredict: python classify/predict.py --weights {best} --source im.jpg"
|
255 |
+
f"\nValidate: python classify/val.py --weights {best} --data {data_dir}"
|
256 |
+
f"\nExport: python export.py --weights {best} --include onnx"
|
257 |
+
f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{best}')"
|
258 |
+
f"\nVisualize: https://netron.app\n")
|
259 |
+
|
260 |
+
# Plot examples
|
261 |
+
images, labels = (x[:25] for x in next(iter(testloader))) # first 25 images and labels
|
262 |
+
pred = torch.max(ema.ema(images.to(device)), 1)[1]
|
263 |
+
file = imshow_cls(images, labels, pred, model.names, verbose=False, f=save_dir / 'test_images.jpg')
|
264 |
+
|
265 |
+
# Log results
|
266 |
+
meta = {"epochs": epochs, "top1_acc": best_fitness, "date": datetime.now().isoformat()}
|
267 |
+
logger.log_images(file, name='Test Examples (true-predicted)', epoch=epoch)
|
268 |
+
logger.log_model(best, epochs, metadata=meta)
|
269 |
+
|
270 |
+
|
271 |
+
def parse_opt(known=False):
|
272 |
+
parser = argparse.ArgumentParser()
|
273 |
+
parser.add_argument('--model', type=str, default='yolov5s-cls.pt', help='initial weights path')
|
274 |
+
parser.add_argument('--data', type=str, default='imagenette160', help='cifar10, cifar100, mnist, imagenet, ...')
|
275 |
+
parser.add_argument('--epochs', type=int, default=10, help='total training epochs')
|
276 |
+
parser.add_argument('--batch-size', type=int, default=64, help='total batch size for all GPUs')
|
277 |
+
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=224, help='train, val image size (pixels)')
|
278 |
+
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
|
279 |
+
parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')
|
280 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
281 |
+
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
|
282 |
+
parser.add_argument('--project', default=ROOT / 'runs/train-cls', help='save to project/name')
|
283 |
+
parser.add_argument('--name', default='exp', help='save to project/name')
|
284 |
+
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
285 |
+
parser.add_argument('--pretrained', nargs='?', const=True, default=True, help='start from i.e. --pretrained False')
|
286 |
+
parser.add_argument('--optimizer', choices=['SGD', 'Adam', 'AdamW', 'RMSProp'], default='Adam', help='optimizer')
|
287 |
+
parser.add_argument('--lr0', type=float, default=0.001, help='initial learning rate')
|
288 |
+
parser.add_argument('--decay', type=float, default=5e-5, help='weight decay')
|
289 |
+
parser.add_argument('--label-smoothing', type=float, default=0.1, help='Label smoothing epsilon')
|
290 |
+
parser.add_argument('--cutoff', type=int, default=None, help='Model layer cutoff index for Classify() head')
|
291 |
+
parser.add_argument('--dropout', type=float, default=None, help='Dropout (fraction)')
|
292 |
+
parser.add_argument('--verbose', action='store_true', help='Verbose mode')
|
293 |
+
parser.add_argument('--seed', type=int, default=0, help='Global training seed')
|
294 |
+
parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
|
295 |
+
return parser.parse_known_args()[0] if known else parser.parse_args()
|
296 |
+
|
297 |
+
|
298 |
+
def main(opt):
|
299 |
+
# Checks
|
300 |
+
if RANK in {-1, 0}:
|
301 |
+
print_args(vars(opt))
|
302 |
+
check_git_status()
|
303 |
+
check_requirements()
|
304 |
+
|
305 |
+
# DDP mode
|
306 |
+
device = select_device(opt.device, batch_size=opt.batch_size)
|
307 |
+
if LOCAL_RANK != -1:
|
308 |
+
assert opt.batch_size != -1, 'AutoBatch is coming soon for classification, please pass a valid --batch-size'
|
309 |
+
assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
|
310 |
+
assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
|
311 |
+
torch.cuda.set_device(LOCAL_RANK)
|
312 |
+
device = torch.device('cuda', LOCAL_RANK)
|
313 |
+
dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
|
314 |
+
|
315 |
+
# Parameters
|
316 |
+
opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run
|
317 |
+
|
318 |
+
# Train
|
319 |
+
train(opt, device)
|
320 |
+
|
321 |
+
|
322 |
+
def run(**kwargs):
|
323 |
+
# Usage: from yolov5 import classify; classify.train.run(data=mnist, imgsz=320, model='yolov5m')
|
324 |
+
opt = parse_opt(True)
|
325 |
+
for k, v in kwargs.items():
|
326 |
+
setattr(opt, k, v)
|
327 |
+
main(opt)
|
328 |
+
return opt
|
329 |
+
|
330 |
+
|
331 |
+
if __name__ == "__main__":
|
332 |
+
opt = parse_opt()
|
333 |
+
main(opt)
|
classify/tutorial.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
classify/val.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Validate a trained YOLOv5 classification model on a classification dataset
|
4 |
+
|
5 |
+
Usage:
|
6 |
+
$ bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images)
|
7 |
+
$ python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224 # validate ImageNet
|
8 |
+
|
9 |
+
Usage - formats:
|
10 |
+
$ python classify/val.py --weights yolov5s-cls.pt # PyTorch
|
11 |
+
yolov5s-cls.torchscript # TorchScript
|
12 |
+
yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn
|
13 |
+
yolov5s-cls_openvino_model # OpenVINO
|
14 |
+
yolov5s-cls.engine # TensorRT
|
15 |
+
yolov5s-cls.mlmodel # CoreML (macOS-only)
|
16 |
+
yolov5s-cls_saved_model # TensorFlow SavedModel
|
17 |
+
yolov5s-cls.pb # TensorFlow GraphDef
|
18 |
+
yolov5s-cls.tflite # TensorFlow Lite
|
19 |
+
yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU
|
20 |
+
yolov5s-cls_paddle_model # PaddlePaddle
|
21 |
+
"""
|
22 |
+
|
23 |
+
import argparse
|
24 |
+
import os
|
25 |
+
import sys
|
26 |
+
from pathlib import Path
|
27 |
+
|
28 |
+
import torch
|
29 |
+
from tqdm import tqdm
|
30 |
+
|
31 |
+
FILE = Path(__file__).resolve()
|
32 |
+
ROOT = FILE.parents[1] # YOLOv5 root directory
|
33 |
+
if str(ROOT) not in sys.path:
|
34 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
35 |
+
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
36 |
+
|
37 |
+
from models.common import DetectMultiBackend
|
38 |
+
from utils.dataloaders import create_classification_dataloader
|
39 |
+
from utils.general import (LOGGER, TQDM_BAR_FORMAT, Profile, check_img_size, check_requirements, colorstr,
|
40 |
+
increment_path, print_args)
|
41 |
+
from utils.torch_utils import select_device, smart_inference_mode
|
42 |
+
|
43 |
+
|
44 |
+
@smart_inference_mode()
|
45 |
+
def run(
|
46 |
+
data=ROOT / '../datasets/mnist', # dataset dir
|
47 |
+
weights=ROOT / 'yolov5s-cls.pt', # model.pt path(s)
|
48 |
+
batch_size=128, # batch size
|
49 |
+
imgsz=224, # inference size (pixels)
|
50 |
+
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
51 |
+
workers=8, # max dataloader workers (per RANK in DDP mode)
|
52 |
+
verbose=False, # verbose output
|
53 |
+
project=ROOT / 'runs/val-cls', # save to project/name
|
54 |
+
name='exp', # save to project/name
|
55 |
+
exist_ok=False, # existing project/name ok, do not increment
|
56 |
+
half=False, # use FP16 half-precision inference
|
57 |
+
dnn=False, # use OpenCV DNN for ONNX inference
|
58 |
+
model=None,
|
59 |
+
dataloader=None,
|
60 |
+
criterion=None,
|
61 |
+
pbar=None,
|
62 |
+
):
|
63 |
+
# Initialize/load model and set device
|
64 |
+
training = model is not None
|
65 |
+
if training: # called by train.py
|
66 |
+
device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
|
67 |
+
half &= device.type != 'cpu' # half precision only supported on CUDA
|
68 |
+
model.half() if half else model.float()
|
69 |
+
else: # called directly
|
70 |
+
device = select_device(device, batch_size=batch_size)
|
71 |
+
|
72 |
+
# Directories
|
73 |
+
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
|
74 |
+
save_dir.mkdir(parents=True, exist_ok=True) # make dir
|
75 |
+
|
76 |
+
# Load model
|
77 |
+
model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half)
|
78 |
+
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
|
79 |
+
imgsz = check_img_size(imgsz, s=stride) # check image size
|
80 |
+
half = model.fp16 # FP16 supported on limited backends with CUDA
|
81 |
+
if engine:
|
82 |
+
batch_size = model.batch_size
|
83 |
+
else:
|
84 |
+
device = model.device
|
85 |
+
if not (pt or jit):
|
86 |
+
batch_size = 1 # export.py models default to batch-size 1
|
87 |
+
LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
|
88 |
+
|
89 |
+
# Dataloader
|
90 |
+
data = Path(data)
|
91 |
+
test_dir = data / 'test' if (data / 'test').exists() else data / 'val' # data/test or data/val
|
92 |
+
dataloader = create_classification_dataloader(path=test_dir,
|
93 |
+
imgsz=imgsz,
|
94 |
+
batch_size=batch_size,
|
95 |
+
augment=False,
|
96 |
+
rank=-1,
|
97 |
+
workers=workers)
|
98 |
+
|
99 |
+
model.eval()
|
100 |
+
pred, targets, loss, dt = [], [], 0, (Profile(), Profile(), Profile())
|
101 |
+
n = len(dataloader) # number of batches
|
102 |
+
action = 'validating' if dataloader.dataset.root.stem == 'val' else 'testing'
|
103 |
+
desc = f"{pbar.desc[:-36]}{action:>36}" if pbar else f"{action}"
|
104 |
+
bar = tqdm(dataloader, desc, n, not training, bar_format=TQDM_BAR_FORMAT, position=0)
|
105 |
+
with torch.cuda.amp.autocast(enabled=device.type != 'cpu'):
|
106 |
+
for images, labels in bar:
|
107 |
+
with dt[0]:
|
108 |
+
images, labels = images.to(device, non_blocking=True), labels.to(device)
|
109 |
+
|
110 |
+
with dt[1]:
|
111 |
+
y = model(images)
|
112 |
+
|
113 |
+
with dt[2]:
|
114 |
+
pred.append(y.argsort(1, descending=True)[:, :5])
|
115 |
+
targets.append(labels)
|
116 |
+
if criterion:
|
117 |
+
loss += criterion(y, labels)
|
118 |
+
|
119 |
+
loss /= n
|
120 |
+
pred, targets = torch.cat(pred), torch.cat(targets)
|
121 |
+
correct = (targets[:, None] == pred).float()
|
122 |
+
acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1) # (top1, top5) accuracy
|
123 |
+
top1, top5 = acc.mean(0).tolist()
|
124 |
+
|
125 |
+
if pbar:
|
126 |
+
pbar.desc = f"{pbar.desc[:-36]}{loss:>12.3g}{top1:>12.3g}{top5:>12.3g}"
|
127 |
+
if verbose: # all classes
|
128 |
+
LOGGER.info(f"{'Class':>24}{'Images':>12}{'top1_acc':>12}{'top5_acc':>12}")
|
129 |
+
LOGGER.info(f"{'all':>24}{targets.shape[0]:>12}{top1:>12.3g}{top5:>12.3g}")
|
130 |
+
for i, c in model.names.items():
|
131 |
+
aci = acc[targets == i]
|
132 |
+
top1i, top5i = aci.mean(0).tolist()
|
133 |
+
LOGGER.info(f"{c:>24}{aci.shape[0]:>12}{top1i:>12.3g}{top5i:>12.3g}")
|
134 |
+
|
135 |
+
# Print results
|
136 |
+
t = tuple(x.t / len(dataloader.dataset.samples) * 1E3 for x in dt) # speeds per image
|
137 |
+
shape = (1, 3, imgsz, imgsz)
|
138 |
+
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms post-process per image at shape {shape}' % t)
|
139 |
+
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
|
140 |
+
|
141 |
+
return top1, top5, loss
|
142 |
+
|
143 |
+
|
144 |
+
def parse_opt():
|
145 |
+
parser = argparse.ArgumentParser()
|
146 |
+
parser.add_argument('--data', type=str, default=ROOT / '../datasets/mnist', help='dataset path')
|
147 |
+
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-cls.pt', help='model.pt path(s)')
|
148 |
+
parser.add_argument('--batch-size', type=int, default=128, help='batch size')
|
149 |
+
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=224, help='inference size (pixels)')
|
150 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
151 |
+
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
|
152 |
+
parser.add_argument('--verbose', nargs='?', const=True, default=True, help='verbose output')
|
153 |
+
parser.add_argument('--project', default=ROOT / 'runs/val-cls', help='save to project/name')
|
154 |
+
parser.add_argument('--name', default='exp', help='save to project/name')
|
155 |
+
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
156 |
+
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
|
157 |
+
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
|
158 |
+
opt = parser.parse_args()
|
159 |
+
print_args(vars(opt))
|
160 |
+
return opt
|
161 |
+
|
162 |
+
|
163 |
+
def main(opt):
|
164 |
+
check_requirements(exclude=('tensorboard', 'thop'))
|
165 |
+
run(**vars(opt))
|
166 |
+
|
167 |
+
|
168 |
+
if __name__ == "__main__":
|
169 |
+
opt = parse_opt()
|
170 |
+
main(opt)
|
data.yaml
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
train: ../train/images
|
2 |
+
val: ../valid/images
|
3 |
+
test: ../test/images
|
4 |
+
|
5 |
+
nc: 1
|
6 |
+
names: ['M1A1 Abrams']
|
7 |
+
|
8 |
+
roboflow:
|
9 |
+
workspace: sigil
|
10 |
+
project: tankdemo
|
11 |
+
version: 5
|
12 |
+
license: CC BY 4.0
|
13 |
+
url: https://universe.roboflow.com/sigil/tankdemo/dataset/5
|
data/Argoverse.yaml
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
# Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
|
3 |
+
# Example usage: python train.py --data Argoverse.yaml
|
4 |
+
# parent
|
5 |
+
# ├── yolov5
|
6 |
+
# └── datasets
|
7 |
+
# └── Argoverse ← downloads here (31.3 GB)
|
8 |
+
|
9 |
+
|
10 |
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
11 |
+
path: ../datasets/Argoverse # dataset root dir
|
12 |
+
train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
|
13 |
+
val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
|
14 |
+
test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
|
15 |
+
|
16 |
+
# Classes
|
17 |
+
names:
|
18 |
+
0: person
|
19 |
+
1: bicycle
|
20 |
+
2: car
|
21 |
+
3: motorcycle
|
22 |
+
4: bus
|
23 |
+
5: truck
|
24 |
+
6: traffic_light
|
25 |
+
7: stop_sign
|
26 |
+
|
27 |
+
|
28 |
+
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
29 |
+
download: |
|
30 |
+
import json
|
31 |
+
|
32 |
+
from tqdm import tqdm
|
33 |
+
from utils.general import download, Path
|
34 |
+
|
35 |
+
|
36 |
+
def argoverse2yolo(set):
|
37 |
+
labels = {}
|
38 |
+
a = json.load(open(set, "rb"))
|
39 |
+
for annot in tqdm(a['annotations'], desc=f"Converting {set} to YOLOv5 format..."):
|
40 |
+
img_id = annot['image_id']
|
41 |
+
img_name = a['images'][img_id]['name']
|
42 |
+
img_label_name = f'{img_name[:-3]}txt'
|
43 |
+
|
44 |
+
cls = annot['category_id'] # instance class id
|
45 |
+
x_center, y_center, width, height = annot['bbox']
|
46 |
+
x_center = (x_center + width / 2) / 1920.0 # offset and scale
|
47 |
+
y_center = (y_center + height / 2) / 1200.0 # offset and scale
|
48 |
+
width /= 1920.0 # scale
|
49 |
+
height /= 1200.0 # scale
|
50 |
+
|
51 |
+
img_dir = set.parents[2] / 'Argoverse-1.1' / 'labels' / a['seq_dirs'][a['images'][annot['image_id']]['sid']]
|
52 |
+
if not img_dir.exists():
|
53 |
+
img_dir.mkdir(parents=True, exist_ok=True)
|
54 |
+
|
55 |
+
k = str(img_dir / img_label_name)
|
56 |
+
if k not in labels:
|
57 |
+
labels[k] = []
|
58 |
+
labels[k].append(f"{cls} {x_center} {y_center} {width} {height}\n")
|
59 |
+
|
60 |
+
for k in labels:
|
61 |
+
with open(k, "w") as f:
|
62 |
+
f.writelines(labels[k])
|
63 |
+
|
64 |
+
|
65 |
+
# Download
|
66 |
+
dir = Path(yaml['path']) # dataset root dir
|
67 |
+
urls = ['https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip']
|
68 |
+
download(urls, dir=dir, delete=False)
|
69 |
+
|
70 |
+
# Convert
|
71 |
+
annotations_dir = 'Argoverse-HD/annotations/'
|
72 |
+
(dir / 'Argoverse-1.1' / 'tracking').rename(dir / 'Argoverse-1.1' / 'images') # rename 'tracking' to 'images'
|
73 |
+
for d in "train.json", "val.json":
|
74 |
+
argoverse2yolo(dir / annotations_dir / d) # convert VisDrone annotations to YOLO labels
|
data/GlobalWheat2020.yaml
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
# Global Wheat 2020 dataset http://www.global-wheat.com/ by University of Saskatchewan
|
3 |
+
# Example usage: python train.py --data GlobalWheat2020.yaml
|
4 |
+
# parent
|
5 |
+
# ├── yolov5
|
6 |
+
# └── datasets
|
7 |
+
# └── GlobalWheat2020 ← downloads here (7.0 GB)
|
8 |
+
|
9 |
+
|
10 |
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
11 |
+
path: ../datasets/GlobalWheat2020 # dataset root dir
|
12 |
+
train: # train images (relative to 'path') 3422 images
|
13 |
+
- images/arvalis_1
|
14 |
+
- images/arvalis_2
|
15 |
+
- images/arvalis_3
|
16 |
+
- images/ethz_1
|
17 |
+
- images/rres_1
|
18 |
+
- images/inrae_1
|
19 |
+
- images/usask_1
|
20 |
+
val: # val images (relative to 'path') 748 images (WARNING: train set contains ethz_1)
|
21 |
+
- images/ethz_1
|
22 |
+
test: # test images (optional) 1276 images
|
23 |
+
- images/utokyo_1
|
24 |
+
- images/utokyo_2
|
25 |
+
- images/nau_1
|
26 |
+
- images/uq_1
|
27 |
+
|
28 |
+
# Classes
|
29 |
+
names:
|
30 |
+
0: wheat_head
|
31 |
+
|
32 |
+
|
33 |
+
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
34 |
+
download: |
|
35 |
+
from utils.general import download, Path
|
36 |
+
|
37 |
+
|
38 |
+
# Download
|
39 |
+
dir = Path(yaml['path']) # dataset root dir
|
40 |
+
urls = ['https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip',
|
41 |
+
'https://github.com/ultralytics/yolov5/releases/download/v1.0/GlobalWheat2020_labels.zip']
|
42 |
+
download(urls, dir=dir)
|
43 |
+
|
44 |
+
# Make Directories
|
45 |
+
for p in 'annotations', 'images', 'labels':
|
46 |
+
(dir / p).mkdir(parents=True, exist_ok=True)
|
47 |
+
|
48 |
+
# Move
|
49 |
+
for p in 'arvalis_1', 'arvalis_2', 'arvalis_3', 'ethz_1', 'rres_1', 'inrae_1', 'usask_1', \
|
50 |
+
'utokyo_1', 'utokyo_2', 'nau_1', 'uq_1':
|
51 |
+
(dir / p).rename(dir / 'images' / p) # move to /images
|
52 |
+
f = (dir / p).with_suffix('.json') # json file
|
53 |
+
if f.exists():
|
54 |
+
f.rename((dir / 'annotations' / p).with_suffix('.json')) # move to /annotations
|
data/ImageNet.yaml
ADDED
@@ -0,0 +1,1022 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
# ImageNet-1k dataset https://www.image-net.org/index.php by Stanford University
|
3 |
+
# Simplified class names from https://github.com/anishathalye/imagenet-simple-labels
|
4 |
+
# Example usage: python classify/train.py --data imagenet
|
5 |
+
# parent
|
6 |
+
# ├── yolov5
|
7 |
+
# └── datasets
|
8 |
+
# └── imagenet ← downloads here (144 GB)
|
9 |
+
|
10 |
+
|
11 |
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12 |
+
path: ../datasets/imagenet # dataset root dir
|
13 |
+
train: train # train images (relative to 'path') 1281167 images
|
14 |
+
val: val # val images (relative to 'path') 50000 images
|
15 |
+
test: # test images (optional)
|
16 |
+
|
17 |
+
# Classes
|
18 |
+
names:
|
19 |
+
0: tench
|
20 |
+
1: goldfish
|
21 |
+
2: great white shark
|
22 |
+
3: tiger shark
|
23 |
+
4: hammerhead shark
|
24 |
+
5: electric ray
|
25 |
+
6: stingray
|
26 |
+
7: cock
|
27 |
+
8: hen
|
28 |
+
9: ostrich
|
29 |
+
10: brambling
|
30 |
+
11: goldfinch
|
31 |
+
12: house finch
|
32 |
+
13: junco
|
33 |
+
14: indigo bunting
|
34 |
+
15: American robin
|
35 |
+
16: bulbul
|
36 |
+
17: jay
|
37 |
+
18: magpie
|
38 |
+
19: chickadee
|
39 |
+
20: American dipper
|
40 |
+
21: kite
|
41 |
+
22: bald eagle
|
42 |
+
23: vulture
|
43 |
+
24: great grey owl
|
44 |
+
25: fire salamander
|
45 |
+
26: smooth newt
|
46 |
+
27: newt
|
47 |
+
28: spotted salamander
|
48 |
+
29: axolotl
|
49 |
+
30: American bullfrog
|
50 |
+
31: tree frog
|
51 |
+
32: tailed frog
|
52 |
+
33: loggerhead sea turtle
|
53 |
+
34: leatherback sea turtle
|
54 |
+
35: mud turtle
|
55 |
+
36: terrapin
|
56 |
+
37: box turtle
|
57 |
+
38: banded gecko
|
58 |
+
39: green iguana
|
59 |
+
40: Carolina anole
|
60 |
+
41: desert grassland whiptail lizard
|
61 |
+
42: agama
|
62 |
+
43: frilled-necked lizard
|
63 |
+
44: alligator lizard
|
64 |
+
45: Gila monster
|
65 |
+
46: European green lizard
|
66 |
+
47: chameleon
|
67 |
+
48: Komodo dragon
|
68 |
+
49: Nile crocodile
|
69 |
+
50: American alligator
|
70 |
+
51: triceratops
|
71 |
+
52: worm snake
|
72 |
+
53: ring-necked snake
|
73 |
+
54: eastern hog-nosed snake
|
74 |
+
55: smooth green snake
|
75 |
+
56: kingsnake
|
76 |
+
57: garter snake
|
77 |
+
58: water snake
|
78 |
+
59: vine snake
|
79 |
+
60: night snake
|
80 |
+
61: boa constrictor
|
81 |
+
62: African rock python
|
82 |
+
63: Indian cobra
|
83 |
+
64: green mamba
|
84 |
+
65: sea snake
|
85 |
+
66: Saharan horned viper
|
86 |
+
67: eastern diamondback rattlesnake
|
87 |
+
68: sidewinder
|
88 |
+
69: trilobite
|
89 |
+
70: harvestman
|
90 |
+
71: scorpion
|
91 |
+
72: yellow garden spider
|
92 |
+
73: barn spider
|
93 |
+
74: European garden spider
|
94 |
+
75: southern black widow
|
95 |
+
76: tarantula
|
96 |
+
77: wolf spider
|
97 |
+
78: tick
|
98 |
+
79: centipede
|
99 |
+
80: black grouse
|
100 |
+
81: ptarmigan
|
101 |
+
82: ruffed grouse
|
102 |
+
83: prairie grouse
|
103 |
+
84: peacock
|
104 |
+
85: quail
|
105 |
+
86: partridge
|
106 |
+
87: grey parrot
|
107 |
+
88: macaw
|
108 |
+
89: sulphur-crested cockatoo
|
109 |
+
90: lorikeet
|
110 |
+
91: coucal
|
111 |
+
92: bee eater
|
112 |
+
93: hornbill
|
113 |
+
94: hummingbird
|
114 |
+
95: jacamar
|
115 |
+
96: toucan
|
116 |
+
97: duck
|
117 |
+
98: red-breasted merganser
|
118 |
+
99: goose
|
119 |
+
100: black swan
|
120 |
+
101: tusker
|
121 |
+
102: echidna
|
122 |
+
103: platypus
|
123 |
+
104: wallaby
|
124 |
+
105: koala
|
125 |
+
106: wombat
|
126 |
+
107: jellyfish
|
127 |
+
108: sea anemone
|
128 |
+
109: brain coral
|
129 |
+
110: flatworm
|
130 |
+
111: nematode
|
131 |
+
112: conch
|
132 |
+
113: snail
|
133 |
+
114: slug
|
134 |
+
115: sea slug
|
135 |
+
116: chiton
|
136 |
+
117: chambered nautilus
|
137 |
+
118: Dungeness crab
|
138 |
+
119: rock crab
|
139 |
+
120: fiddler crab
|
140 |
+
121: red king crab
|
141 |
+
122: American lobster
|
142 |
+
123: spiny lobster
|
143 |
+
124: crayfish
|
144 |
+
125: hermit crab
|
145 |
+
126: isopod
|
146 |
+
127: white stork
|
147 |
+
128: black stork
|
148 |
+
129: spoonbill
|
149 |
+
130: flamingo
|
150 |
+
131: little blue heron
|
151 |
+
132: great egret
|
152 |
+
133: bittern
|
153 |
+
134: crane (bird)
|
154 |
+
135: limpkin
|
155 |
+
136: common gallinule
|
156 |
+
137: American coot
|
157 |
+
138: bustard
|
158 |
+
139: ruddy turnstone
|
159 |
+
140: dunlin
|
160 |
+
141: common redshank
|
161 |
+
142: dowitcher
|
162 |
+
143: oystercatcher
|
163 |
+
144: pelican
|
164 |
+
145: king penguin
|
165 |
+
146: albatross
|
166 |
+
147: grey whale
|
167 |
+
148: killer whale
|
168 |
+
149: dugong
|
169 |
+
150: sea lion
|
170 |
+
151: Chihuahua
|
171 |
+
152: Japanese Chin
|
172 |
+
153: Maltese
|
173 |
+
154: Pekingese
|
174 |
+
155: Shih Tzu
|
175 |
+
156: King Charles Spaniel
|
176 |
+
157: Papillon
|
177 |
+
158: toy terrier
|
178 |
+
159: Rhodesian Ridgeback
|
179 |
+
160: Afghan Hound
|
180 |
+
161: Basset Hound
|
181 |
+
162: Beagle
|
182 |
+
163: Bloodhound
|
183 |
+
164: Bluetick Coonhound
|
184 |
+
165: Black and Tan Coonhound
|
185 |
+
166: Treeing Walker Coonhound
|
186 |
+
167: English foxhound
|
187 |
+
168: Redbone Coonhound
|
188 |
+
169: borzoi
|
189 |
+
170: Irish Wolfhound
|
190 |
+
171: Italian Greyhound
|
191 |
+
172: Whippet
|
192 |
+
173: Ibizan Hound
|
193 |
+
174: Norwegian Elkhound
|
194 |
+
175: Otterhound
|
195 |
+
176: Saluki
|
196 |
+
177: Scottish Deerhound
|
197 |
+
178: Weimaraner
|
198 |
+
179: Staffordshire Bull Terrier
|
199 |
+
180: American Staffordshire Terrier
|
200 |
+
181: Bedlington Terrier
|
201 |
+
182: Border Terrier
|
202 |
+
183: Kerry Blue Terrier
|
203 |
+
184: Irish Terrier
|
204 |
+
185: Norfolk Terrier
|
205 |
+
186: Norwich Terrier
|
206 |
+
187: Yorkshire Terrier
|
207 |
+
188: Wire Fox Terrier
|
208 |
+
189: Lakeland Terrier
|
209 |
+
190: Sealyham Terrier
|
210 |
+
191: Airedale Terrier
|
211 |
+
192: Cairn Terrier
|
212 |
+
193: Australian Terrier
|
213 |
+
194: Dandie Dinmont Terrier
|
214 |
+
195: Boston Terrier
|
215 |
+
196: Miniature Schnauzer
|
216 |
+
197: Giant Schnauzer
|
217 |
+
198: Standard Schnauzer
|
218 |
+
199: Scottish Terrier
|
219 |
+
200: Tibetan Terrier
|
220 |
+
201: Australian Silky Terrier
|
221 |
+
202: Soft-coated Wheaten Terrier
|
222 |
+
203: West Highland White Terrier
|
223 |
+
204: Lhasa Apso
|
224 |
+
205: Flat-Coated Retriever
|
225 |
+
206: Curly-coated Retriever
|
226 |
+
207: Golden Retriever
|
227 |
+
208: Labrador Retriever
|
228 |
+
209: Chesapeake Bay Retriever
|
229 |
+
210: German Shorthaired Pointer
|
230 |
+
211: Vizsla
|
231 |
+
212: English Setter
|
232 |
+
213: Irish Setter
|
233 |
+
214: Gordon Setter
|
234 |
+
215: Brittany
|
235 |
+
216: Clumber Spaniel
|
236 |
+
217: English Springer Spaniel
|
237 |
+
218: Welsh Springer Spaniel
|
238 |
+
219: Cocker Spaniels
|
239 |
+
220: Sussex Spaniel
|
240 |
+
221: Irish Water Spaniel
|
241 |
+
222: Kuvasz
|
242 |
+
223: Schipperke
|
243 |
+
224: Groenendael
|
244 |
+
225: Malinois
|
245 |
+
226: Briard
|
246 |
+
227: Australian Kelpie
|
247 |
+
228: Komondor
|
248 |
+
229: Old English Sheepdog
|
249 |
+
230: Shetland Sheepdog
|
250 |
+
231: collie
|
251 |
+
232: Border Collie
|
252 |
+
233: Bouvier des Flandres
|
253 |
+
234: Rottweiler
|
254 |
+
235: German Shepherd Dog
|
255 |
+
236: Dobermann
|
256 |
+
237: Miniature Pinscher
|
257 |
+
238: Greater Swiss Mountain Dog
|
258 |
+
239: Bernese Mountain Dog
|
259 |
+
240: Appenzeller Sennenhund
|
260 |
+
241: Entlebucher Sennenhund
|
261 |
+
242: Boxer
|
262 |
+
243: Bullmastiff
|
263 |
+
244: Tibetan Mastiff
|
264 |
+
245: French Bulldog
|
265 |
+
246: Great Dane
|
266 |
+
247: St. Bernard
|
267 |
+
248: husky
|
268 |
+
249: Alaskan Malamute
|
269 |
+
250: Siberian Husky
|
270 |
+
251: Dalmatian
|
271 |
+
252: Affenpinscher
|
272 |
+
253: Basenji
|
273 |
+
254: pug
|
274 |
+
255: Leonberger
|
275 |
+
256: Newfoundland
|
276 |
+
257: Pyrenean Mountain Dog
|
277 |
+
258: Samoyed
|
278 |
+
259: Pomeranian
|
279 |
+
260: Chow Chow
|
280 |
+
261: Keeshond
|
281 |
+
262: Griffon Bruxellois
|
282 |
+
263: Pembroke Welsh Corgi
|
283 |
+
264: Cardigan Welsh Corgi
|
284 |
+
265: Toy Poodle
|
285 |
+
266: Miniature Poodle
|
286 |
+
267: Standard Poodle
|
287 |
+
268: Mexican hairless dog
|
288 |
+
269: grey wolf
|
289 |
+
270: Alaskan tundra wolf
|
290 |
+
271: red wolf
|
291 |
+
272: coyote
|
292 |
+
273: dingo
|
293 |
+
274: dhole
|
294 |
+
275: African wild dog
|
295 |
+
276: hyena
|
296 |
+
277: red fox
|
297 |
+
278: kit fox
|
298 |
+
279: Arctic fox
|
299 |
+
280: grey fox
|
300 |
+
281: tabby cat
|
301 |
+
282: tiger cat
|
302 |
+
283: Persian cat
|
303 |
+
284: Siamese cat
|
304 |
+
285: Egyptian Mau
|
305 |
+
286: cougar
|
306 |
+
287: lynx
|
307 |
+
288: leopard
|
308 |
+
289: snow leopard
|
309 |
+
290: jaguar
|
310 |
+
291: lion
|
311 |
+
292: tiger
|
312 |
+
293: cheetah
|
313 |
+
294: brown bear
|
314 |
+
295: American black bear
|
315 |
+
296: polar bear
|
316 |
+
297: sloth bear
|
317 |
+
298: mongoose
|
318 |
+
299: meerkat
|
319 |
+
300: tiger beetle
|
320 |
+
301: ladybug
|
321 |
+
302: ground beetle
|
322 |
+
303: longhorn beetle
|
323 |
+
304: leaf beetle
|
324 |
+
305: dung beetle
|
325 |
+
306: rhinoceros beetle
|
326 |
+
307: weevil
|
327 |
+
308: fly
|
328 |
+
309: bee
|
329 |
+
310: ant
|
330 |
+
311: grasshopper
|
331 |
+
312: cricket
|
332 |
+
313: stick insect
|
333 |
+
314: cockroach
|
334 |
+
315: mantis
|
335 |
+
316: cicada
|
336 |
+
317: leafhopper
|
337 |
+
318: lacewing
|
338 |
+
319: dragonfly
|
339 |
+
320: damselfly
|
340 |
+
321: red admiral
|
341 |
+
322: ringlet
|
342 |
+
323: monarch butterfly
|
343 |
+
324: small white
|
344 |
+
325: sulphur butterfly
|
345 |
+
326: gossamer-winged butterfly
|
346 |
+
327: starfish
|
347 |
+
328: sea urchin
|
348 |
+
329: sea cucumber
|
349 |
+
330: cottontail rabbit
|
350 |
+
331: hare
|
351 |
+
332: Angora rabbit
|
352 |
+
333: hamster
|
353 |
+
334: porcupine
|
354 |
+
335: fox squirrel
|
355 |
+
336: marmot
|
356 |
+
337: beaver
|
357 |
+
338: guinea pig
|
358 |
+
339: common sorrel
|
359 |
+
340: zebra
|
360 |
+
341: pig
|
361 |
+
342: wild boar
|
362 |
+
343: warthog
|
363 |
+
344: hippopotamus
|
364 |
+
345: ox
|
365 |
+
346: water buffalo
|
366 |
+
347: bison
|
367 |
+
348: ram
|
368 |
+
349: bighorn sheep
|
369 |
+
350: Alpine ibex
|
370 |
+
351: hartebeest
|
371 |
+
352: impala
|
372 |
+
353: gazelle
|
373 |
+
354: dromedary
|
374 |
+
355: llama
|
375 |
+
356: weasel
|
376 |
+
357: mink
|
377 |
+
358: European polecat
|
378 |
+
359: black-footed ferret
|
379 |
+
360: otter
|
380 |
+
361: skunk
|
381 |
+
362: badger
|
382 |
+
363: armadillo
|
383 |
+
364: three-toed sloth
|
384 |
+
365: orangutan
|
385 |
+
366: gorilla
|
386 |
+
367: chimpanzee
|
387 |
+
368: gibbon
|
388 |
+
369: siamang
|
389 |
+
370: guenon
|
390 |
+
371: patas monkey
|
391 |
+
372: baboon
|
392 |
+
373: macaque
|
393 |
+
374: langur
|
394 |
+
375: black-and-white colobus
|
395 |
+
376: proboscis monkey
|
396 |
+
377: marmoset
|
397 |
+
378: white-headed capuchin
|
398 |
+
379: howler monkey
|
399 |
+
380: titi
|
400 |
+
381: Geoffroy's spider monkey
|
401 |
+
382: common squirrel monkey
|
402 |
+
383: ring-tailed lemur
|
403 |
+
384: indri
|
404 |
+
385: Asian elephant
|
405 |
+
386: African bush elephant
|
406 |
+
387: red panda
|
407 |
+
388: giant panda
|
408 |
+
389: snoek
|
409 |
+
390: eel
|
410 |
+
391: coho salmon
|
411 |
+
392: rock beauty
|
412 |
+
393: clownfish
|
413 |
+
394: sturgeon
|
414 |
+
395: garfish
|
415 |
+
396: lionfish
|
416 |
+
397: pufferfish
|
417 |
+
398: abacus
|
418 |
+
399: abaya
|
419 |
+
400: academic gown
|
420 |
+
401: accordion
|
421 |
+
402: acoustic guitar
|
422 |
+
403: aircraft carrier
|
423 |
+
404: airliner
|
424 |
+
405: airship
|
425 |
+
406: altar
|
426 |
+
407: ambulance
|
427 |
+
408: amphibious vehicle
|
428 |
+
409: analog clock
|
429 |
+
410: apiary
|
430 |
+
411: apron
|
431 |
+
412: waste container
|
432 |
+
413: assault rifle
|
433 |
+
414: backpack
|
434 |
+
415: bakery
|
435 |
+
416: balance beam
|
436 |
+
417: balloon
|
437 |
+
418: ballpoint pen
|
438 |
+
419: Band-Aid
|
439 |
+
420: banjo
|
440 |
+
421: baluster
|
441 |
+
422: barbell
|
442 |
+
423: barber chair
|
443 |
+
424: barbershop
|
444 |
+
425: barn
|
445 |
+
426: barometer
|
446 |
+
427: barrel
|
447 |
+
428: wheelbarrow
|
448 |
+
429: baseball
|
449 |
+
430: basketball
|
450 |
+
431: bassinet
|
451 |
+
432: bassoon
|
452 |
+
433: swimming cap
|
453 |
+
434: bath towel
|
454 |
+
435: bathtub
|
455 |
+
436: station wagon
|
456 |
+
437: lighthouse
|
457 |
+
438: beaker
|
458 |
+
439: military cap
|
459 |
+
440: beer bottle
|
460 |
+
441: beer glass
|
461 |
+
442: bell-cot
|
462 |
+
443: bib
|
463 |
+
444: tandem bicycle
|
464 |
+
445: bikini
|
465 |
+
446: ring binder
|
466 |
+
447: binoculars
|
467 |
+
448: birdhouse
|
468 |
+
449: boathouse
|
469 |
+
450: bobsleigh
|
470 |
+
451: bolo tie
|
471 |
+
452: poke bonnet
|
472 |
+
453: bookcase
|
473 |
+
454: bookstore
|
474 |
+
455: bottle cap
|
475 |
+
456: bow
|
476 |
+
457: bow tie
|
477 |
+
458: brass
|
478 |
+
459: bra
|
479 |
+
460: breakwater
|
480 |
+
461: breastplate
|
481 |
+
462: broom
|
482 |
+
463: bucket
|
483 |
+
464: buckle
|
484 |
+
465: bulletproof vest
|
485 |
+
466: high-speed train
|
486 |
+
467: butcher shop
|
487 |
+
468: taxicab
|
488 |
+
469: cauldron
|
489 |
+
470: candle
|
490 |
+
471: cannon
|
491 |
+
472: canoe
|
492 |
+
473: can opener
|
493 |
+
474: cardigan
|
494 |
+
475: car mirror
|
495 |
+
476: carousel
|
496 |
+
477: tool kit
|
497 |
+
478: carton
|
498 |
+
479: car wheel
|
499 |
+
480: automated teller machine
|
500 |
+
481: cassette
|
501 |
+
482: cassette player
|
502 |
+
483: castle
|
503 |
+
484: catamaran
|
504 |
+
485: CD player
|
505 |
+
486: cello
|
506 |
+
487: mobile phone
|
507 |
+
488: chain
|
508 |
+
489: chain-link fence
|
509 |
+
490: chain mail
|
510 |
+
491: chainsaw
|
511 |
+
492: chest
|
512 |
+
493: chiffonier
|
513 |
+
494: chime
|
514 |
+
495: china cabinet
|
515 |
+
496: Christmas stocking
|
516 |
+
497: church
|
517 |
+
498: movie theater
|
518 |
+
499: cleaver
|
519 |
+
500: cliff dwelling
|
520 |
+
501: cloak
|
521 |
+
502: clogs
|
522 |
+
503: cocktail shaker
|
523 |
+
504: coffee mug
|
524 |
+
505: coffeemaker
|
525 |
+
506: coil
|
526 |
+
507: combination lock
|
527 |
+
508: computer keyboard
|
528 |
+
509: confectionery store
|
529 |
+
510: container ship
|
530 |
+
511: convertible
|
531 |
+
512: corkscrew
|
532 |
+
513: cornet
|
533 |
+
514: cowboy boot
|
534 |
+
515: cowboy hat
|
535 |
+
516: cradle
|
536 |
+
517: crane (machine)
|
537 |
+
518: crash helmet
|
538 |
+
519: crate
|
539 |
+
520: infant bed
|
540 |
+
521: Crock Pot
|
541 |
+
522: croquet ball
|
542 |
+
523: crutch
|
543 |
+
524: cuirass
|
544 |
+
525: dam
|
545 |
+
526: desk
|
546 |
+
527: desktop computer
|
547 |
+
528: rotary dial telephone
|
548 |
+
529: diaper
|
549 |
+
530: digital clock
|
550 |
+
531: digital watch
|
551 |
+
532: dining table
|
552 |
+
533: dishcloth
|
553 |
+
534: dishwasher
|
554 |
+
535: disc brake
|
555 |
+
536: dock
|
556 |
+
537: dog sled
|
557 |
+
538: dome
|
558 |
+
539: doormat
|
559 |
+
540: drilling rig
|
560 |
+
541: drum
|
561 |
+
542: drumstick
|
562 |
+
543: dumbbell
|
563 |
+
544: Dutch oven
|
564 |
+
545: electric fan
|
565 |
+
546: electric guitar
|
566 |
+
547: electric locomotive
|
567 |
+
548: entertainment center
|
568 |
+
549: envelope
|
569 |
+
550: espresso machine
|
570 |
+
551: face powder
|
571 |
+
552: feather boa
|
572 |
+
553: filing cabinet
|
573 |
+
554: fireboat
|
574 |
+
555: fire engine
|
575 |
+
556: fire screen sheet
|
576 |
+
557: flagpole
|
577 |
+
558: flute
|
578 |
+
559: folding chair
|
579 |
+
560: football helmet
|
580 |
+
561: forklift
|
581 |
+
562: fountain
|
582 |
+
563: fountain pen
|
583 |
+
564: four-poster bed
|
584 |
+
565: freight car
|
585 |
+
566: French horn
|
586 |
+
567: frying pan
|
587 |
+
568: fur coat
|
588 |
+
569: garbage truck
|
589 |
+
570: gas mask
|
590 |
+
571: gas pump
|
591 |
+
572: goblet
|
592 |
+
573: go-kart
|
593 |
+
574: golf ball
|
594 |
+
575: golf cart
|
595 |
+
576: gondola
|
596 |
+
577: gong
|
597 |
+
578: gown
|
598 |
+
579: grand piano
|
599 |
+
580: greenhouse
|
600 |
+
581: grille
|
601 |
+
582: grocery store
|
602 |
+
583: guillotine
|
603 |
+
584: barrette
|
604 |
+
585: hair spray
|
605 |
+
586: half-track
|
606 |
+
587: hammer
|
607 |
+
588: hamper
|
608 |
+
589: hair dryer
|
609 |
+
590: hand-held computer
|
610 |
+
591: handkerchief
|
611 |
+
592: hard disk drive
|
612 |
+
593: harmonica
|
613 |
+
594: harp
|
614 |
+
595: harvester
|
615 |
+
596: hatchet
|
616 |
+
597: holster
|
617 |
+
598: home theater
|
618 |
+
599: honeycomb
|
619 |
+
600: hook
|
620 |
+
601: hoop skirt
|
621 |
+
602: horizontal bar
|
622 |
+
603: horse-drawn vehicle
|
623 |
+
604: hourglass
|
624 |
+
605: iPod
|
625 |
+
606: clothes iron
|
626 |
+
607: jack-o'-lantern
|
627 |
+
608: jeans
|
628 |
+
609: jeep
|
629 |
+
610: T-shirt
|
630 |
+
611: jigsaw puzzle
|
631 |
+
612: pulled rickshaw
|
632 |
+
613: joystick
|
633 |
+
614: kimono
|
634 |
+
615: knee pad
|
635 |
+
616: knot
|
636 |
+
617: lab coat
|
637 |
+
618: ladle
|
638 |
+
619: lampshade
|
639 |
+
620: laptop computer
|
640 |
+
621: lawn mower
|
641 |
+
622: lens cap
|
642 |
+
623: paper knife
|
643 |
+
624: library
|
644 |
+
625: lifeboat
|
645 |
+
626: lighter
|
646 |
+
627: limousine
|
647 |
+
628: ocean liner
|
648 |
+
629: lipstick
|
649 |
+
630: slip-on shoe
|
650 |
+
631: lotion
|
651 |
+
632: speaker
|
652 |
+
633: loupe
|
653 |
+
634: sawmill
|
654 |
+
635: magnetic compass
|
655 |
+
636: mail bag
|
656 |
+
637: mailbox
|
657 |
+
638: tights
|
658 |
+
639: tank suit
|
659 |
+
640: manhole cover
|
660 |
+
641: maraca
|
661 |
+
642: marimba
|
662 |
+
643: mask
|
663 |
+
644: match
|
664 |
+
645: maypole
|
665 |
+
646: maze
|
666 |
+
647: measuring cup
|
667 |
+
648: medicine chest
|
668 |
+
649: megalith
|
669 |
+
650: microphone
|
670 |
+
651: microwave oven
|
671 |
+
652: military uniform
|
672 |
+
653: milk can
|
673 |
+
654: minibus
|
674 |
+
655: miniskirt
|
675 |
+
656: minivan
|
676 |
+
657: missile
|
677 |
+
658: mitten
|
678 |
+
659: mixing bowl
|
679 |
+
660: mobile home
|
680 |
+
661: Model T
|
681 |
+
662: modem
|
682 |
+
663: monastery
|
683 |
+
664: monitor
|
684 |
+
665: moped
|
685 |
+
666: mortar
|
686 |
+
667: square academic cap
|
687 |
+
668: mosque
|
688 |
+
669: mosquito net
|
689 |
+
670: scooter
|
690 |
+
671: mountain bike
|
691 |
+
672: tent
|
692 |
+
673: computer mouse
|
693 |
+
674: mousetrap
|
694 |
+
675: moving van
|
695 |
+
676: muzzle
|
696 |
+
677: nail
|
697 |
+
678: neck brace
|
698 |
+
679: necklace
|
699 |
+
680: nipple
|
700 |
+
681: notebook computer
|
701 |
+
682: obelisk
|
702 |
+
683: oboe
|
703 |
+
684: ocarina
|
704 |
+
685: odometer
|
705 |
+
686: oil filter
|
706 |
+
687: organ
|
707 |
+
688: oscilloscope
|
708 |
+
689: overskirt
|
709 |
+
690: bullock cart
|
710 |
+
691: oxygen mask
|
711 |
+
692: packet
|
712 |
+
693: paddle
|
713 |
+
694: paddle wheel
|
714 |
+
695: padlock
|
715 |
+
696: paintbrush
|
716 |
+
697: pajamas
|
717 |
+
698: palace
|
718 |
+
699: pan flute
|
719 |
+
700: paper towel
|
720 |
+
701: parachute
|
721 |
+
702: parallel bars
|
722 |
+
703: park bench
|
723 |
+
704: parking meter
|
724 |
+
705: passenger car
|
725 |
+
706: patio
|
726 |
+
707: payphone
|
727 |
+
708: pedestal
|
728 |
+
709: pencil case
|
729 |
+
710: pencil sharpener
|
730 |
+
711: perfume
|
731 |
+
712: Petri dish
|
732 |
+
713: photocopier
|
733 |
+
714: plectrum
|
734 |
+
715: Pickelhaube
|
735 |
+
716: picket fence
|
736 |
+
717: pickup truck
|
737 |
+
718: pier
|
738 |
+
719: piggy bank
|
739 |
+
720: pill bottle
|
740 |
+
721: pillow
|
741 |
+
722: ping-pong ball
|
742 |
+
723: pinwheel
|
743 |
+
724: pirate ship
|
744 |
+
725: pitcher
|
745 |
+
726: hand plane
|
746 |
+
727: planetarium
|
747 |
+
728: plastic bag
|
748 |
+
729: plate rack
|
749 |
+
730: plow
|
750 |
+
731: plunger
|
751 |
+
732: Polaroid camera
|
752 |
+
733: pole
|
753 |
+
734: police van
|
754 |
+
735: poncho
|
755 |
+
736: billiard table
|
756 |
+
737: soda bottle
|
757 |
+
738: pot
|
758 |
+
739: potter's wheel
|
759 |
+
740: power drill
|
760 |
+
741: prayer rug
|
761 |
+
742: printer
|
762 |
+
743: prison
|
763 |
+
744: projectile
|
764 |
+
745: projector
|
765 |
+
746: hockey puck
|
766 |
+
747: punching bag
|
767 |
+
748: purse
|
768 |
+
749: quill
|
769 |
+
750: quilt
|
770 |
+
751: race car
|
771 |
+
752: racket
|
772 |
+
753: radiator
|
773 |
+
754: radio
|
774 |
+
755: radio telescope
|
775 |
+
756: rain barrel
|
776 |
+
757: recreational vehicle
|
777 |
+
758: reel
|
778 |
+
759: reflex camera
|
779 |
+
760: refrigerator
|
780 |
+
761: remote control
|
781 |
+
762: restaurant
|
782 |
+
763: revolver
|
783 |
+
764: rifle
|
784 |
+
765: rocking chair
|
785 |
+
766: rotisserie
|
786 |
+
767: eraser
|
787 |
+
768: rugby ball
|
788 |
+
769: ruler
|
789 |
+
770: running shoe
|
790 |
+
771: safe
|
791 |
+
772: safety pin
|
792 |
+
773: salt shaker
|
793 |
+
774: sandal
|
794 |
+
775: sarong
|
795 |
+
776: saxophone
|
796 |
+
777: scabbard
|
797 |
+
778: weighing scale
|
798 |
+
779: school bus
|
799 |
+
780: schooner
|
800 |
+
781: scoreboard
|
801 |
+
782: CRT screen
|
802 |
+
783: screw
|
803 |
+
784: screwdriver
|
804 |
+
785: seat belt
|
805 |
+
786: sewing machine
|
806 |
+
787: shield
|
807 |
+
788: shoe store
|
808 |
+
789: shoji
|
809 |
+
790: shopping basket
|
810 |
+
791: shopping cart
|
811 |
+
792: shovel
|
812 |
+
793: shower cap
|
813 |
+
794: shower curtain
|
814 |
+
795: ski
|
815 |
+
796: ski mask
|
816 |
+
797: sleeping bag
|
817 |
+
798: slide rule
|
818 |
+
799: sliding door
|
819 |
+
800: slot machine
|
820 |
+
801: snorkel
|
821 |
+
802: snowmobile
|
822 |
+
803: snowplow
|
823 |
+
804: soap dispenser
|
824 |
+
805: soccer ball
|
825 |
+
806: sock
|
826 |
+
807: solar thermal collector
|
827 |
+
808: sombrero
|
828 |
+
809: soup bowl
|
829 |
+
810: space bar
|
830 |
+
811: space heater
|
831 |
+
812: space shuttle
|
832 |
+
813: spatula
|
833 |
+
814: motorboat
|
834 |
+
815: spider web
|
835 |
+
816: spindle
|
836 |
+
817: sports car
|
837 |
+
818: spotlight
|
838 |
+
819: stage
|
839 |
+
820: steam locomotive
|
840 |
+
821: through arch bridge
|
841 |
+
822: steel drum
|
842 |
+
823: stethoscope
|
843 |
+
824: scarf
|
844 |
+
825: stone wall
|
845 |
+
826: stopwatch
|
846 |
+
827: stove
|
847 |
+
828: strainer
|
848 |
+
829: tram
|
849 |
+
830: stretcher
|
850 |
+
831: couch
|
851 |
+
832: stupa
|
852 |
+
833: submarine
|
853 |
+
834: suit
|
854 |
+
835: sundial
|
855 |
+
836: sunglass
|
856 |
+
837: sunglasses
|
857 |
+
838: sunscreen
|
858 |
+
839: suspension bridge
|
859 |
+
840: mop
|
860 |
+
841: sweatshirt
|
861 |
+
842: swimsuit
|
862 |
+
843: swing
|
863 |
+
844: switch
|
864 |
+
845: syringe
|
865 |
+
846: table lamp
|
866 |
+
847: tank
|
867 |
+
848: tape player
|
868 |
+
849: teapot
|
869 |
+
850: teddy bear
|
870 |
+
851: television
|
871 |
+
852: tennis ball
|
872 |
+
853: thatched roof
|
873 |
+
854: front curtain
|
874 |
+
855: thimble
|
875 |
+
856: threshing machine
|
876 |
+
857: throne
|
877 |
+
858: tile roof
|
878 |
+
859: toaster
|
879 |
+
860: tobacco shop
|
880 |
+
861: toilet seat
|
881 |
+
862: torch
|
882 |
+
863: totem pole
|
883 |
+
864: tow truck
|
884 |
+
865: toy store
|
885 |
+
866: tractor
|
886 |
+
867: semi-trailer truck
|
887 |
+
868: tray
|
888 |
+
869: trench coat
|
889 |
+
870: tricycle
|
890 |
+
871: trimaran
|
891 |
+
872: tripod
|
892 |
+
873: triumphal arch
|
893 |
+
874: trolleybus
|
894 |
+
875: trombone
|
895 |
+
876: tub
|
896 |
+
877: turnstile
|
897 |
+
878: typewriter keyboard
|
898 |
+
879: umbrella
|
899 |
+
880: unicycle
|
900 |
+
881: upright piano
|
901 |
+
882: vacuum cleaner
|
902 |
+
883: vase
|
903 |
+
884: vault
|
904 |
+
885: velvet
|
905 |
+
886: vending machine
|
906 |
+
887: vestment
|
907 |
+
888: viaduct
|
908 |
+
889: violin
|
909 |
+
890: volleyball
|
910 |
+
891: waffle iron
|
911 |
+
892: wall clock
|
912 |
+
893: wallet
|
913 |
+
894: wardrobe
|
914 |
+
895: military aircraft
|
915 |
+
896: sink
|
916 |
+
897: washing machine
|
917 |
+
898: water bottle
|
918 |
+
899: water jug
|
919 |
+
900: water tower
|
920 |
+
901: whiskey jug
|
921 |
+
902: whistle
|
922 |
+
903: wig
|
923 |
+
904: window screen
|
924 |
+
905: window shade
|
925 |
+
906: Windsor tie
|
926 |
+
907: wine bottle
|
927 |
+
908: wing
|
928 |
+
909: wok
|
929 |
+
910: wooden spoon
|
930 |
+
911: wool
|
931 |
+
912: split-rail fence
|
932 |
+
913: shipwreck
|
933 |
+
914: yawl
|
934 |
+
915: yurt
|
935 |
+
916: website
|
936 |
+
917: comic book
|
937 |
+
918: crossword
|
938 |
+
919: traffic sign
|
939 |
+
920: traffic light
|
940 |
+
921: dust jacket
|
941 |
+
922: menu
|
942 |
+
923: plate
|
943 |
+
924: guacamole
|
944 |
+
925: consomme
|
945 |
+
926: hot pot
|
946 |
+
927: trifle
|
947 |
+
928: ice cream
|
948 |
+
929: ice pop
|
949 |
+
930: baguette
|
950 |
+
931: bagel
|
951 |
+
932: pretzel
|
952 |
+
933: cheeseburger
|
953 |
+
934: hot dog
|
954 |
+
935: mashed potato
|
955 |
+
936: cabbage
|
956 |
+
937: broccoli
|
957 |
+
938: cauliflower
|
958 |
+
939: zucchini
|
959 |
+
940: spaghetti squash
|
960 |
+
941: acorn squash
|
961 |
+
942: butternut squash
|
962 |
+
943: cucumber
|
963 |
+
944: artichoke
|
964 |
+
945: bell pepper
|
965 |
+
946: cardoon
|
966 |
+
947: mushroom
|
967 |
+
948: Granny Smith
|
968 |
+
949: strawberry
|
969 |
+
950: orange
|
970 |
+
951: lemon
|
971 |
+
952: fig
|
972 |
+
953: pineapple
|
973 |
+
954: banana
|
974 |
+
955: jackfruit
|
975 |
+
956: custard apple
|
976 |
+
957: pomegranate
|
977 |
+
958: hay
|
978 |
+
959: carbonara
|
979 |
+
960: chocolate syrup
|
980 |
+
961: dough
|
981 |
+
962: meatloaf
|
982 |
+
963: pizza
|
983 |
+
964: pot pie
|
984 |
+
965: burrito
|
985 |
+
966: red wine
|
986 |
+
967: espresso
|
987 |
+
968: cup
|
988 |
+
969: eggnog
|
989 |
+
970: alp
|
990 |
+
971: bubble
|
991 |
+
972: cliff
|
992 |
+
973: coral reef
|
993 |
+
974: geyser
|
994 |
+
975: lakeshore
|
995 |
+
976: promontory
|
996 |
+
977: shoal
|
997 |
+
978: seashore
|
998 |
+
979: valley
|
999 |
+
980: volcano
|
1000 |
+
981: baseball player
|
1001 |
+
982: bridegroom
|
1002 |
+
983: scuba diver
|
1003 |
+
984: rapeseed
|
1004 |
+
985: daisy
|
1005 |
+
986: yellow lady's slipper
|
1006 |
+
987: corn
|
1007 |
+
988: acorn
|
1008 |
+
989: rose hip
|
1009 |
+
990: horse chestnut seed
|
1010 |
+
991: coral fungus
|
1011 |
+
992: agaric
|
1012 |
+
993: gyromitra
|
1013 |
+
994: stinkhorn mushroom
|
1014 |
+
995: earth star
|
1015 |
+
996: hen-of-the-woods
|
1016 |
+
997: bolete
|
1017 |
+
998: ear
|
1018 |
+
999: toilet paper
|
1019 |
+
|
1020 |
+
|
1021 |
+
# Download script/URL (optional)
|
1022 |
+
download: data/scripts/get_imagenet.sh
|
data/Objects365.yaml
ADDED
@@ -0,0 +1,438 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
# Objects365 dataset https://www.objects365.org/ by Megvii
|
3 |
+
# Example usage: python train.py --data Objects365.yaml
|
4 |
+
# parent
|
5 |
+
# ├── yolov5
|
6 |
+
# └── datasets
|
7 |
+
# └── Objects365 ← downloads here (712 GB = 367G data + 345G zips)
|
8 |
+
|
9 |
+
|
10 |
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
11 |
+
path: ../datasets/Objects365 # dataset root dir
|
12 |
+
train: images/train # train images (relative to 'path') 1742289 images
|
13 |
+
val: images/val # val images (relative to 'path') 80000 images
|
14 |
+
test: # test images (optional)
|
15 |
+
|
16 |
+
# Classes
|
17 |
+
names:
|
18 |
+
0: Person
|
19 |
+
1: Sneakers
|
20 |
+
2: Chair
|
21 |
+
3: Other Shoes
|
22 |
+
4: Hat
|
23 |
+
5: Car
|
24 |
+
6: Lamp
|
25 |
+
7: Glasses
|
26 |
+
8: Bottle
|
27 |
+
9: Desk
|
28 |
+
10: Cup
|
29 |
+
11: Street Lights
|
30 |
+
12: Cabinet/shelf
|
31 |
+
13: Handbag/Satchel
|
32 |
+
14: Bracelet
|
33 |
+
15: Plate
|
34 |
+
16: Picture/Frame
|
35 |
+
17: Helmet
|
36 |
+
18: Book
|
37 |
+
19: Gloves
|
38 |
+
20: Storage box
|
39 |
+
21: Boat
|
40 |
+
22: Leather Shoes
|
41 |
+
23: Flower
|
42 |
+
24: Bench
|
43 |
+
25: Potted Plant
|
44 |
+
26: Bowl/Basin
|
45 |
+
27: Flag
|
46 |
+
28: Pillow
|
47 |
+
29: Boots
|
48 |
+
30: Vase
|
49 |
+
31: Microphone
|
50 |
+
32: Necklace
|
51 |
+
33: Ring
|
52 |
+
34: SUV
|
53 |
+
35: Wine Glass
|
54 |
+
36: Belt
|
55 |
+
37: Monitor/TV
|
56 |
+
38: Backpack
|
57 |
+
39: Umbrella
|
58 |
+
40: Traffic Light
|
59 |
+
41: Speaker
|
60 |
+
42: Watch
|
61 |
+
43: Tie
|
62 |
+
44: Trash bin Can
|
63 |
+
45: Slippers
|
64 |
+
46: Bicycle
|
65 |
+
47: Stool
|
66 |
+
48: Barrel/bucket
|
67 |
+
49: Van
|
68 |
+
50: Couch
|
69 |
+
51: Sandals
|
70 |
+
52: Basket
|
71 |
+
53: Drum
|
72 |
+
54: Pen/Pencil
|
73 |
+
55: Bus
|
74 |
+
56: Wild Bird
|
75 |
+
57: High Heels
|
76 |
+
58: Motorcycle
|
77 |
+
59: Guitar
|
78 |
+
60: Carpet
|
79 |
+
61: Cell Phone
|
80 |
+
62: Bread
|
81 |
+
63: Camera
|
82 |
+
64: Canned
|
83 |
+
65: Truck
|
84 |
+
66: Traffic cone
|
85 |
+
67: Cymbal
|
86 |
+
68: Lifesaver
|
87 |
+
69: Towel
|
88 |
+
70: Stuffed Toy
|
89 |
+
71: Candle
|
90 |
+
72: Sailboat
|
91 |
+
73: Laptop
|
92 |
+
74: Awning
|
93 |
+
75: Bed
|
94 |
+
76: Faucet
|
95 |
+
77: Tent
|
96 |
+
78: Horse
|
97 |
+
79: Mirror
|
98 |
+
80: Power outlet
|
99 |
+
81: Sink
|
100 |
+
82: Apple
|
101 |
+
83: Air Conditioner
|
102 |
+
84: Knife
|
103 |
+
85: Hockey Stick
|
104 |
+
86: Paddle
|
105 |
+
87: Pickup Truck
|
106 |
+
88: Fork
|
107 |
+
89: Traffic Sign
|
108 |
+
90: Balloon
|
109 |
+
91: Tripod
|
110 |
+
92: Dog
|
111 |
+
93: Spoon
|
112 |
+
94: Clock
|
113 |
+
95: Pot
|
114 |
+
96: Cow
|
115 |
+
97: Cake
|
116 |
+
98: Dinning Table
|
117 |
+
99: Sheep
|
118 |
+
100: Hanger
|
119 |
+
101: Blackboard/Whiteboard
|
120 |
+
102: Napkin
|
121 |
+
103: Other Fish
|
122 |
+
104: Orange/Tangerine
|
123 |
+
105: Toiletry
|
124 |
+
106: Keyboard
|
125 |
+
107: Tomato
|
126 |
+
108: Lantern
|
127 |
+
109: Machinery Vehicle
|
128 |
+
110: Fan
|
129 |
+
111: Green Vegetables
|
130 |
+
112: Banana
|
131 |
+
113: Baseball Glove
|
132 |
+
114: Airplane
|
133 |
+
115: Mouse
|
134 |
+
116: Train
|
135 |
+
117: Pumpkin
|
136 |
+
118: Soccer
|
137 |
+
119: Skiboard
|
138 |
+
120: Luggage
|
139 |
+
121: Nightstand
|
140 |
+
122: Tea pot
|
141 |
+
123: Telephone
|
142 |
+
124: Trolley
|
143 |
+
125: Head Phone
|
144 |
+
126: Sports Car
|
145 |
+
127: Stop Sign
|
146 |
+
128: Dessert
|
147 |
+
129: Scooter
|
148 |
+
130: Stroller
|
149 |
+
131: Crane
|
150 |
+
132: Remote
|
151 |
+
133: Refrigerator
|
152 |
+
134: Oven
|
153 |
+
135: Lemon
|
154 |
+
136: Duck
|
155 |
+
137: Baseball Bat
|
156 |
+
138: Surveillance Camera
|
157 |
+
139: Cat
|
158 |
+
140: Jug
|
159 |
+
141: Broccoli
|
160 |
+
142: Piano
|
161 |
+
143: Pizza
|
162 |
+
144: Elephant
|
163 |
+
145: Skateboard
|
164 |
+
146: Surfboard
|
165 |
+
147: Gun
|
166 |
+
148: Skating and Skiing shoes
|
167 |
+
149: Gas stove
|
168 |
+
150: Donut
|
169 |
+
151: Bow Tie
|
170 |
+
152: Carrot
|
171 |
+
153: Toilet
|
172 |
+
154: Kite
|
173 |
+
155: Strawberry
|
174 |
+
156: Other Balls
|
175 |
+
157: Shovel
|
176 |
+
158: Pepper
|
177 |
+
159: Computer Box
|
178 |
+
160: Toilet Paper
|
179 |
+
161: Cleaning Products
|
180 |
+
162: Chopsticks
|
181 |
+
163: Microwave
|
182 |
+
164: Pigeon
|
183 |
+
165: Baseball
|
184 |
+
166: Cutting/chopping Board
|
185 |
+
167: Coffee Table
|
186 |
+
168: Side Table
|
187 |
+
169: Scissors
|
188 |
+
170: Marker
|
189 |
+
171: Pie
|
190 |
+
172: Ladder
|
191 |
+
173: Snowboard
|
192 |
+
174: Cookies
|
193 |
+
175: Radiator
|
194 |
+
176: Fire Hydrant
|
195 |
+
177: Basketball
|
196 |
+
178: Zebra
|
197 |
+
179: Grape
|
198 |
+
180: Giraffe
|
199 |
+
181: Potato
|
200 |
+
182: Sausage
|
201 |
+
183: Tricycle
|
202 |
+
184: Violin
|
203 |
+
185: Egg
|
204 |
+
186: Fire Extinguisher
|
205 |
+
187: Candy
|
206 |
+
188: Fire Truck
|
207 |
+
189: Billiards
|
208 |
+
190: Converter
|
209 |
+
191: Bathtub
|
210 |
+
192: Wheelchair
|
211 |
+
193: Golf Club
|
212 |
+
194: Briefcase
|
213 |
+
195: Cucumber
|
214 |
+
196: Cigar/Cigarette
|
215 |
+
197: Paint Brush
|
216 |
+
198: Pear
|
217 |
+
199: Heavy Truck
|
218 |
+
200: Hamburger
|
219 |
+
201: Extractor
|
220 |
+
202: Extension Cord
|
221 |
+
203: Tong
|
222 |
+
204: Tennis Racket
|
223 |
+
205: Folder
|
224 |
+
206: American Football
|
225 |
+
207: earphone
|
226 |
+
208: Mask
|
227 |
+
209: Kettle
|
228 |
+
210: Tennis
|
229 |
+
211: Ship
|
230 |
+
212: Swing
|
231 |
+
213: Coffee Machine
|
232 |
+
214: Slide
|
233 |
+
215: Carriage
|
234 |
+
216: Onion
|
235 |
+
217: Green beans
|
236 |
+
218: Projector
|
237 |
+
219: Frisbee
|
238 |
+
220: Washing Machine/Drying Machine
|
239 |
+
221: Chicken
|
240 |
+
222: Printer
|
241 |
+
223: Watermelon
|
242 |
+
224: Saxophone
|
243 |
+
225: Tissue
|
244 |
+
226: Toothbrush
|
245 |
+
227: Ice cream
|
246 |
+
228: Hot-air balloon
|
247 |
+
229: Cello
|
248 |
+
230: French Fries
|
249 |
+
231: Scale
|
250 |
+
232: Trophy
|
251 |
+
233: Cabbage
|
252 |
+
234: Hot dog
|
253 |
+
235: Blender
|
254 |
+
236: Peach
|
255 |
+
237: Rice
|
256 |
+
238: Wallet/Purse
|
257 |
+
239: Volleyball
|
258 |
+
240: Deer
|
259 |
+
241: Goose
|
260 |
+
242: Tape
|
261 |
+
243: Tablet
|
262 |
+
244: Cosmetics
|
263 |
+
245: Trumpet
|
264 |
+
246: Pineapple
|
265 |
+
247: Golf Ball
|
266 |
+
248: Ambulance
|
267 |
+
249: Parking meter
|
268 |
+
250: Mango
|
269 |
+
251: Key
|
270 |
+
252: Hurdle
|
271 |
+
253: Fishing Rod
|
272 |
+
254: Medal
|
273 |
+
255: Flute
|
274 |
+
256: Brush
|
275 |
+
257: Penguin
|
276 |
+
258: Megaphone
|
277 |
+
259: Corn
|
278 |
+
260: Lettuce
|
279 |
+
261: Garlic
|
280 |
+
262: Swan
|
281 |
+
263: Helicopter
|
282 |
+
264: Green Onion
|
283 |
+
265: Sandwich
|
284 |
+
266: Nuts
|
285 |
+
267: Speed Limit Sign
|
286 |
+
268: Induction Cooker
|
287 |
+
269: Broom
|
288 |
+
270: Trombone
|
289 |
+
271: Plum
|
290 |
+
272: Rickshaw
|
291 |
+
273: Goldfish
|
292 |
+
274: Kiwi fruit
|
293 |
+
275: Router/modem
|
294 |
+
276: Poker Card
|
295 |
+
277: Toaster
|
296 |
+
278: Shrimp
|
297 |
+
279: Sushi
|
298 |
+
280: Cheese
|
299 |
+
281: Notepaper
|
300 |
+
282: Cherry
|
301 |
+
283: Pliers
|
302 |
+
284: CD
|
303 |
+
285: Pasta
|
304 |
+
286: Hammer
|
305 |
+
287: Cue
|
306 |
+
288: Avocado
|
307 |
+
289: Hamimelon
|
308 |
+
290: Flask
|
309 |
+
291: Mushroom
|
310 |
+
292: Screwdriver
|
311 |
+
293: Soap
|
312 |
+
294: Recorder
|
313 |
+
295: Bear
|
314 |
+
296: Eggplant
|
315 |
+
297: Board Eraser
|
316 |
+
298: Coconut
|
317 |
+
299: Tape Measure/Ruler
|
318 |
+
300: Pig
|
319 |
+
301: Showerhead
|
320 |
+
302: Globe
|
321 |
+
303: Chips
|
322 |
+
304: Steak
|
323 |
+
305: Crosswalk Sign
|
324 |
+
306: Stapler
|
325 |
+
307: Camel
|
326 |
+
308: Formula 1
|
327 |
+
309: Pomegranate
|
328 |
+
310: Dishwasher
|
329 |
+
311: Crab
|
330 |
+
312: Hoverboard
|
331 |
+
313: Meat ball
|
332 |
+
314: Rice Cooker
|
333 |
+
315: Tuba
|
334 |
+
316: Calculator
|
335 |
+
317: Papaya
|
336 |
+
318: Antelope
|
337 |
+
319: Parrot
|
338 |
+
320: Seal
|
339 |
+
321: Butterfly
|
340 |
+
322: Dumbbell
|
341 |
+
323: Donkey
|
342 |
+
324: Lion
|
343 |
+
325: Urinal
|
344 |
+
326: Dolphin
|
345 |
+
327: Electric Drill
|
346 |
+
328: Hair Dryer
|
347 |
+
329: Egg tart
|
348 |
+
330: Jellyfish
|
349 |
+
331: Treadmill
|
350 |
+
332: Lighter
|
351 |
+
333: Grapefruit
|
352 |
+
334: Game board
|
353 |
+
335: Mop
|
354 |
+
336: Radish
|
355 |
+
337: Baozi
|
356 |
+
338: Target
|
357 |
+
339: French
|
358 |
+
340: Spring Rolls
|
359 |
+
341: Monkey
|
360 |
+
342: Rabbit
|
361 |
+
343: Pencil Case
|
362 |
+
344: Yak
|
363 |
+
345: Red Cabbage
|
364 |
+
346: Binoculars
|
365 |
+
347: Asparagus
|
366 |
+
348: Barbell
|
367 |
+
349: Scallop
|
368 |
+
350: Noddles
|
369 |
+
351: Comb
|
370 |
+
352: Dumpling
|
371 |
+
353: Oyster
|
372 |
+
354: Table Tennis paddle
|
373 |
+
355: Cosmetics Brush/Eyeliner Pencil
|
374 |
+
356: Chainsaw
|
375 |
+
357: Eraser
|
376 |
+
358: Lobster
|
377 |
+
359: Durian
|
378 |
+
360: Okra
|
379 |
+
361: Lipstick
|
380 |
+
362: Cosmetics Mirror
|
381 |
+
363: Curling
|
382 |
+
364: Table Tennis
|
383 |
+
|
384 |
+
|
385 |
+
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
386 |
+
download: |
|
387 |
+
from tqdm import tqdm
|
388 |
+
|
389 |
+
from utils.general import Path, check_requirements, download, np, xyxy2xywhn
|
390 |
+
|
391 |
+
check_requirements(('pycocotools>=2.0',))
|
392 |
+
from pycocotools.coco import COCO
|
393 |
+
|
394 |
+
# Make Directories
|
395 |
+
dir = Path(yaml['path']) # dataset root dir
|
396 |
+
for p in 'images', 'labels':
|
397 |
+
(dir / p).mkdir(parents=True, exist_ok=True)
|
398 |
+
for q in 'train', 'val':
|
399 |
+
(dir / p / q).mkdir(parents=True, exist_ok=True)
|
400 |
+
|
401 |
+
# Train, Val Splits
|
402 |
+
for split, patches in [('train', 50 + 1), ('val', 43 + 1)]:
|
403 |
+
print(f"Processing {split} in {patches} patches ...")
|
404 |
+
images, labels = dir / 'images' / split, dir / 'labels' / split
|
405 |
+
|
406 |
+
# Download
|
407 |
+
url = f"https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/{split}/"
|
408 |
+
if split == 'train':
|
409 |
+
download([f'{url}zhiyuan_objv2_{split}.tar.gz'], dir=dir, delete=False) # annotations json
|
410 |
+
download([f'{url}patch{i}.tar.gz' for i in range(patches)], dir=images, curl=True, delete=False, threads=8)
|
411 |
+
elif split == 'val':
|
412 |
+
download([f'{url}zhiyuan_objv2_{split}.json'], dir=dir, delete=False) # annotations json
|
413 |
+
download([f'{url}images/v1/patch{i}.tar.gz' for i in range(15 + 1)], dir=images, curl=True, delete=False, threads=8)
|
414 |
+
download([f'{url}images/v2/patch{i}.tar.gz' for i in range(16, patches)], dir=images, curl=True, delete=False, threads=8)
|
415 |
+
|
416 |
+
# Move
|
417 |
+
for f in tqdm(images.rglob('*.jpg'), desc=f'Moving {split} images'):
|
418 |
+
f.rename(images / f.name) # move to /images/{split}
|
419 |
+
|
420 |
+
# Labels
|
421 |
+
coco = COCO(dir / f'zhiyuan_objv2_{split}.json')
|
422 |
+
names = [x["name"] for x in coco.loadCats(coco.getCatIds())]
|
423 |
+
for cid, cat in enumerate(names):
|
424 |
+
catIds = coco.getCatIds(catNms=[cat])
|
425 |
+
imgIds = coco.getImgIds(catIds=catIds)
|
426 |
+
for im in tqdm(coco.loadImgs(imgIds), desc=f'Class {cid + 1}/{len(names)} {cat}'):
|
427 |
+
width, height = im["width"], im["height"]
|
428 |
+
path = Path(im["file_name"]) # image filename
|
429 |
+
try:
|
430 |
+
with open(labels / path.with_suffix('.txt').name, 'a') as file:
|
431 |
+
annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=None)
|
432 |
+
for a in coco.loadAnns(annIds):
|
433 |
+
x, y, w, h = a['bbox'] # bounding box in xywh (xy top-left corner)
|
434 |
+
xyxy = np.array([x, y, x + w, y + h])[None] # pixels(1,4)
|
435 |
+
x, y, w, h = xyxy2xywhn(xyxy, w=width, h=height, clip=True)[0] # normalized and clipped
|
436 |
+
file.write(f"{cid} {x:.5f} {y:.5f} {w:.5f} {h:.5f}\n")
|
437 |
+
except Exception as e:
|
438 |
+
print(e)
|
data/SKU-110K.yaml
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail
|
3 |
+
# Example usage: python train.py --data SKU-110K.yaml
|
4 |
+
# parent
|
5 |
+
# ├── yolov5
|
6 |
+
# └── datasets
|
7 |
+
# └── SKU-110K ← downloads here (13.6 GB)
|
8 |
+
|
9 |
+
|
10 |
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
11 |
+
path: ../datasets/SKU-110K # dataset root dir
|
12 |
+
train: train.txt # train images (relative to 'path') 8219 images
|
13 |
+
val: val.txt # val images (relative to 'path') 588 images
|
14 |
+
test: test.txt # test images (optional) 2936 images
|
15 |
+
|
16 |
+
# Classes
|
17 |
+
names:
|
18 |
+
0: object
|
19 |
+
|
20 |
+
|
21 |
+
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
22 |
+
download: |
|
23 |
+
import shutil
|
24 |
+
from tqdm import tqdm
|
25 |
+
from utils.general import np, pd, Path, download, xyxy2xywh
|
26 |
+
|
27 |
+
|
28 |
+
# Download
|
29 |
+
dir = Path(yaml['path']) # dataset root dir
|
30 |
+
parent = Path(dir.parent) # download dir
|
31 |
+
urls = ['http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz']
|
32 |
+
download(urls, dir=parent, delete=False)
|
33 |
+
|
34 |
+
# Rename directories
|
35 |
+
if dir.exists():
|
36 |
+
shutil.rmtree(dir)
|
37 |
+
(parent / 'SKU110K_fixed').rename(dir) # rename dir
|
38 |
+
(dir / 'labels').mkdir(parents=True, exist_ok=True) # create labels dir
|
39 |
+
|
40 |
+
# Convert labels
|
41 |
+
names = 'image', 'x1', 'y1', 'x2', 'y2', 'class', 'image_width', 'image_height' # column names
|
42 |
+
for d in 'annotations_train.csv', 'annotations_val.csv', 'annotations_test.csv':
|
43 |
+
x = pd.read_csv(dir / 'annotations' / d, names=names).values # annotations
|
44 |
+
images, unique_images = x[:, 0], np.unique(x[:, 0])
|
45 |
+
with open((dir / d).with_suffix('.txt').__str__().replace('annotations_', ''), 'w') as f:
|
46 |
+
f.writelines(f'./images/{s}\n' for s in unique_images)
|
47 |
+
for im in tqdm(unique_images, desc=f'Converting {dir / d}'):
|
48 |
+
cls = 0 # single-class dataset
|
49 |
+
with open((dir / 'labels' / im).with_suffix('.txt'), 'a') as f:
|
50 |
+
for r in x[images == im]:
|
51 |
+
w, h = r[6], r[7] # image width, height
|
52 |
+
xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0] # instance
|
53 |
+
f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n") # write label
|
data/VOC.yaml
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford
|
3 |
+
# Example usage: python train.py --data VOC.yaml
|
4 |
+
# parent
|
5 |
+
# ├── yolov5
|
6 |
+
# └── datasets
|
7 |
+
# └── VOC ← downloads here (2.8 GB)
|
8 |
+
|
9 |
+
|
10 |
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
11 |
+
path: ../datasets/VOC
|
12 |
+
train: # train images (relative to 'path') 16551 images
|
13 |
+
- images/train2012
|
14 |
+
- images/train2007
|
15 |
+
- images/val2012
|
16 |
+
- images/val2007
|
17 |
+
val: # val images (relative to 'path') 4952 images
|
18 |
+
- images/test2007
|
19 |
+
test: # test images (optional)
|
20 |
+
- images/test2007
|
21 |
+
|
22 |
+
# Classes
|
23 |
+
names:
|
24 |
+
0: aeroplane
|
25 |
+
1: bicycle
|
26 |
+
2: bird
|
27 |
+
3: boat
|
28 |
+
4: bottle
|
29 |
+
5: bus
|
30 |
+
6: car
|
31 |
+
7: cat
|
32 |
+
8: chair
|
33 |
+
9: cow
|
34 |
+
10: diningtable
|
35 |
+
11: dog
|
36 |
+
12: horse
|
37 |
+
13: motorbike
|
38 |
+
14: person
|
39 |
+
15: pottedplant
|
40 |
+
16: sheep
|
41 |
+
17: sofa
|
42 |
+
18: train
|
43 |
+
19: tvmonitor
|
44 |
+
|
45 |
+
|
46 |
+
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
47 |
+
download: |
|
48 |
+
import xml.etree.ElementTree as ET
|
49 |
+
|
50 |
+
from tqdm import tqdm
|
51 |
+
from utils.general import download, Path
|
52 |
+
|
53 |
+
|
54 |
+
def convert_label(path, lb_path, year, image_id):
|
55 |
+
def convert_box(size, box):
|
56 |
+
dw, dh = 1. / size[0], 1. / size[1]
|
57 |
+
x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2]
|
58 |
+
return x * dw, y * dh, w * dw, h * dh
|
59 |
+
|
60 |
+
in_file = open(path / f'VOC{year}/Annotations/{image_id}.xml')
|
61 |
+
out_file = open(lb_path, 'w')
|
62 |
+
tree = ET.parse(in_file)
|
63 |
+
root = tree.getroot()
|
64 |
+
size = root.find('size')
|
65 |
+
w = int(size.find('width').text)
|
66 |
+
h = int(size.find('height').text)
|
67 |
+
|
68 |
+
names = list(yaml['names'].values()) # names list
|
69 |
+
for obj in root.iter('object'):
|
70 |
+
cls = obj.find('name').text
|
71 |
+
if cls in names and int(obj.find('difficult').text) != 1:
|
72 |
+
xmlbox = obj.find('bndbox')
|
73 |
+
bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ('xmin', 'xmax', 'ymin', 'ymax')])
|
74 |
+
cls_id = names.index(cls) # class id
|
75 |
+
out_file.write(" ".join([str(a) for a in (cls_id, *bb)]) + '\n')
|
76 |
+
|
77 |
+
|
78 |
+
# Download
|
79 |
+
dir = Path(yaml['path']) # dataset root dir
|
80 |
+
url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
|
81 |
+
urls = [f'{url}VOCtrainval_06-Nov-2007.zip', # 446MB, 5012 images
|
82 |
+
f'{url}VOCtest_06-Nov-2007.zip', # 438MB, 4953 images
|
83 |
+
f'{url}VOCtrainval_11-May-2012.zip'] # 1.95GB, 17126 images
|
84 |
+
download(urls, dir=dir / 'images', delete=False, curl=True, threads=3)
|
85 |
+
|
86 |
+
# Convert
|
87 |
+
path = dir / 'images/VOCdevkit'
|
88 |
+
for year, image_set in ('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test'):
|
89 |
+
imgs_path = dir / 'images' / f'{image_set}{year}'
|
90 |
+
lbs_path = dir / 'labels' / f'{image_set}{year}'
|
91 |
+
imgs_path.mkdir(exist_ok=True, parents=True)
|
92 |
+
lbs_path.mkdir(exist_ok=True, parents=True)
|
93 |
+
|
94 |
+
with open(path / f'VOC{year}/ImageSets/Main/{image_set}.txt') as f:
|
95 |
+
image_ids = f.read().strip().split()
|
96 |
+
for id in tqdm(image_ids, desc=f'{image_set}{year}'):
|
97 |
+
f = path / f'VOC{year}/JPEGImages/{id}.jpg' # old img path
|
98 |
+
lb_path = (lbs_path / f.name).with_suffix('.txt') # new label path
|
99 |
+
f.rename(imgs_path / f.name) # move image
|
100 |
+
convert_label(path, lb_path, year, id) # convert labels to YOLO format
|
data/VisDrone.yaml
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University
|
3 |
+
# Example usage: python train.py --data VisDrone.yaml
|
4 |
+
# parent
|
5 |
+
# ├── yolov5
|
6 |
+
# └── datasets
|
7 |
+
# └── VisDrone ← downloads here (2.3 GB)
|
8 |
+
|
9 |
+
|
10 |
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
11 |
+
path: ../datasets/VisDrone # dataset root dir
|
12 |
+
train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images
|
13 |
+
val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
|
14 |
+
test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
|
15 |
+
|
16 |
+
# Classes
|
17 |
+
names:
|
18 |
+
0: pedestrian
|
19 |
+
1: people
|
20 |
+
2: bicycle
|
21 |
+
3: car
|
22 |
+
4: van
|
23 |
+
5: truck
|
24 |
+
6: tricycle
|
25 |
+
7: awning-tricycle
|
26 |
+
8: bus
|
27 |
+
9: motor
|
28 |
+
|
29 |
+
|
30 |
+
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
31 |
+
download: |
|
32 |
+
from utils.general import download, os, Path
|
33 |
+
|
34 |
+
def visdrone2yolo(dir):
|
35 |
+
from PIL import Image
|
36 |
+
from tqdm import tqdm
|
37 |
+
|
38 |
+
def convert_box(size, box):
|
39 |
+
# Convert VisDrone box to YOLO xywh box
|
40 |
+
dw = 1. / size[0]
|
41 |
+
dh = 1. / size[1]
|
42 |
+
return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh
|
43 |
+
|
44 |
+
(dir / 'labels').mkdir(parents=True, exist_ok=True) # make labels directory
|
45 |
+
pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}')
|
46 |
+
for f in pbar:
|
47 |
+
img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size
|
48 |
+
lines = []
|
49 |
+
with open(f, 'r') as file: # read annotation.txt
|
50 |
+
for row in [x.split(',') for x in file.read().strip().splitlines()]:
|
51 |
+
if row[4] == '0': # VisDrone 'ignored regions' class 0
|
52 |
+
continue
|
53 |
+
cls = int(row[5]) - 1
|
54 |
+
box = convert_box(img_size, tuple(map(int, row[:4])))
|
55 |
+
lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")
|
56 |
+
with open(str(f).replace(os.sep + 'annotations' + os.sep, os.sep + 'labels' + os.sep), 'w') as fl:
|
57 |
+
fl.writelines(lines) # write label.txt
|
58 |
+
|
59 |
+
|
60 |
+
# Download
|
61 |
+
dir = Path(yaml['path']) # dataset root dir
|
62 |
+
urls = ['https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-train.zip',
|
63 |
+
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip',
|
64 |
+
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip',
|
65 |
+
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-challenge.zip']
|
66 |
+
download(urls, dir=dir, curl=True, threads=4)
|
67 |
+
|
68 |
+
# Convert
|
69 |
+
for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev':
|
70 |
+
visdrone2yolo(dir / d) # convert VisDrone annotations to YOLO labels
|
data/coco.yaml
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
# COCO 2017 dataset http://cocodataset.org by Microsoft
|
3 |
+
# Example usage: python train.py --data coco.yaml
|
4 |
+
# parent
|
5 |
+
# ├── yolov5
|
6 |
+
# └── datasets
|
7 |
+
# └── coco ← downloads here (20.1 GB)
|
8 |
+
|
9 |
+
|
10 |
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
11 |
+
path: ../datasets/coco # dataset root dir
|
12 |
+
train: train2017.txt # train images (relative to 'path') 118287 images
|
13 |
+
val: val2017.txt # val images (relative to 'path') 5000 images
|
14 |
+
test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
|
15 |
+
|
16 |
+
# Classes
|
17 |
+
names:
|
18 |
+
0: person
|
19 |
+
1: bicycle
|
20 |
+
2: car
|
21 |
+
3: motorcycle
|
22 |
+
4: airplane
|
23 |
+
5: bus
|
24 |
+
6: train
|
25 |
+
7: truck
|
26 |
+
8: boat
|
27 |
+
9: traffic light
|
28 |
+
10: fire hydrant
|
29 |
+
11: stop sign
|
30 |
+
12: parking meter
|
31 |
+
13: bench
|
32 |
+
14: bird
|
33 |
+
15: cat
|
34 |
+
16: dog
|
35 |
+
17: horse
|
36 |
+
18: sheep
|
37 |
+
19: cow
|
38 |
+
20: elephant
|
39 |
+
21: bear
|
40 |
+
22: zebra
|
41 |
+
23: giraffe
|
42 |
+
24: backpack
|
43 |
+
25: umbrella
|
44 |
+
26: handbag
|
45 |
+
27: tie
|
46 |
+
28: suitcase
|
47 |
+
29: frisbee
|
48 |
+
30: skis
|
49 |
+
31: snowboard
|
50 |
+
32: sports ball
|
51 |
+
33: kite
|
52 |
+
34: baseball bat
|
53 |
+
35: baseball glove
|
54 |
+
36: skateboard
|
55 |
+
37: surfboard
|
56 |
+
38: tennis racket
|
57 |
+
39: bottle
|
58 |
+
40: wine glass
|
59 |
+
41: cup
|
60 |
+
42: fork
|
61 |
+
43: knife
|
62 |
+
44: spoon
|
63 |
+
45: bowl
|
64 |
+
46: banana
|
65 |
+
47: apple
|
66 |
+
48: sandwich
|
67 |
+
49: orange
|
68 |
+
50: broccoli
|
69 |
+
51: carrot
|
70 |
+
52: hot dog
|
71 |
+
53: pizza
|
72 |
+
54: donut
|
73 |
+
55: cake
|
74 |
+
56: chair
|
75 |
+
57: couch
|
76 |
+
58: potted plant
|
77 |
+
59: bed
|
78 |
+
60: dining table
|
79 |
+
61: toilet
|
80 |
+
62: tv
|
81 |
+
63: laptop
|
82 |
+
64: mouse
|
83 |
+
65: remote
|
84 |
+
66: keyboard
|
85 |
+
67: cell phone
|
86 |
+
68: microwave
|
87 |
+
69: oven
|
88 |
+
70: toaster
|
89 |
+
71: sink
|
90 |
+
72: refrigerator
|
91 |
+
73: book
|
92 |
+
74: clock
|
93 |
+
75: vase
|
94 |
+
76: scissors
|
95 |
+
77: teddy bear
|
96 |
+
78: hair drier
|
97 |
+
79: toothbrush
|
98 |
+
|
99 |
+
|
100 |
+
# Download script/URL (optional)
|
101 |
+
download: |
|
102 |
+
from utils.general import download, Path
|
103 |
+
|
104 |
+
|
105 |
+
# Download labels
|
106 |
+
segments = False # segment or box labels
|
107 |
+
dir = Path(yaml['path']) # dataset root dir
|
108 |
+
url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
|
109 |
+
urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')] # labels
|
110 |
+
download(urls, dir=dir.parent)
|
111 |
+
|
112 |
+
# Download data
|
113 |
+
urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images
|
114 |
+
'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images
|
115 |
+
'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional)
|
116 |
+
download(urls, dir=dir / 'images', threads=3)
|
data/coco128-seg.yaml
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
# COCO128-seg dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
|
3 |
+
# Example usage: python train.py --data coco128.yaml
|
4 |
+
# parent
|
5 |
+
# ├── yolov5
|
6 |
+
# └── datasets
|
7 |
+
# └── coco128-seg ← downloads here (7 MB)
|
8 |
+
|
9 |
+
|
10 |
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
11 |
+
path: ../datasets/coco128-seg # dataset root dir
|
12 |
+
train: images/train2017 # train images (relative to 'path') 128 images
|
13 |
+
val: images/train2017 # val images (relative to 'path') 128 images
|
14 |
+
test: # test images (optional)
|
15 |
+
|
16 |
+
# Classes
|
17 |
+
names:
|
18 |
+
0: person
|
19 |
+
1: bicycle
|
20 |
+
2: car
|
21 |
+
3: motorcycle
|
22 |
+
4: airplane
|
23 |
+
5: bus
|
24 |
+
6: train
|
25 |
+
7: truck
|
26 |
+
8: boat
|
27 |
+
9: traffic light
|
28 |
+
10: fire hydrant
|
29 |
+
11: stop sign
|
30 |
+
12: parking meter
|
31 |
+
13: bench
|
32 |
+
14: bird
|
33 |
+
15: cat
|
34 |
+
16: dog
|
35 |
+
17: horse
|
36 |
+
18: sheep
|
37 |
+
19: cow
|
38 |
+
20: elephant
|
39 |
+
21: bear
|
40 |
+
22: zebra
|
41 |
+
23: giraffe
|
42 |
+
24: backpack
|
43 |
+
25: umbrella
|
44 |
+
26: handbag
|
45 |
+
27: tie
|
46 |
+
28: suitcase
|
47 |
+
29: frisbee
|
48 |
+
30: skis
|
49 |
+
31: snowboard
|
50 |
+
32: sports ball
|
51 |
+
33: kite
|
52 |
+
34: baseball bat
|
53 |
+
35: baseball glove
|
54 |
+
36: skateboard
|
55 |
+
37: surfboard
|
56 |
+
38: tennis racket
|
57 |
+
39: bottle
|
58 |
+
40: wine glass
|
59 |
+
41: cup
|
60 |
+
42: fork
|
61 |
+
43: knife
|
62 |
+
44: spoon
|
63 |
+
45: bowl
|
64 |
+
46: banana
|
65 |
+
47: apple
|
66 |
+
48: sandwich
|
67 |
+
49: orange
|
68 |
+
50: broccoli
|
69 |
+
51: carrot
|
70 |
+
52: hot dog
|
71 |
+
53: pizza
|
72 |
+
54: donut
|
73 |
+
55: cake
|
74 |
+
56: chair
|
75 |
+
57: couch
|
76 |
+
58: potted plant
|
77 |
+
59: bed
|
78 |
+
60: dining table
|
79 |
+
61: toilet
|
80 |
+
62: tv
|
81 |
+
63: laptop
|
82 |
+
64: mouse
|
83 |
+
65: remote
|
84 |
+
66: keyboard
|
85 |
+
67: cell phone
|
86 |
+
68: microwave
|
87 |
+
69: oven
|
88 |
+
70: toaster
|
89 |
+
71: sink
|
90 |
+
72: refrigerator
|
91 |
+
73: book
|
92 |
+
74: clock
|
93 |
+
75: vase
|
94 |
+
76: scissors
|
95 |
+
77: teddy bear
|
96 |
+
78: hair drier
|
97 |
+
79: toothbrush
|
98 |
+
|
99 |
+
|
100 |
+
# Download script/URL (optional)
|
101 |
+
download: https://ultralytics.com/assets/coco128-seg.zip
|
data/coco128.yaml
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
|
3 |
+
# Example usage: python train.py --data coco128.yaml
|
4 |
+
# parent
|
5 |
+
# ├── yolov5
|
6 |
+
# └── datasets
|
7 |
+
# └── coco128 ← downloads here (7 MB)
|
8 |
+
|
9 |
+
|
10 |
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
11 |
+
path: ../datasets/coco128 # dataset root dir
|
12 |
+
train: images/train2017 # train images (relative to 'path') 128 images
|
13 |
+
val: images/train2017 # val images (relative to 'path') 128 images
|
14 |
+
test: # test images (optional)
|
15 |
+
|
16 |
+
# Classes
|
17 |
+
names:
|
18 |
+
0: person
|
19 |
+
1: bicycle
|
20 |
+
2: car
|
21 |
+
3: motorcycle
|
22 |
+
4: airplane
|
23 |
+
5: bus
|
24 |
+
6: train
|
25 |
+
7: truck
|
26 |
+
8: boat
|
27 |
+
9: traffic light
|
28 |
+
10: fire hydrant
|
29 |
+
11: stop sign
|
30 |
+
12: parking meter
|
31 |
+
13: bench
|
32 |
+
14: bird
|
33 |
+
15: cat
|
34 |
+
16: dog
|
35 |
+
17: horse
|
36 |
+
18: sheep
|
37 |
+
19: cow
|
38 |
+
20: elephant
|
39 |
+
21: bear
|
40 |
+
22: zebra
|
41 |
+
23: giraffe
|
42 |
+
24: backpack
|
43 |
+
25: umbrella
|
44 |
+
26: handbag
|
45 |
+
27: tie
|
46 |
+
28: suitcase
|
47 |
+
29: frisbee
|
48 |
+
30: skis
|
49 |
+
31: snowboard
|
50 |
+
32: sports ball
|
51 |
+
33: kite
|
52 |
+
34: baseball bat
|
53 |
+
35: baseball glove
|
54 |
+
36: skateboard
|
55 |
+
37: surfboard
|
56 |
+
38: tennis racket
|
57 |
+
39: bottle
|
58 |
+
40: wine glass
|
59 |
+
41: cup
|
60 |
+
42: fork
|
61 |
+
43: knife
|
62 |
+
44: spoon
|
63 |
+
45: bowl
|
64 |
+
46: banana
|
65 |
+
47: apple
|
66 |
+
48: sandwich
|
67 |
+
49: orange
|
68 |
+
50: broccoli
|
69 |
+
51: carrot
|
70 |
+
52: hot dog
|
71 |
+
53: pizza
|
72 |
+
54: donut
|
73 |
+
55: cake
|
74 |
+
56: chair
|
75 |
+
57: couch
|
76 |
+
58: potted plant
|
77 |
+
59: bed
|
78 |
+
60: dining table
|
79 |
+
61: toilet
|
80 |
+
62: tv
|
81 |
+
63: laptop
|
82 |
+
64: mouse
|
83 |
+
65: remote
|
84 |
+
66: keyboard
|
85 |
+
67: cell phone
|
86 |
+
68: microwave
|
87 |
+
69: oven
|
88 |
+
70: toaster
|
89 |
+
71: sink
|
90 |
+
72: refrigerator
|
91 |
+
73: book
|
92 |
+
74: clock
|
93 |
+
75: vase
|
94 |
+
76: scissors
|
95 |
+
77: teddy bear
|
96 |
+
78: hair drier
|
97 |
+
79: toothbrush
|
98 |
+
|
99 |
+
|
100 |
+
# Download script/URL (optional)
|
101 |
+
download: https://ultralytics.com/assets/coco128.zip
|
data/hyps/hyp.Objects365.yaml
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
# Hyperparameters for Objects365 training
|
3 |
+
# python train.py --weights yolov5m.pt --data Objects365.yaml --evolve
|
4 |
+
# See Hyperparameter Evolution tutorial for details https://github.com/ultralytics/yolov5#tutorials
|
5 |
+
|
6 |
+
lr0: 0.00258
|
7 |
+
lrf: 0.17
|
8 |
+
momentum: 0.779
|
9 |
+
weight_decay: 0.00058
|
10 |
+
warmup_epochs: 1.33
|
11 |
+
warmup_momentum: 0.86
|
12 |
+
warmup_bias_lr: 0.0711
|
13 |
+
box: 0.0539
|
14 |
+
cls: 0.299
|
15 |
+
cls_pw: 0.825
|
16 |
+
obj: 0.632
|
17 |
+
obj_pw: 1.0
|
18 |
+
iou_t: 0.2
|
19 |
+
anchor_t: 3.44
|
20 |
+
anchors: 3.2
|
21 |
+
fl_gamma: 0.0
|
22 |
+
hsv_h: 0.0188
|
23 |
+
hsv_s: 0.704
|
24 |
+
hsv_v: 0.36
|
25 |
+
degrees: 0.0
|
26 |
+
translate: 0.0902
|
27 |
+
scale: 0.491
|
28 |
+
shear: 0.0
|
29 |
+
perspective: 0.0
|
30 |
+
flipud: 0.0
|
31 |
+
fliplr: 0.5
|
32 |
+
mosaic: 1.0
|
33 |
+
mixup: 0.0
|
34 |
+
copy_paste: 0.0
|
data/hyps/hyp.VOC.yaml
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
# Hyperparameters for VOC training
|
3 |
+
# python train.py --batch 128 --weights yolov5m6.pt --data VOC.yaml --epochs 50 --img 512 --hyp hyp.scratch-med.yaml --evolve
|
4 |
+
# See Hyperparameter Evolution tutorial for details https://github.com/ultralytics/yolov5#tutorials
|
5 |
+
|
6 |
+
# YOLOv5 Hyperparameter Evolution Results
|
7 |
+
# Best generation: 467
|
8 |
+
# Last generation: 996
|
9 |
+
# metrics/precision, metrics/recall, metrics/mAP_0.5, metrics/mAP_0.5:0.95, val/box_loss, val/obj_loss, val/cls_loss
|
10 |
+
# 0.87729, 0.85125, 0.91286, 0.72664, 0.0076739, 0.0042529, 0.0013865
|
11 |
+
|
12 |
+
lr0: 0.00334
|
13 |
+
lrf: 0.15135
|
14 |
+
momentum: 0.74832
|
15 |
+
weight_decay: 0.00025
|
16 |
+
warmup_epochs: 3.3835
|
17 |
+
warmup_momentum: 0.59462
|
18 |
+
warmup_bias_lr: 0.18657
|
19 |
+
box: 0.02
|
20 |
+
cls: 0.21638
|
21 |
+
cls_pw: 0.5
|
22 |
+
obj: 0.51728
|
23 |
+
obj_pw: 0.67198
|
24 |
+
iou_t: 0.2
|
25 |
+
anchor_t: 3.3744
|
26 |
+
fl_gamma: 0.0
|
27 |
+
hsv_h: 0.01041
|
28 |
+
hsv_s: 0.54703
|
29 |
+
hsv_v: 0.27739
|
30 |
+
degrees: 0.0
|
31 |
+
translate: 0.04591
|
32 |
+
scale: 0.75544
|
33 |
+
shear: 0.0
|
34 |
+
perspective: 0.0
|
35 |
+
flipud: 0.0
|
36 |
+
fliplr: 0.5
|
37 |
+
mosaic: 0.85834
|
38 |
+
mixup: 0.04266
|
39 |
+
copy_paste: 0.0
|
40 |
+
anchors: 3.412
|
data/hyps/hyp.no-augmentation.yaml
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
# Hyperparameters when using Albumentations frameworks
|
3 |
+
# python train.py --hyp hyp.no-augmentation.yaml
|
4 |
+
# See https://github.com/ultralytics/yolov5/pull/3882 for YOLOv5 + Albumentations Usage examples
|
5 |
+
|
6 |
+
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
7 |
+
lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
|
8 |
+
momentum: 0.937 # SGD momentum/Adam beta1
|
9 |
+
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
10 |
+
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
11 |
+
warmup_momentum: 0.8 # warmup initial momentum
|
12 |
+
warmup_bias_lr: 0.1 # warmup initial bias lr
|
13 |
+
box: 0.05 # box loss gain
|
14 |
+
cls: 0.3 # cls loss gain
|
15 |
+
cls_pw: 1.0 # cls BCELoss positive_weight
|
16 |
+
obj: 0.7 # obj loss gain (scale with pixels)
|
17 |
+
obj_pw: 1.0 # obj BCELoss positive_weight
|
18 |
+
iou_t: 0.20 # IoU training threshold
|
19 |
+
anchor_t: 4.0 # anchor-multiple threshold
|
20 |
+
# anchors: 3 # anchors per output layer (0 to ignore)
|
21 |
+
# this parameters are all zero since we want to use albumentation framework
|
22 |
+
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
23 |
+
hsv_h: 0 # image HSV-Hue augmentation (fraction)
|
24 |
+
hsv_s: 00 # image HSV-Saturation augmentation (fraction)
|
25 |
+
hsv_v: 0 # image HSV-Value augmentation (fraction)
|
26 |
+
degrees: 0.0 # image rotation (+/- deg)
|
27 |
+
translate: 0 # image translation (+/- fraction)
|
28 |
+
scale: 0 # image scale (+/- gain)
|
29 |
+
shear: 0 # image shear (+/- deg)
|
30 |
+
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
31 |
+
flipud: 0.0 # image flip up-down (probability)
|
32 |
+
fliplr: 0.0 # image flip left-right (probability)
|
33 |
+
mosaic: 0.0 # image mosaic (probability)
|
34 |
+
mixup: 0.0 # image mixup (probability)
|
35 |
+
copy_paste: 0.0 # segment copy-paste (probability)
|
data/hyps/hyp.scratch-high.yaml
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
# Hyperparameters for high-augmentation COCO training from scratch
|
3 |
+
# python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
|
4 |
+
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
|
5 |
+
|
6 |
+
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
7 |
+
lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
|
8 |
+
momentum: 0.937 # SGD momentum/Adam beta1
|
9 |
+
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
10 |
+
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
11 |
+
warmup_momentum: 0.8 # warmup initial momentum
|
12 |
+
warmup_bias_lr: 0.1 # warmup initial bias lr
|
13 |
+
box: 0.05 # box loss gain
|
14 |
+
cls: 0.3 # cls loss gain
|
15 |
+
cls_pw: 1.0 # cls BCELoss positive_weight
|
16 |
+
obj: 0.7 # obj loss gain (scale with pixels)
|
17 |
+
obj_pw: 1.0 # obj BCELoss positive_weight
|
18 |
+
iou_t: 0.20 # IoU training threshold
|
19 |
+
anchor_t: 4.0 # anchor-multiple threshold
|
20 |
+
# anchors: 3 # anchors per output layer (0 to ignore)
|
21 |
+
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
22 |
+
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
23 |
+
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
24 |
+
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
|
25 |
+
degrees: 0.0 # image rotation (+/- deg)
|
26 |
+
translate: 0.1 # image translation (+/- fraction)
|
27 |
+
scale: 0.9 # image scale (+/- gain)
|
28 |
+
shear: 0.0 # image shear (+/- deg)
|
29 |
+
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
30 |
+
flipud: 0.0 # image flip up-down (probability)
|
31 |
+
fliplr: 0.5 # image flip left-right (probability)
|
32 |
+
mosaic: 1.0 # image mosaic (probability)
|
33 |
+
mixup: 0.1 # image mixup (probability)
|
34 |
+
copy_paste: 0.1 # segment copy-paste (probability)
|
data/hyps/hyp.scratch-low.yaml
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
# Hyperparameters for low-augmentation COCO training from scratch
|
3 |
+
# python train.py --batch 64 --cfg yolov5n6.yaml --weights '' --data coco.yaml --img 640 --epochs 300 --linear
|
4 |
+
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
|
5 |
+
|
6 |
+
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
7 |
+
lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
|
8 |
+
momentum: 0.937 # SGD momentum/Adam beta1
|
9 |
+
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
10 |
+
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
11 |
+
warmup_momentum: 0.8 # warmup initial momentum
|
12 |
+
warmup_bias_lr: 0.1 # warmup initial bias lr
|
13 |
+
box: 0.05 # box loss gain
|
14 |
+
cls: 0.5 # cls loss gain
|
15 |
+
cls_pw: 1.0 # cls BCELoss positive_weight
|
16 |
+
obj: 1.0 # obj loss gain (scale with pixels)
|
17 |
+
obj_pw: 1.0 # obj BCELoss positive_weight
|
18 |
+
iou_t: 0.20 # IoU training threshold
|
19 |
+
anchor_t: 4.0 # anchor-multiple threshold
|
20 |
+
# anchors: 3 # anchors per output layer (0 to ignore)
|
21 |
+
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
22 |
+
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
23 |
+
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
24 |
+
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
|
25 |
+
degrees: 0.0 # image rotation (+/- deg)
|
26 |
+
translate: 0.1 # image translation (+/- fraction)
|
27 |
+
scale: 0.5 # image scale (+/- gain)
|
28 |
+
shear: 0.0 # image shear (+/- deg)
|
29 |
+
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
30 |
+
flipud: 0.0 # image flip up-down (probability)
|
31 |
+
fliplr: 0.5 # image flip left-right (probability)
|
32 |
+
mosaic: 1.0 # image mosaic (probability)
|
33 |
+
mixup: 0.0 # image mixup (probability)
|
34 |
+
copy_paste: 0.0 # segment copy-paste (probability)
|
data/hyps/hyp.scratch-med.yaml
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
# Hyperparameters for medium-augmentation COCO training from scratch
|
3 |
+
# python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
|
4 |
+
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
|
5 |
+
|
6 |
+
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
7 |
+
lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
|
8 |
+
momentum: 0.937 # SGD momentum/Adam beta1
|
9 |
+
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
10 |
+
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
11 |
+
warmup_momentum: 0.8 # warmup initial momentum
|
12 |
+
warmup_bias_lr: 0.1 # warmup initial bias lr
|
13 |
+
box: 0.05 # box loss gain
|
14 |
+
cls: 0.3 # cls loss gain
|
15 |
+
cls_pw: 1.0 # cls BCELoss positive_weight
|
16 |
+
obj: 0.7 # obj loss gain (scale with pixels)
|
17 |
+
obj_pw: 1.0 # obj BCELoss positive_weight
|
18 |
+
iou_t: 0.20 # IoU training threshold
|
19 |
+
anchor_t: 4.0 # anchor-multiple threshold
|
20 |
+
# anchors: 3 # anchors per output layer (0 to ignore)
|
21 |
+
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
22 |
+
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
23 |
+
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
24 |
+
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
|
25 |
+
degrees: 0.0 # image rotation (+/- deg)
|
26 |
+
translate: 0.1 # image translation (+/- fraction)
|
27 |
+
scale: 0.9 # image scale (+/- gain)
|
28 |
+
shear: 0.0 # image shear (+/- deg)
|
29 |
+
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
30 |
+
flipud: 0.0 # image flip up-down (probability)
|
31 |
+
fliplr: 0.5 # image flip left-right (probability)
|
32 |
+
mosaic: 1.0 # image mosaic (probability)
|
33 |
+
mixup: 0.1 # image mixup (probability)
|
34 |
+
copy_paste: 0.0 # segment copy-paste (probability)
|
data/scripts/download_weights.sh
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
3 |
+
# Download latest models from https://github.com/ultralytics/yolov5/releases
|
4 |
+
# Example usage: bash data/scripts/download_weights.sh
|
5 |
+
# parent
|
6 |
+
# └── yolov5
|
7 |
+
# ├── yolov5s.pt ← downloads here
|
8 |
+
# ├── yolov5m.pt
|
9 |
+
# └── ...
|
10 |
+
|
11 |
+
python - <<EOF
|
12 |
+
from utils.downloads import attempt_download
|
13 |
+
|
14 |
+
p5 = list('nsmlx') # P5 models
|
15 |
+
p6 = [f'{x}6' for x in p5] # P6 models
|
16 |
+
cls = [f'{x}-cls' for x in p5] # classification models
|
17 |
+
seg = [f'{x}-seg' for x in p5] # classification models
|
18 |
+
|
19 |
+
for x in p5 + p6 + cls + seg:
|
20 |
+
attempt_download(f'weights/yolov5{x}.pt')
|
21 |
+
|
22 |
+
EOF
|
data/scripts/get_coco.sh
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
3 |
+
# Download COCO 2017 dataset http://cocodataset.org
|
4 |
+
# Example usage: bash data/scripts/get_coco.sh
|
5 |
+
# parent
|
6 |
+
# ├── yolov5
|
7 |
+
# └── datasets
|
8 |
+
# └── coco ← downloads here
|
9 |
+
|
10 |
+
# Arguments (optional) Usage: bash data/scripts/get_coco.sh --train --val --test --segments
|
11 |
+
if [ "$#" -gt 0 ]; then
|
12 |
+
for opt in "$@"; do
|
13 |
+
case "${opt}" in
|
14 |
+
--train) train=true ;;
|
15 |
+
--val) val=true ;;
|
16 |
+
--test) test=true ;;
|
17 |
+
--segments) segments=true ;;
|
18 |
+
esac
|
19 |
+
done
|
20 |
+
else
|
21 |
+
train=true
|
22 |
+
val=true
|
23 |
+
test=false
|
24 |
+
segments=false
|
25 |
+
fi
|
26 |
+
|
27 |
+
# Download/unzip labels
|
28 |
+
d='../datasets' # unzip directory
|
29 |
+
url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
|
30 |
+
if [ "$segments" == "true" ]; then
|
31 |
+
f='coco2017labels-segments.zip' # 168 MB
|
32 |
+
else
|
33 |
+
f='coco2017labels.zip' # 46 MB
|
34 |
+
fi
|
35 |
+
echo 'Downloading' $url$f ' ...'
|
36 |
+
curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
|
37 |
+
|
38 |
+
# Download/unzip images
|
39 |
+
d='../datasets/coco/images' # unzip directory
|
40 |
+
url=http://images.cocodataset.org/zips/
|
41 |
+
if [ "$train" == "true" ]; then
|
42 |
+
f='train2017.zip' # 19G, 118k images
|
43 |
+
echo 'Downloading' $url$f '...'
|
44 |
+
curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
|
45 |
+
fi
|
46 |
+
if [ "$val" == "true" ]; then
|
47 |
+
f='val2017.zip' # 1G, 5k images
|
48 |
+
echo 'Downloading' $url$f '...'
|
49 |
+
curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
|
50 |
+
fi
|
51 |
+
if [ "$test" == "true" ]; then
|
52 |
+
f='test2017.zip' # 7G, 41k images (optional)
|
53 |
+
echo 'Downloading' $url$f '...'
|
54 |
+
curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
|
55 |
+
fi
|
56 |
+
wait # finish background tasks
|
data/scripts/get_coco128.sh
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
3 |
+
# Download COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017)
|
4 |
+
# Example usage: bash data/scripts/get_coco128.sh
|
5 |
+
# parent
|
6 |
+
# ├── yolov5
|
7 |
+
# └── datasets
|
8 |
+
# └── coco128 ← downloads here
|
9 |
+
|
10 |
+
# Download/unzip images and labels
|
11 |
+
d='../datasets' # unzip directory
|
12 |
+
url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
|
13 |
+
f='coco128.zip' # or 'coco128-segments.zip', 68 MB
|
14 |
+
echo 'Downloading' $url$f ' ...'
|
15 |
+
curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
|
16 |
+
|
17 |
+
wait # finish background tasks
|
data/scripts/get_imagenet.sh
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
3 |
+
# Download ILSVRC2012 ImageNet dataset https://image-net.org
|
4 |
+
# Example usage: bash data/scripts/get_imagenet.sh
|
5 |
+
# parent
|
6 |
+
# ├── yolov5
|
7 |
+
# └── datasets
|
8 |
+
# └── imagenet ← downloads here
|
9 |
+
|
10 |
+
# Arguments (optional) Usage: bash data/scripts/get_imagenet.sh --train --val
|
11 |
+
if [ "$#" -gt 0 ]; then
|
12 |
+
for opt in "$@"; do
|
13 |
+
case "${opt}" in
|
14 |
+
--train) train=true ;;
|
15 |
+
--val) val=true ;;
|
16 |
+
esac
|
17 |
+
done
|
18 |
+
else
|
19 |
+
train=true
|
20 |
+
val=true
|
21 |
+
fi
|
22 |
+
|
23 |
+
# Make dir
|
24 |
+
d='../datasets/imagenet' # unzip directory
|
25 |
+
mkdir -p $d && cd $d
|
26 |
+
|
27 |
+
# Download/unzip train
|
28 |
+
if [ "$train" == "true" ]; then
|
29 |
+
wget https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_train.tar # download 138G, 1281167 images
|
30 |
+
mkdir train && mv ILSVRC2012_img_train.tar train/ && cd train
|
31 |
+
tar -xf ILSVRC2012_img_train.tar && rm -f ILSVRC2012_img_train.tar
|
32 |
+
find . -name "*.tar" | while read NAME; do
|
33 |
+
mkdir -p "${NAME%.tar}"
|
34 |
+
tar -xf "${NAME}" -C "${NAME%.tar}"
|
35 |
+
rm -f "${NAME}"
|
36 |
+
done
|
37 |
+
cd ..
|
38 |
+
fi
|
39 |
+
|
40 |
+
# Download/unzip val
|
41 |
+
if [ "$val" == "true" ]; then
|
42 |
+
wget https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_val.tar # download 6.3G, 50000 images
|
43 |
+
mkdir val && mv ILSVRC2012_img_val.tar val/ && cd val && tar -xf ILSVRC2012_img_val.tar
|
44 |
+
wget -qO- https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh | bash # move into subdirs
|
45 |
+
fi
|
46 |
+
|
47 |
+
# Delete corrupted image (optional: PNG under JPEG name that may cause dataloaders to fail)
|
48 |
+
# rm train/n04266014/n04266014_10835.JPEG
|
49 |
+
|
50 |
+
# TFRecords (optional)
|
51 |
+
# wget https://raw.githubusercontent.com/tensorflow/models/master/research/slim/datasets/imagenet_lsvrc_2015_synsets.txt
|
data/xView.yaml
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
# DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA)
|
3 |
+
# -------- DOWNLOAD DATA MANUALLY and jar xf val_images.zip to 'datasets/xView' before running train command! --------
|
4 |
+
# Example usage: python train.py --data xView.yaml
|
5 |
+
# parent
|
6 |
+
# ├── yolov5
|
7 |
+
# └── datasets
|
8 |
+
# └── xView ← downloads here (20.7 GB)
|
9 |
+
|
10 |
+
|
11 |
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12 |
+
path: ../datasets/xView # dataset root dir
|
13 |
+
train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images
|
14 |
+
val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images
|
15 |
+
|
16 |
+
# Classes
|
17 |
+
names:
|
18 |
+
0: Fixed-wing Aircraft
|
19 |
+
1: Small Aircraft
|
20 |
+
2: Cargo Plane
|
21 |
+
3: Helicopter
|
22 |
+
4: Passenger Vehicle
|
23 |
+
5: Small Car
|
24 |
+
6: Bus
|
25 |
+
7: Pickup Truck
|
26 |
+
8: Utility Truck
|
27 |
+
9: Truck
|
28 |
+
10: Cargo Truck
|
29 |
+
11: Truck w/Box
|
30 |
+
12: Truck Tractor
|
31 |
+
13: Trailer
|
32 |
+
14: Truck w/Flatbed
|
33 |
+
15: Truck w/Liquid
|
34 |
+
16: Crane Truck
|
35 |
+
17: Railway Vehicle
|
36 |
+
18: Passenger Car
|
37 |
+
19: Cargo Car
|
38 |
+
20: Flat Car
|
39 |
+
21: Tank car
|
40 |
+
22: Locomotive
|
41 |
+
23: Maritime Vessel
|
42 |
+
24: Motorboat
|
43 |
+
25: Sailboat
|
44 |
+
26: Tugboat
|
45 |
+
27: Barge
|
46 |
+
28: Fishing Vessel
|
47 |
+
29: Ferry
|
48 |
+
30: Yacht
|
49 |
+
31: Container Ship
|
50 |
+
32: Oil Tanker
|
51 |
+
33: Engineering Vehicle
|
52 |
+
34: Tower crane
|
53 |
+
35: Container Crane
|
54 |
+
36: Reach Stacker
|
55 |
+
37: Straddle Carrier
|
56 |
+
38: Mobile Crane
|
57 |
+
39: Dump Truck
|
58 |
+
40: Haul Truck
|
59 |
+
41: Scraper/Tractor
|
60 |
+
42: Front loader/Bulldozer
|
61 |
+
43: Excavator
|
62 |
+
44: Cement Mixer
|
63 |
+
45: Ground Grader
|
64 |
+
46: Hut/Tent
|
65 |
+
47: Shed
|
66 |
+
48: Building
|
67 |
+
49: Aircraft Hangar
|
68 |
+
50: Damaged Building
|
69 |
+
51: Facility
|
70 |
+
52: Construction Site
|
71 |
+
53: Vehicle Lot
|
72 |
+
54: Helipad
|
73 |
+
55: Storage Tank
|
74 |
+
56: Shipping container lot
|
75 |
+
57: Shipping Container
|
76 |
+
58: Pylon
|
77 |
+
59: Tower
|
78 |
+
|
79 |
+
|
80 |
+
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
81 |
+
download: |
|
82 |
+
import json
|
83 |
+
import os
|
84 |
+
from pathlib import Path
|
85 |
+
|
86 |
+
import numpy as np
|
87 |
+
from PIL import Image
|
88 |
+
from tqdm import tqdm
|
89 |
+
|
90 |
+
from utils.dataloaders import autosplit
|
91 |
+
from utils.general import download, xyxy2xywhn
|
92 |
+
|
93 |
+
|
94 |
+
def convert_labels(fname=Path('xView/xView_train.geojson')):
|
95 |
+
# Convert xView geoJSON labels to YOLO format
|
96 |
+
path = fname.parent
|
97 |
+
with open(fname) as f:
|
98 |
+
print(f'Loading {fname}...')
|
99 |
+
data = json.load(f)
|
100 |
+
|
101 |
+
# Make dirs
|
102 |
+
labels = Path(path / 'labels' / 'train')
|
103 |
+
os.system(f'rm -rf {labels}')
|
104 |
+
labels.mkdir(parents=True, exist_ok=True)
|
105 |
+
|
106 |
+
# xView classes 11-94 to 0-59
|
107 |
+
xview_class2index = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, -1, 9, 10, 11,
|
108 |
+
12, 13, 14, 15, -1, -1, 16, 17, 18, 19, 20, 21, 22, -1, 23, 24, 25, -1, 26, 27, -1, 28, -1,
|
109 |
+
29, 30, 31, 32, 33, 34, 35, 36, 37, -1, 38, 39, 40, 41, 42, 43, 44, 45, -1, -1, -1, -1, 46,
|
110 |
+
47, 48, 49, -1, 50, 51, -1, 52, -1, -1, -1, 53, 54, -1, 55, -1, -1, 56, -1, 57, -1, 58, 59]
|
111 |
+
|
112 |
+
shapes = {}
|
113 |
+
for feature in tqdm(data['features'], desc=f'Converting {fname}'):
|
114 |
+
p = feature['properties']
|
115 |
+
if p['bounds_imcoords']:
|
116 |
+
id = p['image_id']
|
117 |
+
file = path / 'train_images' / id
|
118 |
+
if file.exists(): # 1395.tif missing
|
119 |
+
try:
|
120 |
+
box = np.array([int(num) for num in p['bounds_imcoords'].split(",")])
|
121 |
+
assert box.shape[0] == 4, f'incorrect box shape {box.shape[0]}'
|
122 |
+
cls = p['type_id']
|
123 |
+
cls = xview_class2index[int(cls)] # xView class to 0-60
|
124 |
+
assert 59 >= cls >= 0, f'incorrect class index {cls}'
|
125 |
+
|
126 |
+
# Write YOLO label
|
127 |
+
if id not in shapes:
|
128 |
+
shapes[id] = Image.open(file).size
|
129 |
+
box = xyxy2xywhn(box[None].astype(np.float), w=shapes[id][0], h=shapes[id][1], clip=True)
|
130 |
+
with open((labels / id).with_suffix('.txt'), 'a') as f:
|
131 |
+
f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n") # write label.txt
|
132 |
+
except Exception as e:
|
133 |
+
print(f'WARNING: skipping one label for {file}: {e}')
|
134 |
+
|
135 |
+
|
136 |
+
# Download manually from https://challenge.xviewdataset.org
|
137 |
+
dir = Path(yaml['path']) # dataset root dir
|
138 |
+
# urls = ['https://d307kc0mrhucc3.cloudfront.net/train_labels.zip', # train labels
|
139 |
+
# 'https://d307kc0mrhucc3.cloudfront.net/train_images.zip', # 15G, 847 train images
|
140 |
+
# 'https://d307kc0mrhucc3.cloudfront.net/val_images.zip'] # 5G, 282 val images (no labels)
|
141 |
+
# download(urls, dir=dir, delete=False)
|
142 |
+
|
143 |
+
# Convert labels
|
144 |
+
convert_labels(dir / 'xView_train.geojson')
|
145 |
+
|
146 |
+
# Move images
|
147 |
+
images = Path(dir / 'images')
|
148 |
+
images.mkdir(parents=True, exist_ok=True)
|
149 |
+
Path(dir / 'train_images').rename(dir / 'images' / 'train')
|
150 |
+
Path(dir / 'val_images').rename(dir / 'images' / 'val')
|
151 |
+
|
152 |
+
# Split
|
153 |
+
autosplit(dir / 'images' / 'train')
|
detect.py
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
|
4 |
+
|
5 |
+
Usage - sources:
|
6 |
+
$ python detect.py --weights yolov5s.pt --source 0 # webcam
|
7 |
+
img.jpg # image
|
8 |
+
vid.mp4 # video
|
9 |
+
screen # screenshot
|
10 |
+
path/ # directory
|
11 |
+
list.txt # list of images
|
12 |
+
list.streams # list of streams
|
13 |
+
'path/*.jpg' # glob
|
14 |
+
'https://youtu.be/Zgi9g1ksQHc' # YouTube
|
15 |
+
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
|
16 |
+
|
17 |
+
Usage - formats:
|
18 |
+
$ python detect.py --weights yolov5s.pt # PyTorch
|
19 |
+
yolov5s.torchscript # TorchScript
|
20 |
+
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
|
21 |
+
yolov5s_openvino_model # OpenVINO
|
22 |
+
yolov5s.engine # TensorRT
|
23 |
+
yolov5s.mlmodel # CoreML (macOS-only)
|
24 |
+
yolov5s_saved_model # TensorFlow SavedModel
|
25 |
+
yolov5s.pb # TensorFlow GraphDef
|
26 |
+
yolov5s.tflite # TensorFlow Lite
|
27 |
+
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
|
28 |
+
yolov5s_paddle_model # PaddlePaddle
|
29 |
+
"""
|
30 |
+
|
31 |
+
import argparse
|
32 |
+
import os
|
33 |
+
import platform
|
34 |
+
import sys
|
35 |
+
from pathlib import Path
|
36 |
+
|
37 |
+
import torch
|
38 |
+
|
39 |
+
FILE = Path(__file__).resolve()
|
40 |
+
ROOT = FILE.parents[0] # YOLOv5 root directory
|
41 |
+
if str(ROOT) not in sys.path:
|
42 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
43 |
+
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
44 |
+
|
45 |
+
from models.common import DetectMultiBackend
|
46 |
+
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
|
47 |
+
from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
|
48 |
+
increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh)
|
49 |
+
from utils.plots import Annotator, colors, save_one_box
|
50 |
+
from utils.torch_utils import select_device, smart_inference_mode
|
51 |
+
|
52 |
+
|
53 |
+
@smart_inference_mode()
|
54 |
+
def run(
|
55 |
+
weights=ROOT / 'yolov5s.pt', # model path or triton URL
|
56 |
+
source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam)
|
57 |
+
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
|
58 |
+
imgsz=(640, 640), # inference size (height, width)
|
59 |
+
conf_thres=0.25, # confidence threshold
|
60 |
+
iou_thres=0.45, # NMS IOU threshold
|
61 |
+
max_det=1000, # maximum detections per image
|
62 |
+
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
63 |
+
view_img=False, # show results
|
64 |
+
save_txt=False, # save results to *.txt
|
65 |
+
save_conf=False, # save confidences in --save-txt labels
|
66 |
+
save_crop=False, # save cropped prediction boxes
|
67 |
+
nosave=False, # do not save images/videos
|
68 |
+
classes=None, # filter by class: --class 0, or --class 0 2 3
|
69 |
+
agnostic_nms=False, # class-agnostic NMS
|
70 |
+
augment=False, # augmented inference
|
71 |
+
visualize=False, # visualize features
|
72 |
+
update=False, # update all models
|
73 |
+
project=ROOT / 'runs/detect', # save results to project/name
|
74 |
+
name='exp', # save results to project/name
|
75 |
+
exist_ok=False, # existing project/name ok, do not increment
|
76 |
+
line_thickness=3, # bounding box thickness (pixels)
|
77 |
+
hide_labels=False, # hide labels
|
78 |
+
hide_conf=False, # hide confidences
|
79 |
+
half=False, # use FP16 half-precision inference
|
80 |
+
dnn=False, # use OpenCV DNN for ONNX inference
|
81 |
+
vid_stride=1, # video frame-rate stride
|
82 |
+
):
|
83 |
+
source = str(source)
|
84 |
+
save_img = not nosave and not source.endswith('.txt') # save inference images
|
85 |
+
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
|
86 |
+
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
|
87 |
+
webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file)
|
88 |
+
screenshot = source.lower().startswith('screen')
|
89 |
+
if is_url and is_file:
|
90 |
+
source = check_file(source) # download
|
91 |
+
|
92 |
+
# Directories
|
93 |
+
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
|
94 |
+
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
95 |
+
|
96 |
+
# Load model
|
97 |
+
device = select_device(device)
|
98 |
+
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
|
99 |
+
stride, names, pt = model.stride, model.names, model.pt
|
100 |
+
imgsz = check_img_size(imgsz, s=stride) # check image size
|
101 |
+
|
102 |
+
# Dataloader
|
103 |
+
bs = 1 # batch_size
|
104 |
+
if webcam:
|
105 |
+
view_img = check_imshow(warn=True)
|
106 |
+
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
107 |
+
bs = len(dataset)
|
108 |
+
elif screenshot:
|
109 |
+
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
|
110 |
+
else:
|
111 |
+
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
112 |
+
vid_path, vid_writer = [None] * bs, [None] * bs
|
113 |
+
|
114 |
+
# Run inference
|
115 |
+
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
|
116 |
+
seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
|
117 |
+
for path, im, im0s, vid_cap, s in dataset:
|
118 |
+
with dt[0]:
|
119 |
+
im = torch.from_numpy(im).to(model.device)
|
120 |
+
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
|
121 |
+
im /= 255 # 0 - 255 to 0.0 - 1.0
|
122 |
+
if len(im.shape) == 3:
|
123 |
+
im = im[None] # expand for batch dim
|
124 |
+
|
125 |
+
# Inference
|
126 |
+
with dt[1]:
|
127 |
+
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
|
128 |
+
pred = model(im, augment=augment, visualize=visualize)
|
129 |
+
|
130 |
+
# NMS
|
131 |
+
with dt[2]:
|
132 |
+
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
|
133 |
+
|
134 |
+
# Second-stage classifier (optional)
|
135 |
+
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
|
136 |
+
|
137 |
+
# Process predictions
|
138 |
+
for i, det in enumerate(pred): # per image
|
139 |
+
seen += 1
|
140 |
+
if webcam: # batch_size >= 1
|
141 |
+
p, im0, frame = path[i], im0s[i].copy(), dataset.count
|
142 |
+
s += f'{i}: '
|
143 |
+
else:
|
144 |
+
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
|
145 |
+
|
146 |
+
p = Path(p) # to Path
|
147 |
+
save_path = str(save_dir / p.name) # im.jpg
|
148 |
+
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
|
149 |
+
s += '%gx%g ' % im.shape[2:] # print string
|
150 |
+
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
151 |
+
imc = im0.copy() if save_crop else im0 # for save_crop
|
152 |
+
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
|
153 |
+
if len(det):
|
154 |
+
# Rescale boxes from img_size to im0 size
|
155 |
+
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
|
156 |
+
|
157 |
+
# Print results
|
158 |
+
for c in det[:, 5].unique():
|
159 |
+
n = (det[:, 5] == c).sum() # detections per class
|
160 |
+
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
|
161 |
+
|
162 |
+
# Write results
|
163 |
+
for *xyxy, conf, cls in reversed(det):
|
164 |
+
if save_txt: # Write to file
|
165 |
+
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
166 |
+
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
|
167 |
+
with open(f'{txt_path}.txt', 'a') as f:
|
168 |
+
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
169 |
+
|
170 |
+
if save_img or save_crop or view_img: # Add bbox to image
|
171 |
+
c = int(cls) # integer class
|
172 |
+
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
|
173 |
+
annotator.box_label(xyxy, label, color=colors(c, True))
|
174 |
+
if save_crop:
|
175 |
+
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
|
176 |
+
|
177 |
+
# Stream results
|
178 |
+
im0 = annotator.result()
|
179 |
+
if view_img:
|
180 |
+
if platform.system() == 'Linux' and p not in windows:
|
181 |
+
windows.append(p)
|
182 |
+
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
|
183 |
+
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
|
184 |
+
cv2.imshow(str(p), im0)
|
185 |
+
cv2.waitKey(1) # 1 millisecond
|
186 |
+
|
187 |
+
# Save results (image with detections)
|
188 |
+
if save_img:
|
189 |
+
if dataset.mode == 'image':
|
190 |
+
cv2.imwrite(save_path, im0)
|
191 |
+
else: # 'video' or 'stream'
|
192 |
+
if vid_path[i] != save_path: # new video
|
193 |
+
vid_path[i] = save_path
|
194 |
+
if isinstance(vid_writer[i], cv2.VideoWriter):
|
195 |
+
vid_writer[i].release() # release previous video writer
|
196 |
+
if vid_cap: # video
|
197 |
+
fps = vid_cap.get(cv2.CAP_PROP_FPS)
|
198 |
+
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
199 |
+
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
200 |
+
else: # stream
|
201 |
+
fps, w, h = 30, im0.shape[1], im0.shape[0]
|
202 |
+
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
|
203 |
+
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
204 |
+
vid_writer[i].write(im0)
|
205 |
+
|
206 |
+
# Print time (inference-only)
|
207 |
+
LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
|
208 |
+
|
209 |
+
# Print results
|
210 |
+
t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
|
211 |
+
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
|
212 |
+
if save_txt or save_img:
|
213 |
+
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
214 |
+
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
|
215 |
+
if update:
|
216 |
+
strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
|
217 |
+
|
218 |
+
|
219 |
+
def parse_opt():
|
220 |
+
parser = argparse.ArgumentParser()
|
221 |
+
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path or triton URL')
|
222 |
+
parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)')
|
223 |
+
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
|
224 |
+
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
|
225 |
+
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
|
226 |
+
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
|
227 |
+
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
|
228 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
229 |
+
parser.add_argument('--view-img', action='store_true', help='show results')
|
230 |
+
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
231 |
+
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
232 |
+
parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
|
233 |
+
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
|
234 |
+
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
|
235 |
+
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
|
236 |
+
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
237 |
+
parser.add_argument('--visualize', action='store_true', help='visualize features')
|
238 |
+
parser.add_argument('--update', action='store_true', help='update all models')
|
239 |
+
parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
|
240 |
+
parser.add_argument('--name', default='exp', help='save results to project/name')
|
241 |
+
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
242 |
+
parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
|
243 |
+
parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
|
244 |
+
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
|
245 |
+
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
|
246 |
+
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
|
247 |
+
parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
|
248 |
+
opt = parser.parse_args()
|
249 |
+
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
|
250 |
+
print_args(vars(opt))
|
251 |
+
return opt
|
252 |
+
|
253 |
+
|
254 |
+
def main(opt):
|
255 |
+
check_requirements(exclude=('tensorboard', 'thop'))
|
256 |
+
run(**vars(opt))
|
257 |
+
|
258 |
+
|
259 |
+
if __name__ == "__main__":
|
260 |
+
opt = parse_opt()
|
261 |
+
main(opt)
|
export.py
ADDED
@@ -0,0 +1,653 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit
|
4 |
+
|
5 |
+
Format | `export.py --include` | Model
|
6 |
+
--- | --- | ---
|
7 |
+
PyTorch | - | yolov5s.pt
|
8 |
+
TorchScript | `torchscript` | yolov5s.torchscript
|
9 |
+
ONNX | `onnx` | yolov5s.onnx
|
10 |
+
OpenVINO | `openvino` | yolov5s_openvino_model/
|
11 |
+
TensorRT | `engine` | yolov5s.engine
|
12 |
+
CoreML | `coreml` | yolov5s.mlmodel
|
13 |
+
TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
|
14 |
+
TensorFlow GraphDef | `pb` | yolov5s.pb
|
15 |
+
TensorFlow Lite | `tflite` | yolov5s.tflite
|
16 |
+
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
|
17 |
+
TensorFlow.js | `tfjs` | yolov5s_web_model/
|
18 |
+
PaddlePaddle | `paddle` | yolov5s_paddle_model/
|
19 |
+
|
20 |
+
Requirements:
|
21 |
+
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
|
22 |
+
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
|
23 |
+
|
24 |
+
Usage:
|
25 |
+
$ python export.py --weights yolov5s.pt --include torchscript onnx openvino engine coreml tflite ...
|
26 |
+
|
27 |
+
Inference:
|
28 |
+
$ python detect.py --weights yolov5s.pt # PyTorch
|
29 |
+
yolov5s.torchscript # TorchScript
|
30 |
+
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
|
31 |
+
yolov5s_openvino_model # OpenVINO
|
32 |
+
yolov5s.engine # TensorRT
|
33 |
+
yolov5s.mlmodel # CoreML (macOS-only)
|
34 |
+
yolov5s_saved_model # TensorFlow SavedModel
|
35 |
+
yolov5s.pb # TensorFlow GraphDef
|
36 |
+
yolov5s.tflite # TensorFlow Lite
|
37 |
+
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
|
38 |
+
yolov5s_paddle_model # PaddlePaddle
|
39 |
+
|
40 |
+
TensorFlow.js:
|
41 |
+
$ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
|
42 |
+
$ npm install
|
43 |
+
$ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model
|
44 |
+
$ npm start
|
45 |
+
"""
|
46 |
+
|
47 |
+
import argparse
|
48 |
+
import contextlib
|
49 |
+
import json
|
50 |
+
import os
|
51 |
+
import platform
|
52 |
+
import re
|
53 |
+
import subprocess
|
54 |
+
import sys
|
55 |
+
import time
|
56 |
+
import warnings
|
57 |
+
from pathlib import Path
|
58 |
+
|
59 |
+
import pandas as pd
|
60 |
+
import torch
|
61 |
+
from torch.utils.mobile_optimizer import optimize_for_mobile
|
62 |
+
|
63 |
+
FILE = Path(__file__).resolve()
|
64 |
+
ROOT = FILE.parents[0] # YOLOv5 root directory
|
65 |
+
if str(ROOT) not in sys.path:
|
66 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
67 |
+
if platform.system() != 'Windows':
|
68 |
+
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
69 |
+
|
70 |
+
from models.experimental import attempt_load
|
71 |
+
from models.yolo import ClassificationModel, Detect, DetectionModel, SegmentationModel
|
72 |
+
from utils.dataloaders import LoadImages
|
73 |
+
from utils.general import (LOGGER, Profile, check_dataset, check_img_size, check_requirements, check_version,
|
74 |
+
check_yaml, colorstr, file_size, get_default_args, print_args, url2file, yaml_save)
|
75 |
+
from utils.torch_utils import select_device, smart_inference_mode
|
76 |
+
|
77 |
+
MACOS = platform.system() == 'Darwin' # macOS environment
|
78 |
+
|
79 |
+
|
80 |
+
def export_formats():
|
81 |
+
# YOLOv5 export formats
|
82 |
+
x = [
|
83 |
+
['PyTorch', '-', '.pt', True, True],
|
84 |
+
['TorchScript', 'torchscript', '.torchscript', True, True],
|
85 |
+
['ONNX', 'onnx', '.onnx', True, True],
|
86 |
+
['OpenVINO', 'openvino', '_openvino_model', True, False],
|
87 |
+
['TensorRT', 'engine', '.engine', False, True],
|
88 |
+
['CoreML', 'coreml', '.mlmodel', True, False],
|
89 |
+
['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True],
|
90 |
+
['TensorFlow GraphDef', 'pb', '.pb', True, True],
|
91 |
+
['TensorFlow Lite', 'tflite', '.tflite', True, False],
|
92 |
+
['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False, False],
|
93 |
+
['TensorFlow.js', 'tfjs', '_web_model', False, False],
|
94 |
+
['PaddlePaddle', 'paddle', '_paddle_model', True, True],]
|
95 |
+
return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
|
96 |
+
|
97 |
+
|
98 |
+
def try_export(inner_func):
|
99 |
+
# YOLOv5 export decorator, i..e @try_export
|
100 |
+
inner_args = get_default_args(inner_func)
|
101 |
+
|
102 |
+
def outer_func(*args, **kwargs):
|
103 |
+
prefix = inner_args['prefix']
|
104 |
+
try:
|
105 |
+
with Profile() as dt:
|
106 |
+
f, model = inner_func(*args, **kwargs)
|
107 |
+
LOGGER.info(f'{prefix} export success ✅ {dt.t:.1f}s, saved as {f} ({file_size(f):.1f} MB)')
|
108 |
+
return f, model
|
109 |
+
except Exception as e:
|
110 |
+
LOGGER.info(f'{prefix} export failure ❌ {dt.t:.1f}s: {e}')
|
111 |
+
return None, None
|
112 |
+
|
113 |
+
return outer_func
|
114 |
+
|
115 |
+
|
116 |
+
@try_export
|
117 |
+
def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
|
118 |
+
# YOLOv5 TorchScript model export
|
119 |
+
LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...')
|
120 |
+
f = file.with_suffix('.torchscript')
|
121 |
+
|
122 |
+
ts = torch.jit.trace(model, im, strict=False)
|
123 |
+
d = {"shape": im.shape, "stride": int(max(model.stride)), "names": model.names}
|
124 |
+
extra_files = {'config.txt': json.dumps(d)} # torch._C.ExtraFilesMap()
|
125 |
+
if optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
|
126 |
+
optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
|
127 |
+
else:
|
128 |
+
ts.save(str(f), _extra_files=extra_files)
|
129 |
+
return f, None
|
130 |
+
|
131 |
+
|
132 |
+
@try_export
|
133 |
+
def export_onnx(model, im, file, opset, dynamic, simplify, prefix=colorstr('ONNX:')):
|
134 |
+
# YOLOv5 ONNX export
|
135 |
+
check_requirements('onnx>=1.12.0')
|
136 |
+
import onnx
|
137 |
+
|
138 |
+
LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
|
139 |
+
f = file.with_suffix('.onnx')
|
140 |
+
|
141 |
+
output_names = ['output0', 'output1'] if isinstance(model, SegmentationModel) else ['output0']
|
142 |
+
if dynamic:
|
143 |
+
dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640)
|
144 |
+
if isinstance(model, SegmentationModel):
|
145 |
+
dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
|
146 |
+
dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
|
147 |
+
elif isinstance(model, DetectionModel):
|
148 |
+
dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
|
149 |
+
|
150 |
+
torch.onnx.export(
|
151 |
+
model.cpu() if dynamic else model, # --dynamic only compatible with cpu
|
152 |
+
im.cpu() if dynamic else im,
|
153 |
+
f,
|
154 |
+
verbose=False,
|
155 |
+
opset_version=opset,
|
156 |
+
do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
|
157 |
+
input_names=['images'],
|
158 |
+
output_names=output_names,
|
159 |
+
dynamic_axes=dynamic or None)
|
160 |
+
|
161 |
+
# Checks
|
162 |
+
model_onnx = onnx.load(f) # load onnx model
|
163 |
+
onnx.checker.check_model(model_onnx) # check onnx model
|
164 |
+
|
165 |
+
# Metadata
|
166 |
+
d = {'stride': int(max(model.stride)), 'names': model.names}
|
167 |
+
for k, v in d.items():
|
168 |
+
meta = model_onnx.metadata_props.add()
|
169 |
+
meta.key, meta.value = k, str(v)
|
170 |
+
onnx.save(model_onnx, f)
|
171 |
+
|
172 |
+
# Simplify
|
173 |
+
if simplify:
|
174 |
+
try:
|
175 |
+
cuda = torch.cuda.is_available()
|
176 |
+
check_requirements(('onnxruntime-gpu' if cuda else 'onnxruntime', 'onnx-simplifier>=0.4.1'))
|
177 |
+
import onnxsim
|
178 |
+
|
179 |
+
LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
|
180 |
+
model_onnx, check = onnxsim.simplify(model_onnx)
|
181 |
+
assert check, 'assert check failed'
|
182 |
+
onnx.save(model_onnx, f)
|
183 |
+
except Exception as e:
|
184 |
+
LOGGER.info(f'{prefix} simplifier failure: {e}')
|
185 |
+
return f, model_onnx
|
186 |
+
|
187 |
+
|
188 |
+
@try_export
|
189 |
+
def export_openvino(file, metadata, half, prefix=colorstr('OpenVINO:')):
|
190 |
+
# YOLOv5 OpenVINO export
|
191 |
+
check_requirements('openvino-dev') # requires openvino-dev: https://pypi.org/project/openvino-dev/
|
192 |
+
import openvino.inference_engine as ie
|
193 |
+
|
194 |
+
LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...')
|
195 |
+
f = str(file).replace('.pt', f'_openvino_model{os.sep}')
|
196 |
+
|
197 |
+
cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f} --data_type {'FP16' if half else 'FP32'}"
|
198 |
+
subprocess.run(cmd.split(), check=True, env=os.environ) # export
|
199 |
+
yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) # add metadata.yaml
|
200 |
+
return f, None
|
201 |
+
|
202 |
+
|
203 |
+
@try_export
|
204 |
+
def export_paddle(model, im, file, metadata, prefix=colorstr('PaddlePaddle:')):
|
205 |
+
# YOLOv5 Paddle export
|
206 |
+
check_requirements(('paddlepaddle', 'x2paddle'))
|
207 |
+
import x2paddle
|
208 |
+
from x2paddle.convert import pytorch2paddle
|
209 |
+
|
210 |
+
LOGGER.info(f'\n{prefix} starting export with X2Paddle {x2paddle.__version__}...')
|
211 |
+
f = str(file).replace('.pt', f'_paddle_model{os.sep}')
|
212 |
+
|
213 |
+
pytorch2paddle(module=model, save_dir=f, jit_type='trace', input_examples=[im]) # export
|
214 |
+
yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) # add metadata.yaml
|
215 |
+
return f, None
|
216 |
+
|
217 |
+
|
218 |
+
@try_export
|
219 |
+
def export_coreml(model, im, file, int8, half, prefix=colorstr('CoreML:')):
|
220 |
+
# YOLOv5 CoreML export
|
221 |
+
check_requirements('coremltools')
|
222 |
+
import coremltools as ct
|
223 |
+
|
224 |
+
LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
|
225 |
+
f = file.with_suffix('.mlmodel')
|
226 |
+
|
227 |
+
ts = torch.jit.trace(model, im, strict=False) # TorchScript model
|
228 |
+
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])])
|
229 |
+
bits, mode = (8, 'kmeans_lut') if int8 else (16, 'linear') if half else (32, None)
|
230 |
+
if bits < 32:
|
231 |
+
if MACOS: # quantization only supported on macOS
|
232 |
+
with warnings.catch_warnings():
|
233 |
+
warnings.filterwarnings("ignore", category=DeprecationWarning) # suppress numpy==1.20 float warning
|
234 |
+
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
|
235 |
+
else:
|
236 |
+
print(f'{prefix} quantization only supported on macOS, skipping...')
|
237 |
+
ct_model.save(f)
|
238 |
+
return f, ct_model
|
239 |
+
|
240 |
+
|
241 |
+
@try_export
|
242 |
+
def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')):
|
243 |
+
# YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt
|
244 |
+
assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`'
|
245 |
+
try:
|
246 |
+
import tensorrt as trt
|
247 |
+
except Exception:
|
248 |
+
if platform.system() == 'Linux':
|
249 |
+
check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com')
|
250 |
+
import tensorrt as trt
|
251 |
+
|
252 |
+
if trt.__version__[0] == '7': # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012
|
253 |
+
grid = model.model[-1].anchor_grid
|
254 |
+
model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid]
|
255 |
+
export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
|
256 |
+
model.model[-1].anchor_grid = grid
|
257 |
+
else: # TensorRT >= 8
|
258 |
+
check_version(trt.__version__, '8.0.0', hard=True) # require tensorrt>=8.0.0
|
259 |
+
export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
|
260 |
+
onnx = file.with_suffix('.onnx')
|
261 |
+
|
262 |
+
LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...')
|
263 |
+
assert onnx.exists(), f'failed to export ONNX file: {onnx}'
|
264 |
+
f = file.with_suffix('.engine') # TensorRT engine file
|
265 |
+
logger = trt.Logger(trt.Logger.INFO)
|
266 |
+
if verbose:
|
267 |
+
logger.min_severity = trt.Logger.Severity.VERBOSE
|
268 |
+
|
269 |
+
builder = trt.Builder(logger)
|
270 |
+
config = builder.create_builder_config()
|
271 |
+
config.max_workspace_size = workspace * 1 << 30
|
272 |
+
# config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice
|
273 |
+
|
274 |
+
flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
|
275 |
+
network = builder.create_network(flag)
|
276 |
+
parser = trt.OnnxParser(network, logger)
|
277 |
+
if not parser.parse_from_file(str(onnx)):
|
278 |
+
raise RuntimeError(f'failed to load ONNX file: {onnx}')
|
279 |
+
|
280 |
+
inputs = [network.get_input(i) for i in range(network.num_inputs)]
|
281 |
+
outputs = [network.get_output(i) for i in range(network.num_outputs)]
|
282 |
+
for inp in inputs:
|
283 |
+
LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
|
284 |
+
for out in outputs:
|
285 |
+
LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
|
286 |
+
|
287 |
+
if dynamic:
|
288 |
+
if im.shape[0] <= 1:
|
289 |
+
LOGGER.warning(f"{prefix} WARNING ⚠️ --dynamic model requires maximum --batch-size argument")
|
290 |
+
profile = builder.create_optimization_profile()
|
291 |
+
for inp in inputs:
|
292 |
+
profile.set_shape(inp.name, (1, *im.shape[1:]), (max(1, im.shape[0] // 2), *im.shape[1:]), im.shape)
|
293 |
+
config.add_optimization_profile(profile)
|
294 |
+
|
295 |
+
LOGGER.info(f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine as {f}')
|
296 |
+
if builder.platform_has_fast_fp16 and half:
|
297 |
+
config.set_flag(trt.BuilderFlag.FP16)
|
298 |
+
with builder.build_engine(network, config) as engine, open(f, 'wb') as t:
|
299 |
+
t.write(engine.serialize())
|
300 |
+
return f, None
|
301 |
+
|
302 |
+
|
303 |
+
@try_export
|
304 |
+
def export_saved_model(model,
|
305 |
+
im,
|
306 |
+
file,
|
307 |
+
dynamic,
|
308 |
+
tf_nms=False,
|
309 |
+
agnostic_nms=False,
|
310 |
+
topk_per_class=100,
|
311 |
+
topk_all=100,
|
312 |
+
iou_thres=0.45,
|
313 |
+
conf_thres=0.25,
|
314 |
+
keras=False,
|
315 |
+
prefix=colorstr('TensorFlow SavedModel:')):
|
316 |
+
# YOLOv5 TensorFlow SavedModel export
|
317 |
+
try:
|
318 |
+
import tensorflow as tf
|
319 |
+
except Exception:
|
320 |
+
check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}")
|
321 |
+
import tensorflow as tf
|
322 |
+
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
|
323 |
+
|
324 |
+
from models.tf import TFModel
|
325 |
+
|
326 |
+
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
327 |
+
f = str(file).replace('.pt', '_saved_model')
|
328 |
+
batch_size, ch, *imgsz = list(im.shape) # BCHW
|
329 |
+
|
330 |
+
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
|
331 |
+
im = tf.zeros((batch_size, *imgsz, ch)) # BHWC order for TensorFlow
|
332 |
+
_ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
333 |
+
inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size)
|
334 |
+
outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
335 |
+
keras_model = tf.keras.Model(inputs=inputs, outputs=outputs)
|
336 |
+
keras_model.trainable = False
|
337 |
+
keras_model.summary()
|
338 |
+
if keras:
|
339 |
+
keras_model.save(f, save_format='tf')
|
340 |
+
else:
|
341 |
+
spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)
|
342 |
+
m = tf.function(lambda x: keras_model(x)) # full model
|
343 |
+
m = m.get_concrete_function(spec)
|
344 |
+
frozen_func = convert_variables_to_constants_v2(m)
|
345 |
+
tfm = tf.Module()
|
346 |
+
tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x), [spec])
|
347 |
+
tfm.__call__(im)
|
348 |
+
tf.saved_model.save(tfm,
|
349 |
+
f,
|
350 |
+
options=tf.saved_model.SaveOptions(experimental_custom_gradients=False) if check_version(
|
351 |
+
tf.__version__, '2.6') else tf.saved_model.SaveOptions())
|
352 |
+
return f, keras_model
|
353 |
+
|
354 |
+
|
355 |
+
@try_export
|
356 |
+
def export_pb(keras_model, file, prefix=colorstr('TensorFlow GraphDef:')):
|
357 |
+
# YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
|
358 |
+
import tensorflow as tf
|
359 |
+
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
|
360 |
+
|
361 |
+
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
362 |
+
f = file.with_suffix('.pb')
|
363 |
+
|
364 |
+
m = tf.function(lambda x: keras_model(x)) # full model
|
365 |
+
m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
|
366 |
+
frozen_func = convert_variables_to_constants_v2(m)
|
367 |
+
frozen_func.graph.as_graph_def()
|
368 |
+
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
|
369 |
+
return f, None
|
370 |
+
|
371 |
+
|
372 |
+
@try_export
|
373 |
+
def export_tflite(keras_model, im, file, int8, data, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')):
|
374 |
+
# YOLOv5 TensorFlow Lite export
|
375 |
+
import tensorflow as tf
|
376 |
+
|
377 |
+
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
378 |
+
batch_size, ch, *imgsz = list(im.shape) # BCHW
|
379 |
+
f = str(file).replace('.pt', '-fp16.tflite')
|
380 |
+
|
381 |
+
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
|
382 |
+
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
|
383 |
+
converter.target_spec.supported_types = [tf.float16]
|
384 |
+
converter.optimizations = [tf.lite.Optimize.DEFAULT]
|
385 |
+
if int8:
|
386 |
+
from models.tf import representative_dataset_gen
|
387 |
+
dataset = LoadImages(check_dataset(check_yaml(data))['train'], img_size=imgsz, auto=False)
|
388 |
+
converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib=100)
|
389 |
+
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
|
390 |
+
converter.target_spec.supported_types = []
|
391 |
+
converter.inference_input_type = tf.uint8 # or tf.int8
|
392 |
+
converter.inference_output_type = tf.uint8 # or tf.int8
|
393 |
+
converter.experimental_new_quantizer = True
|
394 |
+
f = str(file).replace('.pt', '-int8.tflite')
|
395 |
+
if nms or agnostic_nms:
|
396 |
+
converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS)
|
397 |
+
|
398 |
+
tflite_model = converter.convert()
|
399 |
+
open(f, "wb").write(tflite_model)
|
400 |
+
return f, None
|
401 |
+
|
402 |
+
|
403 |
+
@try_export
|
404 |
+
def export_edgetpu(file, prefix=colorstr('Edge TPU:')):
|
405 |
+
# YOLOv5 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/
|
406 |
+
cmd = 'edgetpu_compiler --version'
|
407 |
+
help_url = 'https://coral.ai/docs/edgetpu/compiler/'
|
408 |
+
assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}'
|
409 |
+
if subprocess.run(f'{cmd} >/dev/null', shell=True).returncode != 0:
|
410 |
+
LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}')
|
411 |
+
sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 # sudo installed on system
|
412 |
+
for c in (
|
413 |
+
'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -',
|
414 |
+
'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
|
415 |
+
'sudo apt-get update', 'sudo apt-get install edgetpu-compiler'):
|
416 |
+
subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True)
|
417 |
+
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
|
418 |
+
|
419 |
+
LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...')
|
420 |
+
f = str(file).replace('.pt', '-int8_edgetpu.tflite') # Edge TPU model
|
421 |
+
f_tfl = str(file).replace('.pt', '-int8.tflite') # TFLite model
|
422 |
+
|
423 |
+
cmd = f"edgetpu_compiler -s -d -k 10 --out_dir {file.parent} {f_tfl}"
|
424 |
+
subprocess.run(cmd.split(), check=True)
|
425 |
+
return f, None
|
426 |
+
|
427 |
+
|
428 |
+
@try_export
|
429 |
+
def export_tfjs(file, prefix=colorstr('TensorFlow.js:')):
|
430 |
+
# YOLOv5 TensorFlow.js export
|
431 |
+
check_requirements('tensorflowjs')
|
432 |
+
import tensorflowjs as tfjs
|
433 |
+
|
434 |
+
LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
|
435 |
+
f = str(file).replace('.pt', '_web_model') # js dir
|
436 |
+
f_pb = file.with_suffix('.pb') # *.pb path
|
437 |
+
f_json = f'{f}/model.json' # *.json path
|
438 |
+
|
439 |
+
cmd = f'tensorflowjs_converter --input_format=tf_frozen_model ' \
|
440 |
+
f'--output_node_names=Identity,Identity_1,Identity_2,Identity_3 {f_pb} {f}'
|
441 |
+
subprocess.run(cmd.split())
|
442 |
+
|
443 |
+
json = Path(f_json).read_text()
|
444 |
+
with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order
|
445 |
+
subst = re.sub(
|
446 |
+
r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
|
447 |
+
r'"Identity.?.?": {"name": "Identity.?.?"}, '
|
448 |
+
r'"Identity.?.?": {"name": "Identity.?.?"}, '
|
449 |
+
r'"Identity.?.?": {"name": "Identity.?.?"}}}', r'{"outputs": {"Identity": {"name": "Identity"}, '
|
450 |
+
r'"Identity_1": {"name": "Identity_1"}, '
|
451 |
+
r'"Identity_2": {"name": "Identity_2"}, '
|
452 |
+
r'"Identity_3": {"name": "Identity_3"}}}', json)
|
453 |
+
j.write(subst)
|
454 |
+
return f, None
|
455 |
+
|
456 |
+
|
457 |
+
def add_tflite_metadata(file, metadata, num_outputs):
|
458 |
+
# Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata
|
459 |
+
with contextlib.suppress(ImportError):
|
460 |
+
# check_requirements('tflite_support')
|
461 |
+
from tflite_support import flatbuffers
|
462 |
+
from tflite_support import metadata as _metadata
|
463 |
+
from tflite_support import metadata_schema_py_generated as _metadata_fb
|
464 |
+
|
465 |
+
tmp_file = Path('/tmp/meta.txt')
|
466 |
+
with open(tmp_file, 'w') as meta_f:
|
467 |
+
meta_f.write(str(metadata))
|
468 |
+
|
469 |
+
model_meta = _metadata_fb.ModelMetadataT()
|
470 |
+
label_file = _metadata_fb.AssociatedFileT()
|
471 |
+
label_file.name = tmp_file.name
|
472 |
+
model_meta.associatedFiles = [label_file]
|
473 |
+
|
474 |
+
subgraph = _metadata_fb.SubGraphMetadataT()
|
475 |
+
subgraph.inputTensorMetadata = [_metadata_fb.TensorMetadataT()]
|
476 |
+
subgraph.outputTensorMetadata = [_metadata_fb.TensorMetadataT()] * num_outputs
|
477 |
+
model_meta.subgraphMetadata = [subgraph]
|
478 |
+
|
479 |
+
b = flatbuffers.Builder(0)
|
480 |
+
b.Finish(model_meta.Pack(b), _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)
|
481 |
+
metadata_buf = b.Output()
|
482 |
+
|
483 |
+
populator = _metadata.MetadataPopulator.with_model_file(file)
|
484 |
+
populator.load_metadata_buffer(metadata_buf)
|
485 |
+
populator.load_associated_files([str(tmp_file)])
|
486 |
+
populator.populate()
|
487 |
+
tmp_file.unlink()
|
488 |
+
|
489 |
+
|
490 |
+
@smart_inference_mode()
|
491 |
+
def run(
|
492 |
+
data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'
|
493 |
+
weights=ROOT / 'yolov5s.pt', # weights path
|
494 |
+
imgsz=(640, 640), # image (height, width)
|
495 |
+
batch_size=1, # batch size
|
496 |
+
device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
497 |
+
include=('torchscript', 'onnx'), # include formats
|
498 |
+
half=False, # FP16 half-precision export
|
499 |
+
inplace=False, # set YOLOv5 Detect() inplace=True
|
500 |
+
keras=False, # use Keras
|
501 |
+
optimize=False, # TorchScript: optimize for mobile
|
502 |
+
int8=False, # CoreML/TF INT8 quantization
|
503 |
+
dynamic=False, # ONNX/TF/TensorRT: dynamic axes
|
504 |
+
simplify=False, # ONNX: simplify model
|
505 |
+
opset=12, # ONNX: opset version
|
506 |
+
verbose=False, # TensorRT: verbose log
|
507 |
+
workspace=4, # TensorRT: workspace size (GB)
|
508 |
+
nms=False, # TF: add NMS to model
|
509 |
+
agnostic_nms=False, # TF: add agnostic NMS to model
|
510 |
+
topk_per_class=100, # TF.js NMS: topk per class to keep
|
511 |
+
topk_all=100, # TF.js NMS: topk for all classes to keep
|
512 |
+
iou_thres=0.45, # TF.js NMS: IoU threshold
|
513 |
+
conf_thres=0.25, # TF.js NMS: confidence threshold
|
514 |
+
):
|
515 |
+
t = time.time()
|
516 |
+
include = [x.lower() for x in include] # to lowercase
|
517 |
+
fmts = tuple(export_formats()['Argument'][1:]) # --include arguments
|
518 |
+
flags = [x in include for x in fmts]
|
519 |
+
assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {fmts}'
|
520 |
+
jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = flags # export booleans
|
521 |
+
file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights) # PyTorch weights
|
522 |
+
|
523 |
+
# Load PyTorch model
|
524 |
+
device = select_device(device)
|
525 |
+
if half:
|
526 |
+
assert device.type != 'cpu' or coreml, '--half only compatible with GPU export, i.e. use --device 0'
|
527 |
+
assert not dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both'
|
528 |
+
model = attempt_load(weights, device=device, inplace=True, fuse=True) # load FP32 model
|
529 |
+
|
530 |
+
# Checks
|
531 |
+
imgsz *= 2 if len(imgsz) == 1 else 1 # expand
|
532 |
+
if optimize:
|
533 |
+
assert device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu'
|
534 |
+
|
535 |
+
# Input
|
536 |
+
gs = int(max(model.stride)) # grid size (max stride)
|
537 |
+
imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples
|
538 |
+
im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection
|
539 |
+
|
540 |
+
# Update model
|
541 |
+
model.eval()
|
542 |
+
for k, m in model.named_modules():
|
543 |
+
if isinstance(m, Detect):
|
544 |
+
m.inplace = inplace
|
545 |
+
m.dynamic = dynamic
|
546 |
+
m.export = True
|
547 |
+
|
548 |
+
for _ in range(2):
|
549 |
+
y = model(im) # dry runs
|
550 |
+
if half and not coreml:
|
551 |
+
im, model = im.half(), model.half() # to FP16
|
552 |
+
shape = tuple((y[0] if isinstance(y, tuple) else y).shape) # model output shape
|
553 |
+
metadata = {'stride': int(max(model.stride)), 'names': model.names} # model metadata
|
554 |
+
LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")
|
555 |
+
|
556 |
+
# Exports
|
557 |
+
f = [''] * len(fmts) # exported filenames
|
558 |
+
warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning) # suppress TracerWarning
|
559 |
+
if jit: # TorchScript
|
560 |
+
f[0], _ = export_torchscript(model, im, file, optimize)
|
561 |
+
if engine: # TensorRT required before ONNX
|
562 |
+
f[1], _ = export_engine(model, im, file, half, dynamic, simplify, workspace, verbose)
|
563 |
+
if onnx or xml: # OpenVINO requires ONNX
|
564 |
+
f[2], _ = export_onnx(model, im, file, opset, dynamic, simplify)
|
565 |
+
if xml: # OpenVINO
|
566 |
+
f[3], _ = export_openvino(file, metadata, half)
|
567 |
+
if coreml: # CoreML
|
568 |
+
f[4], _ = export_coreml(model, im, file, int8, half)
|
569 |
+
if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats
|
570 |
+
assert not tflite or not tfjs, 'TFLite and TF.js models must be exported separately, please pass only one type.'
|
571 |
+
assert not isinstance(model, ClassificationModel), 'ClassificationModel export to TF formats not yet supported.'
|
572 |
+
f[5], s_model = export_saved_model(model.cpu(),
|
573 |
+
im,
|
574 |
+
file,
|
575 |
+
dynamic,
|
576 |
+
tf_nms=nms or agnostic_nms or tfjs,
|
577 |
+
agnostic_nms=agnostic_nms or tfjs,
|
578 |
+
topk_per_class=topk_per_class,
|
579 |
+
topk_all=topk_all,
|
580 |
+
iou_thres=iou_thres,
|
581 |
+
conf_thres=conf_thres,
|
582 |
+
keras=keras)
|
583 |
+
if pb or tfjs: # pb prerequisite to tfjs
|
584 |
+
f[6], _ = export_pb(s_model, file)
|
585 |
+
if tflite or edgetpu:
|
586 |
+
f[7], _ = export_tflite(s_model, im, file, int8 or edgetpu, data=data, nms=nms, agnostic_nms=agnostic_nms)
|
587 |
+
if edgetpu:
|
588 |
+
f[8], _ = export_edgetpu(file)
|
589 |
+
add_tflite_metadata(f[8] or f[7], metadata, num_outputs=len(s_model.outputs))
|
590 |
+
if tfjs:
|
591 |
+
f[9], _ = export_tfjs(file)
|
592 |
+
if paddle: # PaddlePaddle
|
593 |
+
f[10], _ = export_paddle(model, im, file, metadata)
|
594 |
+
|
595 |
+
# Finish
|
596 |
+
f = [str(x) for x in f if x] # filter out '' and None
|
597 |
+
if any(f):
|
598 |
+
cls, det, seg = (isinstance(model, x) for x in (ClassificationModel, DetectionModel, SegmentationModel)) # type
|
599 |
+
det &= not seg # segmentation models inherit from SegmentationModel(DetectionModel)
|
600 |
+
dir = Path('segment' if seg else 'classify' if cls else '')
|
601 |
+
h = '--half' if half else '' # --half FP16 inference arg
|
602 |
+
s = "# WARNING ⚠️ ClassificationModel not yet supported for PyTorch Hub AutoShape inference" if cls else \
|
603 |
+
"# WARNING ⚠️ SegmentationModel not yet supported for PyTorch Hub AutoShape inference" if seg else ''
|
604 |
+
LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)'
|
605 |
+
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
|
606 |
+
f"\nDetect: python {dir / ('detect.py' if det else 'predict.py')} --weights {f[-1]} {h}"
|
607 |
+
f"\nValidate: python {dir / 'val.py'} --weights {f[-1]} {h}"
|
608 |
+
f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}') {s}"
|
609 |
+
f"\nVisualize: https://netron.app")
|
610 |
+
return f # return list of exported files/dirs
|
611 |
+
|
612 |
+
|
613 |
+
def parse_opt():
|
614 |
+
parser = argparse.ArgumentParser()
|
615 |
+
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
|
616 |
+
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)')
|
617 |
+
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)')
|
618 |
+
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
619 |
+
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
620 |
+
parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
|
621 |
+
parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
|
622 |
+
parser.add_argument('--keras', action='store_true', help='TF: use Keras')
|
623 |
+
parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
|
624 |
+
parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization')
|
625 |
+
parser.add_argument('--dynamic', action='store_true', help='ONNX/TF/TensorRT: dynamic axes')
|
626 |
+
parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
|
627 |
+
parser.add_argument('--opset', type=int, default=17, help='ONNX: opset version')
|
628 |
+
parser.add_argument('--verbose', action='store_true', help='TensorRT: verbose log')
|
629 |
+
parser.add_argument('--workspace', type=int, default=4, help='TensorRT: workspace size (GB)')
|
630 |
+
parser.add_argument('--nms', action='store_true', help='TF: add NMS to model')
|
631 |
+
parser.add_argument('--agnostic-nms', action='store_true', help='TF: add agnostic NMS to model')
|
632 |
+
parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep')
|
633 |
+
parser.add_argument('--topk-all', type=int, default=100, help='TF.js NMS: topk for all classes to keep')
|
634 |
+
parser.add_argument('--iou-thres', type=float, default=0.45, help='TF.js NMS: IoU threshold')
|
635 |
+
parser.add_argument('--conf-thres', type=float, default=0.25, help='TF.js NMS: confidence threshold')
|
636 |
+
parser.add_argument(
|
637 |
+
'--include',
|
638 |
+
nargs='+',
|
639 |
+
default=['torchscript'],
|
640 |
+
help='torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle')
|
641 |
+
opt = parser.parse_args()
|
642 |
+
print_args(vars(opt))
|
643 |
+
return opt
|
644 |
+
|
645 |
+
|
646 |
+
def main(opt):
|
647 |
+
for opt.weights in (opt.weights if isinstance(opt.weights, list) else [opt.weights]):
|
648 |
+
run(**vars(opt))
|
649 |
+
|
650 |
+
|
651 |
+
if __name__ == "__main__":
|
652 |
+
opt = parse_opt()
|
653 |
+
main(opt)
|
hubconf.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5
|
4 |
+
|
5 |
+
Usage:
|
6 |
+
import torch
|
7 |
+
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # official model
|
8 |
+
model = torch.hub.load('ultralytics/yolov5:master', 'yolov5s') # from branch
|
9 |
+
model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.pt') # custom/local model
|
10 |
+
model = torch.hub.load('.', 'custom', 'yolov5s.pt', source='local') # local repo
|
11 |
+
"""
|
12 |
+
|
13 |
+
import torch
|
14 |
+
|
15 |
+
|
16 |
+
def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
17 |
+
"""Creates or loads a YOLOv5 model
|
18 |
+
|
19 |
+
Arguments:
|
20 |
+
name (str): model name 'yolov5s' or path 'path/to/best.pt'
|
21 |
+
pretrained (bool): load pretrained weights into the model
|
22 |
+
channels (int): number of input channels
|
23 |
+
classes (int): number of model classes
|
24 |
+
autoshape (bool): apply YOLOv5 .autoshape() wrapper to model
|
25 |
+
verbose (bool): print all information to screen
|
26 |
+
device (str, torch.device, None): device to use for model parameters
|
27 |
+
|
28 |
+
Returns:
|
29 |
+
YOLOv5 model
|
30 |
+
"""
|
31 |
+
from pathlib import Path
|
32 |
+
|
33 |
+
from models.common import AutoShape, DetectMultiBackend
|
34 |
+
from models.experimental import attempt_load
|
35 |
+
from models.yolo import ClassificationModel, DetectionModel, SegmentationModel
|
36 |
+
from utils.downloads import attempt_download
|
37 |
+
from utils.general import LOGGER, check_requirements, intersect_dicts, logging
|
38 |
+
from utils.torch_utils import select_device
|
39 |
+
|
40 |
+
if not verbose:
|
41 |
+
LOGGER.setLevel(logging.WARNING)
|
42 |
+
check_requirements(exclude=('opencv-python', 'tensorboard', 'thop'))
|
43 |
+
name = Path(name)
|
44 |
+
path = name.with_suffix('.pt') if name.suffix == '' and not name.is_dir() else name # checkpoint path
|
45 |
+
try:
|
46 |
+
device = select_device(device)
|
47 |
+
if pretrained and channels == 3 and classes == 80:
|
48 |
+
try:
|
49 |
+
model = DetectMultiBackend(path, device=device, fuse=autoshape) # detection model
|
50 |
+
if autoshape:
|
51 |
+
if model.pt and isinstance(model.model, ClassificationModel):
|
52 |
+
LOGGER.warning('WARNING ⚠️ YOLOv5 ClassificationModel is not yet AutoShape compatible. '
|
53 |
+
'You must pass torch tensors in BCHW to this model, i.e. shape(1,3,224,224).')
|
54 |
+
elif model.pt and isinstance(model.model, SegmentationModel):
|
55 |
+
LOGGER.warning('WARNING ⚠️ YOLOv5 SegmentationModel is not yet AutoShape compatible. '
|
56 |
+
'You will not be able to run inference with this model.')
|
57 |
+
else:
|
58 |
+
model = AutoShape(model) # for file/URI/PIL/cv2/np inputs and NMS
|
59 |
+
except Exception:
|
60 |
+
model = attempt_load(path, device=device, fuse=False) # arbitrary model
|
61 |
+
else:
|
62 |
+
cfg = list((Path(__file__).parent / 'models').rglob(f'{path.stem}.yaml'))[0] # model.yaml path
|
63 |
+
model = DetectionModel(cfg, channels, classes) # create model
|
64 |
+
if pretrained:
|
65 |
+
ckpt = torch.load(attempt_download(path), map_location=device) # load
|
66 |
+
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
|
67 |
+
csd = intersect_dicts(csd, model.state_dict(), exclude=['anchors']) # intersect
|
68 |
+
model.load_state_dict(csd, strict=False) # load
|
69 |
+
if len(ckpt['model'].names) == classes:
|
70 |
+
model.names = ckpt['model'].names # set class names attribute
|
71 |
+
if not verbose:
|
72 |
+
LOGGER.setLevel(logging.INFO) # reset to default
|
73 |
+
return model.to(device)
|
74 |
+
|
75 |
+
except Exception as e:
|
76 |
+
help_url = 'https://github.com/ultralytics/yolov5/issues/36'
|
77 |
+
s = f'{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help.'
|
78 |
+
raise Exception(s) from e
|
79 |
+
|
80 |
+
|
81 |
+
def custom(path='path/to/model.pt', autoshape=True, _verbose=True, device=None):
|
82 |
+
# YOLOv5 custom or local model
|
83 |
+
return _create(path, autoshape=autoshape, verbose=_verbose, device=device)
|
84 |
+
|
85 |
+
|
86 |
+
def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
87 |
+
# YOLOv5-nano model https://github.com/ultralytics/yolov5
|
88 |
+
return _create('yolov5n', pretrained, channels, classes, autoshape, _verbose, device)
|
89 |
+
|
90 |
+
|
91 |
+
def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
92 |
+
# YOLOv5-small model https://github.com/ultralytics/yolov5
|
93 |
+
return _create('yolov5s', pretrained, channels, classes, autoshape, _verbose, device)
|
94 |
+
|
95 |
+
|
96 |
+
def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
97 |
+
# YOLOv5-medium model https://github.com/ultralytics/yolov5
|
98 |
+
return _create('yolov5m', pretrained, channels, classes, autoshape, _verbose, device)
|
99 |
+
|
100 |
+
|
101 |
+
def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
102 |
+
# YOLOv5-large model https://github.com/ultralytics/yolov5
|
103 |
+
return _create('yolov5l', pretrained, channels, classes, autoshape, _verbose, device)
|
104 |
+
|
105 |
+
|
106 |
+
def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
107 |
+
# YOLOv5-xlarge model https://github.com/ultralytics/yolov5
|
108 |
+
return _create('yolov5x', pretrained, channels, classes, autoshape, _verbose, device)
|
109 |
+
|
110 |
+
|
111 |
+
def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
112 |
+
# YOLOv5-nano-P6 model https://github.com/ultralytics/yolov5
|
113 |
+
return _create('yolov5n6', pretrained, channels, classes, autoshape, _verbose, device)
|
114 |
+
|
115 |
+
|
116 |
+
def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
117 |
+
# YOLOv5-small-P6 model https://github.com/ultralytics/yolov5
|
118 |
+
return _create('yolov5s6', pretrained, channels, classes, autoshape, _verbose, device)
|
119 |
+
|
120 |
+
|
121 |
+
def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
122 |
+
# YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5
|
123 |
+
return _create('yolov5m6', pretrained, channels, classes, autoshape, _verbose, device)
|
124 |
+
|
125 |
+
|
126 |
+
def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
127 |
+
# YOLOv5-large-P6 model https://github.com/ultralytics/yolov5
|
128 |
+
return _create('yolov5l6', pretrained, channels, classes, autoshape, _verbose, device)
|
129 |
+
|
130 |
+
|
131 |
+
def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
132 |
+
# YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5
|
133 |
+
return _create('yolov5x6', pretrained, channels, classes, autoshape, _verbose, device)
|
134 |
+
|
135 |
+
|
136 |
+
if __name__ == '__main__':
|
137 |
+
import argparse
|
138 |
+
from pathlib import Path
|
139 |
+
|
140 |
+
import numpy as np
|
141 |
+
from PIL import Image
|
142 |
+
|
143 |
+
from utils.general import cv2, print_args
|
144 |
+
|
145 |
+
# Argparser
|
146 |
+
parser = argparse.ArgumentParser()
|
147 |
+
parser.add_argument('--model', type=str, default='yolov5s', help='model name')
|
148 |
+
opt = parser.parse_args()
|
149 |
+
print_args(vars(opt))
|
150 |
+
|
151 |
+
# Model
|
152 |
+
model = _create(name=opt.model, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True)
|
153 |
+
# model = custom(path='path/to/model.pt') # custom
|
154 |
+
|
155 |
+
# Images
|
156 |
+
imgs = [
|
157 |
+
'data/images/zidane.jpg', # filename
|
158 |
+
Path('data/images/zidane.jpg'), # Path
|
159 |
+
'https://ultralytics.com/images/zidane.jpg', # URI
|
160 |
+
cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV
|
161 |
+
Image.open('data/images/bus.jpg'), # PIL
|
162 |
+
np.zeros((320, 640, 3))] # numpy
|
163 |
+
|
164 |
+
# Inference
|
165 |
+
results = model(imgs, size=320) # batched inference
|
166 |
+
|
167 |
+
# Results
|
168 |
+
results.print()
|
169 |
+
results.save()
|
models/__init__.py
ADDED
File without changes
|
models/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (136 Bytes). View file
|
|
models/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (134 Bytes). View file
|
|
models/__pycache__/common.cpython-310.pyc
ADDED
Binary file (36.9 kB). View file
|
|
models/__pycache__/common.cpython-38.pyc
ADDED
Binary file (37.5 kB). View file
|
|
models/__pycache__/experimental.cpython-310.pyc
ADDED
Binary file (4.83 kB). View file
|
|
models/__pycache__/experimental.cpython-38.pyc
ADDED
Binary file (4.85 kB). View file
|
|
models/__pycache__/yolo.cpython-310.pyc
ADDED
Binary file (16 kB). View file
|
|
models/__pycache__/yolo.cpython-38.pyc
ADDED
Binary file (16.1 kB). View file
|
|
models/common.py
ADDED
@@ -0,0 +1,860 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Common modules
|
4 |
+
"""
|
5 |
+
|
6 |
+
import ast
|
7 |
+
import contextlib
|
8 |
+
import json
|
9 |
+
import math
|
10 |
+
import platform
|
11 |
+
import warnings
|
12 |
+
import zipfile
|
13 |
+
from collections import OrderedDict, namedtuple
|
14 |
+
from copy import copy
|
15 |
+
from pathlib import Path
|
16 |
+
from urllib.parse import urlparse
|
17 |
+
|
18 |
+
import cv2
|
19 |
+
import numpy as np
|
20 |
+
import pandas as pd
|
21 |
+
import requests
|
22 |
+
import torch
|
23 |
+
import torch.nn as nn
|
24 |
+
from IPython.display import display
|
25 |
+
from PIL import Image
|
26 |
+
from torch.cuda import amp
|
27 |
+
|
28 |
+
from utils import TryExcept
|
29 |
+
from utils.dataloaders import exif_transpose, letterbox
|
30 |
+
from utils.general import (LOGGER, ROOT, Profile, check_requirements, check_suffix, check_version, colorstr,
|
31 |
+
increment_path, is_notebook, make_divisible, non_max_suppression, scale_boxes, xywh2xyxy,
|
32 |
+
xyxy2xywh, yaml_load)
|
33 |
+
from utils.plots import Annotator, colors, save_one_box
|
34 |
+
from utils.torch_utils import copy_attr, smart_inference_mode
|
35 |
+
|
36 |
+
|
37 |
+
def autopad(k, p=None, d=1): # kernel, padding, dilation
|
38 |
+
# Pad to 'same' shape outputs
|
39 |
+
if d > 1:
|
40 |
+
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
|
41 |
+
if p is None:
|
42 |
+
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
|
43 |
+
return p
|
44 |
+
|
45 |
+
|
46 |
+
class Conv(nn.Module):
|
47 |
+
# Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)
|
48 |
+
default_act = nn.SiLU() # default activation
|
49 |
+
|
50 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
|
51 |
+
super().__init__()
|
52 |
+
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
|
53 |
+
self.bn = nn.BatchNorm2d(c2)
|
54 |
+
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
|
55 |
+
|
56 |
+
def forward(self, x):
|
57 |
+
return self.act(self.bn(self.conv(x)))
|
58 |
+
|
59 |
+
def forward_fuse(self, x):
|
60 |
+
return self.act(self.conv(x))
|
61 |
+
|
62 |
+
|
63 |
+
class DWConv(Conv):
|
64 |
+
# Depth-wise convolution
|
65 |
+
def __init__(self, c1, c2, k=1, s=1, d=1, act=True): # ch_in, ch_out, kernel, stride, dilation, activation
|
66 |
+
super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act)
|
67 |
+
|
68 |
+
|
69 |
+
class DWConvTranspose2d(nn.ConvTranspose2d):
|
70 |
+
# Depth-wise transpose convolution
|
71 |
+
def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0): # ch_in, ch_out, kernel, stride, padding, padding_out
|
72 |
+
super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))
|
73 |
+
|
74 |
+
|
75 |
+
class TransformerLayer(nn.Module):
|
76 |
+
# Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
|
77 |
+
def __init__(self, c, num_heads):
|
78 |
+
super().__init__()
|
79 |
+
self.q = nn.Linear(c, c, bias=False)
|
80 |
+
self.k = nn.Linear(c, c, bias=False)
|
81 |
+
self.v = nn.Linear(c, c, bias=False)
|
82 |
+
self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
|
83 |
+
self.fc1 = nn.Linear(c, c, bias=False)
|
84 |
+
self.fc2 = nn.Linear(c, c, bias=False)
|
85 |
+
|
86 |
+
def forward(self, x):
|
87 |
+
x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
|
88 |
+
x = self.fc2(self.fc1(x)) + x
|
89 |
+
return x
|
90 |
+
|
91 |
+
|
92 |
+
class TransformerBlock(nn.Module):
|
93 |
+
# Vision Transformer https://arxiv.org/abs/2010.11929
|
94 |
+
def __init__(self, c1, c2, num_heads, num_layers):
|
95 |
+
super().__init__()
|
96 |
+
self.conv = None
|
97 |
+
if c1 != c2:
|
98 |
+
self.conv = Conv(c1, c2)
|
99 |
+
self.linear = nn.Linear(c2, c2) # learnable position embedding
|
100 |
+
self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
|
101 |
+
self.c2 = c2
|
102 |
+
|
103 |
+
def forward(self, x):
|
104 |
+
if self.conv is not None:
|
105 |
+
x = self.conv(x)
|
106 |
+
b, _, w, h = x.shape
|
107 |
+
p = x.flatten(2).permute(2, 0, 1)
|
108 |
+
return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)
|
109 |
+
|
110 |
+
|
111 |
+
class Bottleneck(nn.Module):
|
112 |
+
# Standard bottleneck
|
113 |
+
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
|
114 |
+
super().__init__()
|
115 |
+
c_ = int(c2 * e) # hidden channels
|
116 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
117 |
+
self.cv2 = Conv(c_, c2, 3, 1, g=g)
|
118 |
+
self.add = shortcut and c1 == c2
|
119 |
+
|
120 |
+
def forward(self, x):
|
121 |
+
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
122 |
+
|
123 |
+
|
124 |
+
class BottleneckCSP(nn.Module):
|
125 |
+
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
126 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
127 |
+
super().__init__()
|
128 |
+
c_ = int(c2 * e) # hidden channels
|
129 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
130 |
+
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
|
131 |
+
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
|
132 |
+
self.cv4 = Conv(2 * c_, c2, 1, 1)
|
133 |
+
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
|
134 |
+
self.act = nn.SiLU()
|
135 |
+
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
136 |
+
|
137 |
+
def forward(self, x):
|
138 |
+
y1 = self.cv3(self.m(self.cv1(x)))
|
139 |
+
y2 = self.cv2(x)
|
140 |
+
return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
|
141 |
+
|
142 |
+
|
143 |
+
class CrossConv(nn.Module):
|
144 |
+
# Cross Convolution Downsample
|
145 |
+
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
|
146 |
+
# ch_in, ch_out, kernel, stride, groups, expansion, shortcut
|
147 |
+
super().__init__()
|
148 |
+
c_ = int(c2 * e) # hidden channels
|
149 |
+
self.cv1 = Conv(c1, c_, (1, k), (1, s))
|
150 |
+
self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
|
151 |
+
self.add = shortcut and c1 == c2
|
152 |
+
|
153 |
+
def forward(self, x):
|
154 |
+
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
155 |
+
|
156 |
+
|
157 |
+
class C3(nn.Module):
|
158 |
+
# CSP Bottleneck with 3 convolutions
|
159 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
160 |
+
super().__init__()
|
161 |
+
c_ = int(c2 * e) # hidden channels
|
162 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
163 |
+
self.cv2 = Conv(c1, c_, 1, 1)
|
164 |
+
self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
|
165 |
+
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
166 |
+
|
167 |
+
def forward(self, x):
|
168 |
+
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
|
169 |
+
|
170 |
+
|
171 |
+
class C3x(C3):
|
172 |
+
# C3 module with cross-convolutions
|
173 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
174 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
175 |
+
c_ = int(c2 * e)
|
176 |
+
self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)))
|
177 |
+
|
178 |
+
|
179 |
+
class C3TR(C3):
|
180 |
+
# C3 module with TransformerBlock()
|
181 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
182 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
183 |
+
c_ = int(c2 * e)
|
184 |
+
self.m = TransformerBlock(c_, c_, 4, n)
|
185 |
+
|
186 |
+
|
187 |
+
class C3SPP(C3):
|
188 |
+
# C3 module with SPP()
|
189 |
+
def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5):
|
190 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
191 |
+
c_ = int(c2 * e)
|
192 |
+
self.m = SPP(c_, c_, k)
|
193 |
+
|
194 |
+
|
195 |
+
class C3Ghost(C3):
|
196 |
+
# C3 module with GhostBottleneck()
|
197 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
198 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
199 |
+
c_ = int(c2 * e) # hidden channels
|
200 |
+
self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))
|
201 |
+
|
202 |
+
|
203 |
+
class SPP(nn.Module):
|
204 |
+
# Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
|
205 |
+
def __init__(self, c1, c2, k=(5, 9, 13)):
|
206 |
+
super().__init__()
|
207 |
+
c_ = c1 // 2 # hidden channels
|
208 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
209 |
+
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
|
210 |
+
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
|
211 |
+
|
212 |
+
def forward(self, x):
|
213 |
+
x = self.cv1(x)
|
214 |
+
with warnings.catch_warnings():
|
215 |
+
warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
|
216 |
+
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
|
217 |
+
|
218 |
+
|
219 |
+
class SPPF(nn.Module):
|
220 |
+
# Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
|
221 |
+
def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
|
222 |
+
super().__init__()
|
223 |
+
c_ = c1 // 2 # hidden channels
|
224 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
225 |
+
self.cv2 = Conv(c_ * 4, c2, 1, 1)
|
226 |
+
self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
|
227 |
+
|
228 |
+
def forward(self, x):
|
229 |
+
x = self.cv1(x)
|
230 |
+
with warnings.catch_warnings():
|
231 |
+
warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
|
232 |
+
y1 = self.m(x)
|
233 |
+
y2 = self.m(y1)
|
234 |
+
return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
|
235 |
+
|
236 |
+
|
237 |
+
class Focus(nn.Module):
|
238 |
+
# Focus wh information into c-space
|
239 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
240 |
+
super().__init__()
|
241 |
+
self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act)
|
242 |
+
# self.contract = Contract(gain=2)
|
243 |
+
|
244 |
+
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
|
245 |
+
return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))
|
246 |
+
# return self.conv(self.contract(x))
|
247 |
+
|
248 |
+
|
249 |
+
class GhostConv(nn.Module):
|
250 |
+
# Ghost Convolution https://github.com/huawei-noah/ghostnet
|
251 |
+
def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
|
252 |
+
super().__init__()
|
253 |
+
c_ = c2 // 2 # hidden channels
|
254 |
+
self.cv1 = Conv(c1, c_, k, s, None, g, act=act)
|
255 |
+
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act)
|
256 |
+
|
257 |
+
def forward(self, x):
|
258 |
+
y = self.cv1(x)
|
259 |
+
return torch.cat((y, self.cv2(y)), 1)
|
260 |
+
|
261 |
+
|
262 |
+
class GhostBottleneck(nn.Module):
|
263 |
+
# Ghost Bottleneck https://github.com/huawei-noah/ghostnet
|
264 |
+
def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
|
265 |
+
super().__init__()
|
266 |
+
c_ = c2 // 2
|
267 |
+
self.conv = nn.Sequential(
|
268 |
+
GhostConv(c1, c_, 1, 1), # pw
|
269 |
+
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
|
270 |
+
GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
|
271 |
+
self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1,
|
272 |
+
act=False)) if s == 2 else nn.Identity()
|
273 |
+
|
274 |
+
def forward(self, x):
|
275 |
+
return self.conv(x) + self.shortcut(x)
|
276 |
+
|
277 |
+
|
278 |
+
class Contract(nn.Module):
|
279 |
+
# Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
|
280 |
+
def __init__(self, gain=2):
|
281 |
+
super().__init__()
|
282 |
+
self.gain = gain
|
283 |
+
|
284 |
+
def forward(self, x):
|
285 |
+
b, c, h, w = x.size() # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
|
286 |
+
s = self.gain
|
287 |
+
x = x.view(b, c, h // s, s, w // s, s) # x(1,64,40,2,40,2)
|
288 |
+
x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
|
289 |
+
return x.view(b, c * s * s, h // s, w // s) # x(1,256,40,40)
|
290 |
+
|
291 |
+
|
292 |
+
class Expand(nn.Module):
|
293 |
+
# Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
|
294 |
+
def __init__(self, gain=2):
|
295 |
+
super().__init__()
|
296 |
+
self.gain = gain
|
297 |
+
|
298 |
+
def forward(self, x):
|
299 |
+
b, c, h, w = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
|
300 |
+
s = self.gain
|
301 |
+
x = x.view(b, s, s, c // s ** 2, h, w) # x(1,2,2,16,80,80)
|
302 |
+
x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
|
303 |
+
return x.view(b, c // s ** 2, h * s, w * s) # x(1,16,160,160)
|
304 |
+
|
305 |
+
|
306 |
+
class Concat(nn.Module):
|
307 |
+
# Concatenate a list of tensors along dimension
|
308 |
+
def __init__(self, dimension=1):
|
309 |
+
super().__init__()
|
310 |
+
self.d = dimension
|
311 |
+
|
312 |
+
def forward(self, x):
|
313 |
+
return torch.cat(x, self.d)
|
314 |
+
|
315 |
+
|
316 |
+
class DetectMultiBackend(nn.Module):
|
317 |
+
# YOLOv5 MultiBackend class for python inference on various backends
|
318 |
+
def __init__(self, weights='yolov5s.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False, fuse=True):
|
319 |
+
# Usage:
|
320 |
+
# PyTorch: weights = *.pt
|
321 |
+
# TorchScript: *.torchscript
|
322 |
+
# ONNX Runtime: *.onnx
|
323 |
+
# ONNX OpenCV DNN: *.onnx --dnn
|
324 |
+
# OpenVINO: *_openvino_model
|
325 |
+
# CoreML: *.mlmodel
|
326 |
+
# TensorRT: *.engine
|
327 |
+
# TensorFlow SavedModel: *_saved_model
|
328 |
+
# TensorFlow GraphDef: *.pb
|
329 |
+
# TensorFlow Lite: *.tflite
|
330 |
+
# TensorFlow Edge TPU: *_edgetpu.tflite
|
331 |
+
# PaddlePaddle: *_paddle_model
|
332 |
+
from models.experimental import attempt_download, attempt_load # scoped to avoid circular import
|
333 |
+
|
334 |
+
super().__init__()
|
335 |
+
w = str(weights[0] if isinstance(weights, list) else weights)
|
336 |
+
pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, triton = self._model_type(w)
|
337 |
+
fp16 &= pt or jit or onnx or engine # FP16
|
338 |
+
nhwc = coreml or saved_model or pb or tflite or edgetpu # BHWC formats (vs torch BCWH)
|
339 |
+
stride = 32 # default stride
|
340 |
+
cuda = torch.cuda.is_available() and device.type != 'cpu' # use CUDA
|
341 |
+
if not (pt or triton):
|
342 |
+
w = attempt_download(w) # download if not local
|
343 |
+
|
344 |
+
if pt: # PyTorch
|
345 |
+
model = attempt_load(weights if isinstance(weights, list) else w, device=device, inplace=True, fuse=fuse)
|
346 |
+
stride = max(int(model.stride.max()), 32) # model stride
|
347 |
+
names = model.module.names if hasattr(model, 'module') else model.names # get class names
|
348 |
+
model.half() if fp16 else model.float()
|
349 |
+
self.model = model # explicitly assign for to(), cpu(), cuda(), half()
|
350 |
+
elif jit: # TorchScript
|
351 |
+
LOGGER.info(f'Loading {w} for TorchScript inference...')
|
352 |
+
extra_files = {'config.txt': ''} # model metadata
|
353 |
+
model = torch.jit.load(w, _extra_files=extra_files, map_location=device)
|
354 |
+
model.half() if fp16 else model.float()
|
355 |
+
if extra_files['config.txt']: # load metadata dict
|
356 |
+
d = json.loads(extra_files['config.txt'],
|
357 |
+
object_hook=lambda d: {int(k) if k.isdigit() else k: v
|
358 |
+
for k, v in d.items()})
|
359 |
+
stride, names = int(d['stride']), d['names']
|
360 |
+
elif dnn: # ONNX OpenCV DNN
|
361 |
+
LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...')
|
362 |
+
check_requirements('opencv-python>=4.5.4')
|
363 |
+
net = cv2.dnn.readNetFromONNX(w)
|
364 |
+
elif onnx: # ONNX Runtime
|
365 |
+
LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
|
366 |
+
check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
|
367 |
+
import onnxruntime
|
368 |
+
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
|
369 |
+
session = onnxruntime.InferenceSession(w, providers=providers)
|
370 |
+
output_names = [x.name for x in session.get_outputs()]
|
371 |
+
meta = session.get_modelmeta().custom_metadata_map # metadata
|
372 |
+
if 'stride' in meta:
|
373 |
+
stride, names = int(meta['stride']), eval(meta['names'])
|
374 |
+
elif xml: # OpenVINO
|
375 |
+
LOGGER.info(f'Loading {w} for OpenVINO inference...')
|
376 |
+
check_requirements('openvino') # requires openvino-dev: https://pypi.org/project/openvino-dev/
|
377 |
+
from openvino.runtime import Core, Layout, get_batch
|
378 |
+
ie = Core()
|
379 |
+
if not Path(w).is_file(): # if not *.xml
|
380 |
+
w = next(Path(w).glob('*.xml')) # get *.xml file from *_openvino_model dir
|
381 |
+
network = ie.read_model(model=w, weights=Path(w).with_suffix('.bin'))
|
382 |
+
if network.get_parameters()[0].get_layout().empty:
|
383 |
+
network.get_parameters()[0].set_layout(Layout("NCHW"))
|
384 |
+
batch_dim = get_batch(network)
|
385 |
+
if batch_dim.is_static:
|
386 |
+
batch_size = batch_dim.get_length()
|
387 |
+
executable_network = ie.compile_model(network, device_name="CPU") # device_name="MYRIAD" for Intel NCS2
|
388 |
+
stride, names = self._load_metadata(Path(w).with_suffix('.yaml')) # load metadata
|
389 |
+
elif engine: # TensorRT
|
390 |
+
LOGGER.info(f'Loading {w} for TensorRT inference...')
|
391 |
+
import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download
|
392 |
+
check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0
|
393 |
+
if device.type == 'cpu':
|
394 |
+
device = torch.device('cuda:0')
|
395 |
+
Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
|
396 |
+
logger = trt.Logger(trt.Logger.INFO)
|
397 |
+
with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
|
398 |
+
model = runtime.deserialize_cuda_engine(f.read())
|
399 |
+
context = model.create_execution_context()
|
400 |
+
bindings = OrderedDict()
|
401 |
+
output_names = []
|
402 |
+
fp16 = False # default updated below
|
403 |
+
dynamic = False
|
404 |
+
for i in range(model.num_bindings):
|
405 |
+
name = model.get_binding_name(i)
|
406 |
+
dtype = trt.nptype(model.get_binding_dtype(i))
|
407 |
+
if model.binding_is_input(i):
|
408 |
+
if -1 in tuple(model.get_binding_shape(i)): # dynamic
|
409 |
+
dynamic = True
|
410 |
+
context.set_binding_shape(i, tuple(model.get_profile_shape(0, i)[2]))
|
411 |
+
if dtype == np.float16:
|
412 |
+
fp16 = True
|
413 |
+
else: # output
|
414 |
+
output_names.append(name)
|
415 |
+
shape = tuple(context.get_binding_shape(i))
|
416 |
+
im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device)
|
417 |
+
bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr()))
|
418 |
+
binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
|
419 |
+
batch_size = bindings['images'].shape[0] # if dynamic, this is instead max batch size
|
420 |
+
elif coreml: # CoreML
|
421 |
+
LOGGER.info(f'Loading {w} for CoreML inference...')
|
422 |
+
import coremltools as ct
|
423 |
+
model = ct.models.MLModel(w)
|
424 |
+
elif saved_model: # TF SavedModel
|
425 |
+
LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...')
|
426 |
+
import tensorflow as tf
|
427 |
+
keras = False # assume TF1 saved_model
|
428 |
+
model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
|
429 |
+
elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
|
430 |
+
LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...')
|
431 |
+
import tensorflow as tf
|
432 |
+
|
433 |
+
def wrap_frozen_graph(gd, inputs, outputs):
|
434 |
+
x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped
|
435 |
+
ge = x.graph.as_graph_element
|
436 |
+
return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
|
437 |
+
|
438 |
+
def gd_outputs(gd):
|
439 |
+
name_list, input_list = [], []
|
440 |
+
for node in gd.node: # tensorflow.core.framework.node_def_pb2.NodeDef
|
441 |
+
name_list.append(node.name)
|
442 |
+
input_list.extend(node.input)
|
443 |
+
return sorted(f'{x}:0' for x in list(set(name_list) - set(input_list)) if not x.startswith('NoOp'))
|
444 |
+
|
445 |
+
gd = tf.Graph().as_graph_def() # TF GraphDef
|
446 |
+
with open(w, 'rb') as f:
|
447 |
+
gd.ParseFromString(f.read())
|
448 |
+
frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs=gd_outputs(gd))
|
449 |
+
elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
|
450 |
+
try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
|
451 |
+
from tflite_runtime.interpreter import Interpreter, load_delegate
|
452 |
+
except ImportError:
|
453 |
+
import tensorflow as tf
|
454 |
+
Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate,
|
455 |
+
if edgetpu: # TF Edge TPU https://coral.ai/software/#edgetpu-runtime
|
456 |
+
LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...')
|
457 |
+
delegate = {
|
458 |
+
'Linux': 'libedgetpu.so.1',
|
459 |
+
'Darwin': 'libedgetpu.1.dylib',
|
460 |
+
'Windows': 'edgetpu.dll'}[platform.system()]
|
461 |
+
interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
|
462 |
+
else: # TFLite
|
463 |
+
LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
|
464 |
+
interpreter = Interpreter(model_path=w) # load TFLite model
|
465 |
+
interpreter.allocate_tensors() # allocate
|
466 |
+
input_details = interpreter.get_input_details() # inputs
|
467 |
+
output_details = interpreter.get_output_details() # outputs
|
468 |
+
# load metadata
|
469 |
+
with contextlib.suppress(zipfile.BadZipFile):
|
470 |
+
with zipfile.ZipFile(w, "r") as model:
|
471 |
+
meta_file = model.namelist()[0]
|
472 |
+
meta = ast.literal_eval(model.read(meta_file).decode("utf-8"))
|
473 |
+
stride, names = int(meta['stride']), meta['names']
|
474 |
+
elif tfjs: # TF.js
|
475 |
+
raise NotImplementedError('ERROR: YOLOv5 TF.js inference is not supported')
|
476 |
+
elif paddle: # PaddlePaddle
|
477 |
+
LOGGER.info(f'Loading {w} for PaddlePaddle inference...')
|
478 |
+
check_requirements('paddlepaddle-gpu' if cuda else 'paddlepaddle')
|
479 |
+
import paddle.inference as pdi
|
480 |
+
if not Path(w).is_file(): # if not *.pdmodel
|
481 |
+
w = next(Path(w).rglob('*.pdmodel')) # get *.pdmodel file from *_paddle_model dir
|
482 |
+
weights = Path(w).with_suffix('.pdiparams')
|
483 |
+
config = pdi.Config(str(w), str(weights))
|
484 |
+
if cuda:
|
485 |
+
config.enable_use_gpu(memory_pool_init_size_mb=2048, device_id=0)
|
486 |
+
predictor = pdi.create_predictor(config)
|
487 |
+
input_handle = predictor.get_input_handle(predictor.get_input_names()[0])
|
488 |
+
output_names = predictor.get_output_names()
|
489 |
+
elif triton: # NVIDIA Triton Inference Server
|
490 |
+
LOGGER.info(f'Using {w} as Triton Inference Server...')
|
491 |
+
check_requirements('tritonclient[all]')
|
492 |
+
from utils.triton import TritonRemoteModel
|
493 |
+
model = TritonRemoteModel(url=w)
|
494 |
+
nhwc = model.runtime.startswith("tensorflow")
|
495 |
+
else:
|
496 |
+
raise NotImplementedError(f'ERROR: {w} is not a supported format')
|
497 |
+
|
498 |
+
# class names
|
499 |
+
if 'names' not in locals():
|
500 |
+
names = yaml_load(data)['names'] if data else {i: f'class{i}' for i in range(999)}
|
501 |
+
if names[0] == 'n01440764' and len(names) == 1000: # ImageNet
|
502 |
+
names = yaml_load(ROOT / 'data/ImageNet.yaml')['names'] # human-readable names
|
503 |
+
|
504 |
+
self.__dict__.update(locals()) # assign all variables to self
|
505 |
+
|
506 |
+
def forward(self, im, augment=False, visualize=False):
|
507 |
+
# YOLOv5 MultiBackend inference
|
508 |
+
b, ch, h, w = im.shape # batch, channel, height, width
|
509 |
+
if self.fp16 and im.dtype != torch.float16:
|
510 |
+
im = im.half() # to FP16
|
511 |
+
if self.nhwc:
|
512 |
+
im = im.permute(0, 2, 3, 1) # torch BCHW to numpy BHWC shape(1,320,192,3)
|
513 |
+
|
514 |
+
if self.pt: # PyTorch
|
515 |
+
y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im)
|
516 |
+
elif self.jit: # TorchScript
|
517 |
+
y = self.model(im)
|
518 |
+
elif self.dnn: # ONNX OpenCV DNN
|
519 |
+
im = im.cpu().numpy() # torch to numpy
|
520 |
+
self.net.setInput(im)
|
521 |
+
y = self.net.forward()
|
522 |
+
elif self.onnx: # ONNX Runtime
|
523 |
+
im = im.cpu().numpy() # torch to numpy
|
524 |
+
y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im})
|
525 |
+
elif self.xml: # OpenVINO
|
526 |
+
im = im.cpu().numpy() # FP32
|
527 |
+
y = list(self.executable_network([im]).values())
|
528 |
+
elif self.engine: # TensorRT
|
529 |
+
if self.dynamic and im.shape != self.bindings['images'].shape:
|
530 |
+
i = self.model.get_binding_index('images')
|
531 |
+
self.context.set_binding_shape(i, im.shape) # reshape if dynamic
|
532 |
+
self.bindings['images'] = self.bindings['images']._replace(shape=im.shape)
|
533 |
+
for name in self.output_names:
|
534 |
+
i = self.model.get_binding_index(name)
|
535 |
+
self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i)))
|
536 |
+
s = self.bindings['images'].shape
|
537 |
+
assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
|
538 |
+
self.binding_addrs['images'] = int(im.data_ptr())
|
539 |
+
self.context.execute_v2(list(self.binding_addrs.values()))
|
540 |
+
y = [self.bindings[x].data for x in sorted(self.output_names)]
|
541 |
+
elif self.coreml: # CoreML
|
542 |
+
im = im.cpu().numpy()
|
543 |
+
im = Image.fromarray((im[0] * 255).astype('uint8'))
|
544 |
+
# im = im.resize((192, 320), Image.ANTIALIAS)
|
545 |
+
y = self.model.predict({'image': im}) # coordinates are xywh normalized
|
546 |
+
if 'confidence' in y:
|
547 |
+
box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels
|
548 |
+
conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float)
|
549 |
+
y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
|
550 |
+
else:
|
551 |
+
y = list(reversed(y.values())) # reversed for segmentation models (pred, proto)
|
552 |
+
elif self.paddle: # PaddlePaddle
|
553 |
+
im = im.cpu().numpy().astype(np.float32)
|
554 |
+
self.input_handle.copy_from_cpu(im)
|
555 |
+
self.predictor.run()
|
556 |
+
y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names]
|
557 |
+
elif self.triton: # NVIDIA Triton Inference Server
|
558 |
+
y = self.model(im)
|
559 |
+
else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
|
560 |
+
im = im.cpu().numpy()
|
561 |
+
if self.saved_model: # SavedModel
|
562 |
+
y = self.model(im, training=False) if self.keras else self.model(im)
|
563 |
+
elif self.pb: # GraphDef
|
564 |
+
y = self.frozen_func(x=self.tf.constant(im))
|
565 |
+
else: # Lite or Edge TPU
|
566 |
+
input = self.input_details[0]
|
567 |
+
int8 = input['dtype'] == np.uint8 # is TFLite quantized uint8 model
|
568 |
+
if int8:
|
569 |
+
scale, zero_point = input['quantization']
|
570 |
+
im = (im / scale + zero_point).astype(np.uint8) # de-scale
|
571 |
+
self.interpreter.set_tensor(input['index'], im)
|
572 |
+
self.interpreter.invoke()
|
573 |
+
y = []
|
574 |
+
for output in self.output_details:
|
575 |
+
x = self.interpreter.get_tensor(output['index'])
|
576 |
+
if int8:
|
577 |
+
scale, zero_point = output['quantization']
|
578 |
+
x = (x.astype(np.float32) - zero_point) * scale # re-scale
|
579 |
+
y.append(x)
|
580 |
+
y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y]
|
581 |
+
y[0][..., :4] *= [w, h, w, h] # xywh normalized to pixels
|
582 |
+
|
583 |
+
if isinstance(y, (list, tuple)):
|
584 |
+
return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y]
|
585 |
+
else:
|
586 |
+
return self.from_numpy(y)
|
587 |
+
|
588 |
+
def from_numpy(self, x):
|
589 |
+
return torch.from_numpy(x).to(self.device) if isinstance(x, np.ndarray) else x
|
590 |
+
|
591 |
+
def warmup(self, imgsz=(1, 3, 640, 640)):
|
592 |
+
# Warmup model by running inference once
|
593 |
+
warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb, self.triton
|
594 |
+
if any(warmup_types) and (self.device.type != 'cpu' or self.triton):
|
595 |
+
im = torch.empty(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input
|
596 |
+
for _ in range(2 if self.jit else 1): #
|
597 |
+
self.forward(im) # warmup
|
598 |
+
|
599 |
+
@staticmethod
|
600 |
+
def _model_type(p='path/to/model.pt'):
|
601 |
+
# Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
|
602 |
+
# types = [pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle]
|
603 |
+
from export import export_formats
|
604 |
+
from utils.downloads import is_url
|
605 |
+
sf = list(export_formats().Suffix) # export suffixes
|
606 |
+
if not is_url(p, check=False):
|
607 |
+
check_suffix(p, sf) # checks
|
608 |
+
url = urlparse(p) # if url may be Triton inference server
|
609 |
+
types = [s in Path(p).name for s in sf]
|
610 |
+
types[8] &= not types[9] # tflite &= not edgetpu
|
611 |
+
triton = not any(types) and all([any(s in url.scheme for s in ["http", "grpc"]), url.netloc])
|
612 |
+
return types + [triton]
|
613 |
+
|
614 |
+
@staticmethod
|
615 |
+
def _load_metadata(f=Path('path/to/meta.yaml')):
|
616 |
+
# Load metadata from meta.yaml if it exists
|
617 |
+
if f.exists():
|
618 |
+
d = yaml_load(f)
|
619 |
+
return d['stride'], d['names'] # assign stride, names
|
620 |
+
return None, None
|
621 |
+
|
622 |
+
|
623 |
+
class AutoShape(nn.Module):
|
624 |
+
# YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
|
625 |
+
conf = 0.25 # NMS confidence threshold
|
626 |
+
iou = 0.45 # NMS IoU threshold
|
627 |
+
agnostic = False # NMS class-agnostic
|
628 |
+
multi_label = False # NMS multiple labels per box
|
629 |
+
classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
|
630 |
+
max_det = 1000 # maximum number of detections per image
|
631 |
+
amp = False # Automatic Mixed Precision (AMP) inference
|
632 |
+
|
633 |
+
def __init__(self, model, verbose=True):
|
634 |
+
super().__init__()
|
635 |
+
if verbose:
|
636 |
+
LOGGER.info('Adding AutoShape... ')
|
637 |
+
copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=()) # copy attributes
|
638 |
+
self.dmb = isinstance(model, DetectMultiBackend) # DetectMultiBackend() instance
|
639 |
+
self.pt = not self.dmb or model.pt # PyTorch model
|
640 |
+
self.model = model.eval()
|
641 |
+
if self.pt:
|
642 |
+
m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
|
643 |
+
m.inplace = False # Detect.inplace=False for safe multithread inference
|
644 |
+
m.export = True # do not output loss values
|
645 |
+
|
646 |
+
def _apply(self, fn):
|
647 |
+
# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
|
648 |
+
self = super()._apply(fn)
|
649 |
+
if self.pt:
|
650 |
+
m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
|
651 |
+
m.stride = fn(m.stride)
|
652 |
+
m.grid = list(map(fn, m.grid))
|
653 |
+
if isinstance(m.anchor_grid, list):
|
654 |
+
m.anchor_grid = list(map(fn, m.anchor_grid))
|
655 |
+
return self
|
656 |
+
|
657 |
+
@smart_inference_mode()
|
658 |
+
def forward(self, ims, size=640, augment=False, profile=False):
|
659 |
+
# Inference from various sources. For size(height=640, width=1280), RGB images example inputs are:
|
660 |
+
# file: ims = 'data/images/zidane.jpg' # str or PosixPath
|
661 |
+
# URI: = 'https://ultralytics.com/images/zidane.jpg'
|
662 |
+
# OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
|
663 |
+
# PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3)
|
664 |
+
# numpy: = np.zeros((640,1280,3)) # HWC
|
665 |
+
# torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
|
666 |
+
# multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
|
667 |
+
|
668 |
+
dt = (Profile(), Profile(), Profile())
|
669 |
+
with dt[0]:
|
670 |
+
if isinstance(size, int): # expand
|
671 |
+
size = (size, size)
|
672 |
+
p = next(self.model.parameters()) if self.pt else torch.empty(1, device=self.model.device) # param
|
673 |
+
autocast = self.amp and (p.device.type != 'cpu') # Automatic Mixed Precision (AMP) inference
|
674 |
+
if isinstance(ims, torch.Tensor): # torch
|
675 |
+
with amp.autocast(autocast):
|
676 |
+
return self.model(ims.to(p.device).type_as(p), augment=augment) # inference
|
677 |
+
|
678 |
+
# Pre-process
|
679 |
+
n, ims = (len(ims), list(ims)) if isinstance(ims, (list, tuple)) else (1, [ims]) # number, list of images
|
680 |
+
shape0, shape1, files = [], [], [] # image and inference shapes, filenames
|
681 |
+
for i, im in enumerate(ims):
|
682 |
+
f = f'image{i}' # filename
|
683 |
+
if isinstance(im, (str, Path)): # filename or uri
|
684 |
+
im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
|
685 |
+
im = np.asarray(exif_transpose(im))
|
686 |
+
elif isinstance(im, Image.Image): # PIL Image
|
687 |
+
im, f = np.asarray(exif_transpose(im)), getattr(im, 'filename', f) or f
|
688 |
+
files.append(Path(f).with_suffix('.jpg').name)
|
689 |
+
if im.shape[0] < 5: # image in CHW
|
690 |
+
im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
|
691 |
+
im = im[..., :3] if im.ndim == 3 else cv2.cvtColor(im, cv2.COLOR_GRAY2BGR) # enforce 3ch input
|
692 |
+
s = im.shape[:2] # HWC
|
693 |
+
shape0.append(s) # image shape
|
694 |
+
g = max(size) / max(s) # gain
|
695 |
+
shape1.append([int(y * g) for y in s])
|
696 |
+
ims[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update
|
697 |
+
shape1 = [make_divisible(x, self.stride) for x in np.array(shape1).max(0)] # inf shape
|
698 |
+
x = [letterbox(im, shape1, auto=False)[0] for im in ims] # pad
|
699 |
+
x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW
|
700 |
+
x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32
|
701 |
+
|
702 |
+
with amp.autocast(autocast):
|
703 |
+
# Inference
|
704 |
+
with dt[1]:
|
705 |
+
y = self.model(x, augment=augment) # forward
|
706 |
+
|
707 |
+
# Post-process
|
708 |
+
with dt[2]:
|
709 |
+
y = non_max_suppression(y if self.dmb else y[0],
|
710 |
+
self.conf,
|
711 |
+
self.iou,
|
712 |
+
self.classes,
|
713 |
+
self.agnostic,
|
714 |
+
self.multi_label,
|
715 |
+
max_det=self.max_det) # NMS
|
716 |
+
for i in range(n):
|
717 |
+
scale_boxes(shape1, y[i][:, :4], shape0[i])
|
718 |
+
|
719 |
+
return Detections(ims, y, files, dt, self.names, x.shape)
|
720 |
+
|
721 |
+
|
722 |
+
class Detections:
|
723 |
+
# YOLOv5 detections class for inference results
|
724 |
+
def __init__(self, ims, pred, files, times=(0, 0, 0), names=None, shape=None):
|
725 |
+
super().__init__()
|
726 |
+
d = pred[0].device # device
|
727 |
+
gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in ims] # normalizations
|
728 |
+
self.ims = ims # list of images as numpy arrays
|
729 |
+
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
|
730 |
+
self.names = names # class names
|
731 |
+
self.files = files # image filenames
|
732 |
+
self.times = times # profiling times
|
733 |
+
self.xyxy = pred # xyxy pixels
|
734 |
+
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
|
735 |
+
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
|
736 |
+
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
|
737 |
+
self.n = len(self.pred) # number of images (batch size)
|
738 |
+
self.t = tuple(x.t / self.n * 1E3 for x in times) # timestamps (ms)
|
739 |
+
self.s = tuple(shape) # inference BCHW shape
|
740 |
+
|
741 |
+
def _run(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path('')):
|
742 |
+
s, crops = '', []
|
743 |
+
for i, (im, pred) in enumerate(zip(self.ims, self.pred)):
|
744 |
+
s += f'\nimage {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string
|
745 |
+
if pred.shape[0]:
|
746 |
+
for c in pred[:, -1].unique():
|
747 |
+
n = (pred[:, -1] == c).sum() # detections per class
|
748 |
+
s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
|
749 |
+
s = s.rstrip(', ')
|
750 |
+
if show or save or render or crop:
|
751 |
+
annotator = Annotator(im, example=str(self.names))
|
752 |
+
for *box, conf, cls in reversed(pred): # xyxy, confidence, class
|
753 |
+
label = f'{self.names[int(cls)]} {conf:.2f}'
|
754 |
+
if crop:
|
755 |
+
file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None
|
756 |
+
crops.append({
|
757 |
+
'box': box,
|
758 |
+
'conf': conf,
|
759 |
+
'cls': cls,
|
760 |
+
'label': label,
|
761 |
+
'im': save_one_box(box, im, file=file, save=save)})
|
762 |
+
else: # all others
|
763 |
+
annotator.box_label(box, label if labels else '', color=colors(cls))
|
764 |
+
im = annotator.im
|
765 |
+
else:
|
766 |
+
s += '(no detections)'
|
767 |
+
|
768 |
+
im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np
|
769 |
+
if show:
|
770 |
+
display(im) if is_notebook() else im.show(self.files[i])
|
771 |
+
if save:
|
772 |
+
f = self.files[i]
|
773 |
+
im.save(save_dir / f) # save
|
774 |
+
if i == self.n - 1:
|
775 |
+
LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
|
776 |
+
if render:
|
777 |
+
self.ims[i] = np.asarray(im)
|
778 |
+
if pprint:
|
779 |
+
s = s.lstrip('\n')
|
780 |
+
return f'{s}\nSpeed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {self.s}' % self.t
|
781 |
+
if crop:
|
782 |
+
if save:
|
783 |
+
LOGGER.info(f'Saved results to {save_dir}\n')
|
784 |
+
return crops
|
785 |
+
|
786 |
+
@TryExcept('Showing images is not supported in this environment')
|
787 |
+
def show(self, labels=True):
|
788 |
+
self._run(show=True, labels=labels) # show results
|
789 |
+
|
790 |
+
def save(self, labels=True, save_dir='runs/detect/exp', exist_ok=False):
|
791 |
+
save_dir = increment_path(save_dir, exist_ok, mkdir=True) # increment save_dir
|
792 |
+
self._run(save=True, labels=labels, save_dir=save_dir) # save results
|
793 |
+
|
794 |
+
def crop(self, save=True, save_dir='runs/detect/exp', exist_ok=False):
|
795 |
+
save_dir = increment_path(save_dir, exist_ok, mkdir=True) if save else None
|
796 |
+
return self._run(crop=True, save=save, save_dir=save_dir) # crop results
|
797 |
+
|
798 |
+
def render(self, labels=True):
|
799 |
+
self._run(render=True, labels=labels) # render results
|
800 |
+
return self.ims
|
801 |
+
|
802 |
+
def pandas(self):
|
803 |
+
# return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
|
804 |
+
new = copy(self) # return copy
|
805 |
+
ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
|
806 |
+
cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
|
807 |
+
for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
|
808 |
+
a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
|
809 |
+
setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
|
810 |
+
return new
|
811 |
+
|
812 |
+
def tolist(self):
|
813 |
+
# return a list of Detections objects, i.e. 'for result in results.tolist():'
|
814 |
+
r = range(self.n) # iterable
|
815 |
+
x = [Detections([self.ims[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r]
|
816 |
+
# for d in x:
|
817 |
+
# for k in ['ims', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
|
818 |
+
# setattr(d, k, getattr(d, k)[0]) # pop out of list
|
819 |
+
return x
|
820 |
+
|
821 |
+
def print(self):
|
822 |
+
LOGGER.info(self.__str__())
|
823 |
+
|
824 |
+
def __len__(self): # override len(results)
|
825 |
+
return self.n
|
826 |
+
|
827 |
+
def __str__(self): # override print(results)
|
828 |
+
return self._run(pprint=True) # print results
|
829 |
+
|
830 |
+
def __repr__(self):
|
831 |
+
return f'YOLOv5 {self.__class__} instance\n' + self.__str__()
|
832 |
+
|
833 |
+
|
834 |
+
class Proto(nn.Module):
|
835 |
+
# YOLOv5 mask Proto module for segmentation models
|
836 |
+
def __init__(self, c1, c_=256, c2=32): # ch_in, number of protos, number of masks
|
837 |
+
super().__init__()
|
838 |
+
self.cv1 = Conv(c1, c_, k=3)
|
839 |
+
self.upsample = nn.Upsample(scale_factor=2, mode='nearest')
|
840 |
+
self.cv2 = Conv(c_, c_, k=3)
|
841 |
+
self.cv3 = Conv(c_, c2)
|
842 |
+
|
843 |
+
def forward(self, x):
|
844 |
+
return self.cv3(self.cv2(self.upsample(self.cv1(x))))
|
845 |
+
|
846 |
+
|
847 |
+
class Classify(nn.Module):
|
848 |
+
# YOLOv5 classification head, i.e. x(b,c1,20,20) to x(b,c2)
|
849 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
|
850 |
+
super().__init__()
|
851 |
+
c_ = 1280 # efficientnet_b0 size
|
852 |
+
self.conv = Conv(c1, c_, k, s, autopad(k, p), g)
|
853 |
+
self.pool = nn.AdaptiveAvgPool2d(1) # to x(b,c_,1,1)
|
854 |
+
self.drop = nn.Dropout(p=0.0, inplace=True)
|
855 |
+
self.linear = nn.Linear(c_, c2) # to x(b,c2)
|
856 |
+
|
857 |
+
def forward(self, x):
|
858 |
+
if isinstance(x, list):
|
859 |
+
x = torch.cat(x, 1)
|
860 |
+
return self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
|
models/experimental.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Experimental modules
|
4 |
+
"""
|
5 |
+
import math
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
|
11 |
+
from utils.downloads import attempt_download
|
12 |
+
|
13 |
+
|
14 |
+
class Sum(nn.Module):
|
15 |
+
# Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
|
16 |
+
def __init__(self, n, weight=False): # n: number of inputs
|
17 |
+
super().__init__()
|
18 |
+
self.weight = weight # apply weights boolean
|
19 |
+
self.iter = range(n - 1) # iter object
|
20 |
+
if weight:
|
21 |
+
self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True) # layer weights
|
22 |
+
|
23 |
+
def forward(self, x):
|
24 |
+
y = x[0] # no weight
|
25 |
+
if self.weight:
|
26 |
+
w = torch.sigmoid(self.w) * 2
|
27 |
+
for i in self.iter:
|
28 |
+
y = y + x[i + 1] * w[i]
|
29 |
+
else:
|
30 |
+
for i in self.iter:
|
31 |
+
y = y + x[i + 1]
|
32 |
+
return y
|
33 |
+
|
34 |
+
|
35 |
+
class MixConv2d(nn.Module):
|
36 |
+
# Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595
|
37 |
+
def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): # ch_in, ch_out, kernel, stride, ch_strategy
|
38 |
+
super().__init__()
|
39 |
+
n = len(k) # number of convolutions
|
40 |
+
if equal_ch: # equal c_ per group
|
41 |
+
i = torch.linspace(0, n - 1E-6, c2).floor() # c2 indices
|
42 |
+
c_ = [(i == g).sum() for g in range(n)] # intermediate channels
|
43 |
+
else: # equal weight.numel() per group
|
44 |
+
b = [c2] + [0] * n
|
45 |
+
a = np.eye(n + 1, n, k=-1)
|
46 |
+
a -= np.roll(a, 1, axis=1)
|
47 |
+
a *= np.array(k) ** 2
|
48 |
+
a[0] = 1
|
49 |
+
c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
|
50 |
+
|
51 |
+
self.m = nn.ModuleList([
|
52 |
+
nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)])
|
53 |
+
self.bn = nn.BatchNorm2d(c2)
|
54 |
+
self.act = nn.SiLU()
|
55 |
+
|
56 |
+
def forward(self, x):
|
57 |
+
return self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
|
58 |
+
|
59 |
+
|
60 |
+
class Ensemble(nn.ModuleList):
|
61 |
+
# Ensemble of models
|
62 |
+
def __init__(self):
|
63 |
+
super().__init__()
|
64 |
+
|
65 |
+
def forward(self, x, augment=False, profile=False, visualize=False):
|
66 |
+
y = [module(x, augment, profile, visualize)[0] for module in self]
|
67 |
+
# y = torch.stack(y).max(0)[0] # max ensemble
|
68 |
+
# y = torch.stack(y).mean(0) # mean ensemble
|
69 |
+
y = torch.cat(y, 1) # nms ensemble
|
70 |
+
return y, None # inference, train output
|
71 |
+
|
72 |
+
|
73 |
+
def attempt_load(weights, device=None, inplace=True, fuse=True):
|
74 |
+
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
|
75 |
+
from models.yolo import Detect, Model
|
76 |
+
|
77 |
+
model = Ensemble()
|
78 |
+
for w in weights if isinstance(weights, list) else [weights]:
|
79 |
+
ckpt = torch.load(attempt_download(w), map_location='cpu') # load
|
80 |
+
ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model
|
81 |
+
|
82 |
+
# Model compatibility updates
|
83 |
+
if not hasattr(ckpt, 'stride'):
|
84 |
+
ckpt.stride = torch.tensor([32.])
|
85 |
+
if hasattr(ckpt, 'names') and isinstance(ckpt.names, (list, tuple)):
|
86 |
+
ckpt.names = dict(enumerate(ckpt.names)) # convert to dict
|
87 |
+
|
88 |
+
model.append(ckpt.fuse().eval() if fuse and hasattr(ckpt, 'fuse') else ckpt.eval()) # model in eval mode
|
89 |
+
|
90 |
+
# Module compatibility updates
|
91 |
+
for m in model.modules():
|
92 |
+
t = type(m)
|
93 |
+
if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model):
|
94 |
+
m.inplace = inplace # torch 1.7.0 compatibility
|
95 |
+
if t is Detect and not isinstance(m.anchor_grid, list):
|
96 |
+
delattr(m, 'anchor_grid')
|
97 |
+
setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl)
|
98 |
+
elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
|
99 |
+
m.recompute_scale_factor = None # torch 1.11.0 compatibility
|
100 |
+
|
101 |
+
# Return model
|
102 |
+
if len(model) == 1:
|
103 |
+
return model[-1]
|
104 |
+
|
105 |
+
# Return detection ensemble
|
106 |
+
print(f'Ensemble created with {weights}\n')
|
107 |
+
for k in 'names', 'nc', 'yaml':
|
108 |
+
setattr(model, k, getattr(model[0], k))
|
109 |
+
model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
|
110 |
+
assert all(model[0].nc == m.nc for m in model), f'Models have different class counts: {[m.nc for m in model]}'
|
111 |
+
return model
|
models/hub/anchors.yaml
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
# Default anchors for COCO data
|
3 |
+
|
4 |
+
|
5 |
+
# P5 -------------------------------------------------------------------------------------------------------------------
|
6 |
+
# P5-640:
|
7 |
+
anchors_p5_640:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
|
13 |
+
# P6 -------------------------------------------------------------------------------------------------------------------
|
14 |
+
# P6-640: thr=0.25: 0.9964 BPR, 5.54 anchors past thr, n=12, img_size=640, metric_all=0.281/0.716-mean/best, past_thr=0.469-mean: 9,11, 21,19, 17,41, 43,32, 39,70, 86,64, 65,131, 134,130, 120,265, 282,180, 247,354, 512,387
|
15 |
+
anchors_p6_640:
|
16 |
+
- [9,11, 21,19, 17,41] # P3/8
|
17 |
+
- [43,32, 39,70, 86,64] # P4/16
|
18 |
+
- [65,131, 134,130, 120,265] # P5/32
|
19 |
+
- [282,180, 247,354, 512,387] # P6/64
|
20 |
+
|
21 |
+
# P6-1280: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1280, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792
|
22 |
+
anchors_p6_1280:
|
23 |
+
- [19,27, 44,40, 38,94] # P3/8
|
24 |
+
- [96,68, 86,152, 180,137] # P4/16
|
25 |
+
- [140,301, 303,264, 238,542] # P5/32
|
26 |
+
- [436,615, 739,380, 925,792] # P6/64
|
27 |
+
|
28 |
+
# P6-1920: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1920, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 28,41, 67,59, 57,141, 144,103, 129,227, 270,205, 209,452, 455,396, 358,812, 653,922, 1109,570, 1387,1187
|
29 |
+
anchors_p6_1920:
|
30 |
+
- [28,41, 67,59, 57,141] # P3/8
|
31 |
+
- [144,103, 129,227, 270,205] # P4/16
|
32 |
+
- [209,452, 455,396, 358,812] # P5/32
|
33 |
+
- [653,922, 1109,570, 1387,1187] # P6/64
|
34 |
+
|
35 |
+
|
36 |
+
# P7 -------------------------------------------------------------------------------------------------------------------
|
37 |
+
# P7-640: thr=0.25: 0.9962 BPR, 6.76 anchors past thr, n=15, img_size=640, metric_all=0.275/0.733-mean/best, past_thr=0.466-mean: 11,11, 13,30, 29,20, 30,46, 61,38, 39,92, 78,80, 146,66, 79,163, 149,150, 321,143, 157,303, 257,402, 359,290, 524,372
|
38 |
+
anchors_p7_640:
|
39 |
+
- [11,11, 13,30, 29,20] # P3/8
|
40 |
+
- [30,46, 61,38, 39,92] # P4/16
|
41 |
+
- [78,80, 146,66, 79,163] # P5/32
|
42 |
+
- [149,150, 321,143, 157,303] # P6/64
|
43 |
+
- [257,402, 359,290, 524,372] # P7/128
|
44 |
+
|
45 |
+
# P7-1280: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1280, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 19,22, 54,36, 32,77, 70,83, 138,71, 75,173, 165,159, 148,334, 375,151, 334,317, 251,626, 499,474, 750,326, 534,814, 1079,818
|
46 |
+
anchors_p7_1280:
|
47 |
+
- [19,22, 54,36, 32,77] # P3/8
|
48 |
+
- [70,83, 138,71, 75,173] # P4/16
|
49 |
+
- [165,159, 148,334, 375,151] # P5/32
|
50 |
+
- [334,317, 251,626, 499,474] # P6/64
|
51 |
+
- [750,326, 534,814, 1079,818] # P7/128
|
52 |
+
|
53 |
+
# P7-1920: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1920, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 29,34, 81,55, 47,115, 105,124, 207,107, 113,259, 247,238, 222,500, 563,227, 501,476, 376,939, 749,711, 1126,489, 801,1222, 1618,1227
|
54 |
+
anchors_p7_1920:
|
55 |
+
- [29,34, 81,55, 47,115] # P3/8
|
56 |
+
- [105,124, 207,107, 113,259] # P4/16
|
57 |
+
- [247,238, 222,500, 563,227] # P5/32
|
58 |
+
- [501,476, 376,939, 749,711] # P6/64
|
59 |
+
- [1126,489, 801,1222, 1618,1227] # P7/128
|
models/hub/yolov3-spp.yaml
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 1.0 # model depth multiple
|
6 |
+
width_multiple: 1.0 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# darknet53 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Conv, [32, 3, 1]], # 0
|
16 |
+
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
|
17 |
+
[-1, 1, Bottleneck, [64]],
|
18 |
+
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
|
19 |
+
[-1, 2, Bottleneck, [128]],
|
20 |
+
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
|
21 |
+
[-1, 8, Bottleneck, [256]],
|
22 |
+
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
|
23 |
+
[-1, 8, Bottleneck, [512]],
|
24 |
+
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
|
25 |
+
[-1, 4, Bottleneck, [1024]], # 10
|
26 |
+
]
|
27 |
+
|
28 |
+
# YOLOv3-SPP head
|
29 |
+
head:
|
30 |
+
[[-1, 1, Bottleneck, [1024, False]],
|
31 |
+
[-1, 1, SPP, [512, [5, 9, 13]]],
|
32 |
+
[-1, 1, Conv, [1024, 3, 1]],
|
33 |
+
[-1, 1, Conv, [512, 1, 1]],
|
34 |
+
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
|
35 |
+
|
36 |
+
[-2, 1, Conv, [256, 1, 1]],
|
37 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
38 |
+
[[-1, 8], 1, Concat, [1]], # cat backbone P4
|
39 |
+
[-1, 1, Bottleneck, [512, False]],
|
40 |
+
[-1, 1, Bottleneck, [512, False]],
|
41 |
+
[-1, 1, Conv, [256, 1, 1]],
|
42 |
+
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
|
43 |
+
|
44 |
+
[-2, 1, Conv, [128, 1, 1]],
|
45 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
46 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P3
|
47 |
+
[-1, 1, Bottleneck, [256, False]],
|
48 |
+
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
|
49 |
+
|
50 |
+
[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
51 |
+
]
|
models/hub/yolov3-tiny.yaml
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 1.0 # model depth multiple
|
6 |
+
width_multiple: 1.0 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [10,14, 23,27, 37,58] # P4/16
|
9 |
+
- [81,82, 135,169, 344,319] # P5/32
|
10 |
+
|
11 |
+
# YOLOv3-tiny backbone
|
12 |
+
backbone:
|
13 |
+
# [from, number, module, args]
|
14 |
+
[[-1, 1, Conv, [16, 3, 1]], # 0
|
15 |
+
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2
|
16 |
+
[-1, 1, Conv, [32, 3, 1]],
|
17 |
+
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4
|
18 |
+
[-1, 1, Conv, [64, 3, 1]],
|
19 |
+
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8
|
20 |
+
[-1, 1, Conv, [128, 3, 1]],
|
21 |
+
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16
|
22 |
+
[-1, 1, Conv, [256, 3, 1]],
|
23 |
+
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32
|
24 |
+
[-1, 1, Conv, [512, 3, 1]],
|
25 |
+
[-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]], # 11
|
26 |
+
[-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12
|
27 |
+
]
|
28 |
+
|
29 |
+
# YOLOv3-tiny head
|
30 |
+
head:
|
31 |
+
[[-1, 1, Conv, [1024, 3, 1]],
|
32 |
+
[-1, 1, Conv, [256, 1, 1]],
|
33 |
+
[-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large)
|
34 |
+
|
35 |
+
[-2, 1, Conv, [128, 1, 1]],
|
36 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
37 |
+
[[-1, 8], 1, Concat, [1]], # cat backbone P4
|
38 |
+
[-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium)
|
39 |
+
|
40 |
+
[[19, 15], 1, Detect, [nc, anchors]], # Detect(P4, P5)
|
41 |
+
]
|
models/hub/yolov3.yaml
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 1.0 # model depth multiple
|
6 |
+
width_multiple: 1.0 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# darknet53 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Conv, [32, 3, 1]], # 0
|
16 |
+
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
|
17 |
+
[-1, 1, Bottleneck, [64]],
|
18 |
+
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
|
19 |
+
[-1, 2, Bottleneck, [128]],
|
20 |
+
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
|
21 |
+
[-1, 8, Bottleneck, [256]],
|
22 |
+
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
|
23 |
+
[-1, 8, Bottleneck, [512]],
|
24 |
+
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
|
25 |
+
[-1, 4, Bottleneck, [1024]], # 10
|
26 |
+
]
|
27 |
+
|
28 |
+
# YOLOv3 head
|
29 |
+
head:
|
30 |
+
[[-1, 1, Bottleneck, [1024, False]],
|
31 |
+
[-1, 1, Conv, [512, 1, 1]],
|
32 |
+
[-1, 1, Conv, [1024, 3, 1]],
|
33 |
+
[-1, 1, Conv, [512, 1, 1]],
|
34 |
+
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
|
35 |
+
|
36 |
+
[-2, 1, Conv, [256, 1, 1]],
|
37 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
38 |
+
[[-1, 8], 1, Concat, [1]], # cat backbone P4
|
39 |
+
[-1, 1, Bottleneck, [512, False]],
|
40 |
+
[-1, 1, Bottleneck, [512, False]],
|
41 |
+
[-1, 1, Conv, [256, 1, 1]],
|
42 |
+
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
|
43 |
+
|
44 |
+
[-2, 1, Conv, [128, 1, 1]],
|
45 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
46 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P3
|
47 |
+
[-1, 1, Bottleneck, [256, False]],
|
48 |
+
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
|
49 |
+
|
50 |
+
[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
51 |
+
]
|