sdwalker62 commited on
Commit
26ccc67
1 Parent(s): ebdaf41

Upload 416 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. CITATION.cff +14 -0
  2. CONTRIBUTING.md +93 -0
  3. LICENSE +674 -0
  4. README.md +467 -13
  5. app.py +122 -0
  6. benchmarks.py +169 -0
  7. classify/predict.py +226 -0
  8. classify/train.py +333 -0
  9. classify/tutorial.ipynb +0 -0
  10. classify/val.py +170 -0
  11. data.yaml +13 -0
  12. data/Argoverse.yaml +74 -0
  13. data/GlobalWheat2020.yaml +54 -0
  14. data/ImageNet.yaml +1022 -0
  15. data/Objects365.yaml +438 -0
  16. data/SKU-110K.yaml +53 -0
  17. data/VOC.yaml +100 -0
  18. data/VisDrone.yaml +70 -0
  19. data/coco.yaml +116 -0
  20. data/coco128-seg.yaml +101 -0
  21. data/coco128.yaml +101 -0
  22. data/hyps/hyp.Objects365.yaml +34 -0
  23. data/hyps/hyp.VOC.yaml +40 -0
  24. data/hyps/hyp.no-augmentation.yaml +35 -0
  25. data/hyps/hyp.scratch-high.yaml +34 -0
  26. data/hyps/hyp.scratch-low.yaml +34 -0
  27. data/hyps/hyp.scratch-med.yaml +34 -0
  28. data/scripts/download_weights.sh +22 -0
  29. data/scripts/get_coco.sh +56 -0
  30. data/scripts/get_coco128.sh +17 -0
  31. data/scripts/get_imagenet.sh +51 -0
  32. data/xView.yaml +153 -0
  33. detect.py +261 -0
  34. export.py +653 -0
  35. hubconf.py +169 -0
  36. models/__init__.py +0 -0
  37. models/__pycache__/__init__.cpython-310.pyc +0 -0
  38. models/__pycache__/__init__.cpython-38.pyc +0 -0
  39. models/__pycache__/common.cpython-310.pyc +0 -0
  40. models/__pycache__/common.cpython-38.pyc +0 -0
  41. models/__pycache__/experimental.cpython-310.pyc +0 -0
  42. models/__pycache__/experimental.cpython-38.pyc +0 -0
  43. models/__pycache__/yolo.cpython-310.pyc +0 -0
  44. models/__pycache__/yolo.cpython-38.pyc +0 -0
  45. models/common.py +860 -0
  46. models/experimental.py +111 -0
  47. models/hub/anchors.yaml +59 -0
  48. models/hub/yolov3-spp.yaml +51 -0
  49. models/hub/yolov3-tiny.yaml +41 -0
  50. models/hub/yolov3.yaml +51 -0
CITATION.cff ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ cff-version: 1.2.0
2
+ preferred-citation:
3
+ type: software
4
+ message: If you use YOLOv5, please cite it as below.
5
+ authors:
6
+ - family-names: Jocher
7
+ given-names: Glenn
8
+ orcid: "https://orcid.org/0000-0001-5950-6979"
9
+ title: "YOLOv5 by Ultralytics"
10
+ version: 7.0
11
+ doi: 10.5281/zenodo.3908559
12
+ date-released: 2020-5-29
13
+ license: GPL-3.0
14
+ url: "https://github.com/ultralytics/yolov5"
CONTRIBUTING.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Contributing to YOLOv5 🚀
2
+
3
+ We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible, whether it's:
4
+
5
+ - Reporting a bug
6
+ - Discussing the current state of the code
7
+ - Submitting a fix
8
+ - Proposing a new feature
9
+ - Becoming a maintainer
10
+
11
+ YOLOv5 works so well due to our combined community effort, and for every small improvement you contribute you will be
12
+ helping push the frontiers of what's possible in AI 😃!
13
+
14
+ ## Submitting a Pull Request (PR) 🛠️
15
+
16
+ Submitting a PR is easy! This example shows how to submit a PR for updating `requirements.txt` in 4 steps:
17
+
18
+ ### 1. Select File to Update
19
+
20
+ Select `requirements.txt` to update by clicking on it in GitHub.
21
+
22
+ <p align="center"><img width="800" alt="PR_step1" src="https://user-images.githubusercontent.com/26833433/122260847-08be2600-ced4-11eb-828b-8287ace4136c.png"></p>
23
+
24
+ ### 2. Click 'Edit this file'
25
+
26
+ Button is in top-right corner.
27
+
28
+ <p align="center"><img width="800" alt="PR_step2" src="https://user-images.githubusercontent.com/26833433/122260844-06f46280-ced4-11eb-9eec-b8a24be519ca.png"></p>
29
+
30
+ ### 3. Make Changes
31
+
32
+ Change `matplotlib` version from `3.2.2` to `3.3`.
33
+
34
+ <p align="center"><img width="800" alt="PR_step3" src="https://user-images.githubusercontent.com/26833433/122260853-0a87e980-ced4-11eb-9fd2-3650fb6e0842.png"></p>
35
+
36
+ ### 4. Preview Changes and Submit PR
37
+
38
+ Click on the **Preview changes** tab to verify your updates. At the bottom of the screen select 'Create a **new branch**
39
+ for this commit', assign your branch a descriptive name such as `fix/matplotlib_version` and click the green **Propose
40
+ changes** button. All done, your PR is now submitted to YOLOv5 for review and approval 😃!
41
+
42
+ <p align="center"><img width="800" alt="PR_step4" src="https://user-images.githubusercontent.com/26833433/122260856-0b208000-ced4-11eb-8e8e-77b6151cbcc3.png"></p>
43
+
44
+ ### PR recommendations
45
+
46
+ To allow your work to be integrated as seamlessly as possible, we advise you to:
47
+
48
+ - ✅ Verify your PR is **up-to-date** with `ultralytics/yolov5` `master` branch. If your PR is behind you can update
49
+ your code by clicking the 'Update branch' button or by running `git pull` and `git merge master` locally.
50
+
51
+ <p align="center"><img width="751" alt="Screenshot 2022-08-29 at 22 47 15" src="https://user-images.githubusercontent.com/26833433/187295893-50ed9f44-b2c9-4138-a614-de69bd1753d7.png"></p>
52
+
53
+ - ✅ Verify all YOLOv5 Continuous Integration (CI) **checks are passing**.
54
+
55
+ <p align="center"><img width="751" alt="Screenshot 2022-08-29 at 22 47 03" src="https://user-images.githubusercontent.com/26833433/187296922-545c5498-f64a-4d8c-8300-5fa764360da6.png"></p>
56
+
57
+ - ✅ Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase
58
+ but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_ — Bruce Lee
59
+
60
+ ## Submitting a Bug Report 🐛
61
+
62
+ If you spot a problem with YOLOv5 please submit a Bug Report!
63
+
64
+ For us to start investigating a possible problem we need to be able to reproduce it ourselves first. We've created a few
65
+ short guidelines below to help users provide what we need in order to get started.
66
+
67
+ When asking a question, people will be better able to provide help if you provide **code** that they can easily
68
+ understand and use to **reproduce** the problem. This is referred to by community members as creating
69
+ a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example). Your code that reproduces
70
+ the problem should be:
71
+
72
+ - ✅ **Minimal** – Use as little code as possible that still produces the same problem
73
+ - ✅ **Complete** – Provide **all** parts someone else needs to reproduce your problem in the question itself
74
+ - ✅ **Reproducible** – Test the code you're about to provide to make sure it reproduces the problem
75
+
76
+ In addition to the above requirements, for [Ultralytics](https://ultralytics.com/) to provide assistance your code
77
+ should be:
78
+
79
+ - ✅ **Current** – Verify that your code is up-to-date with current
80
+ GitHub [master](https://github.com/ultralytics/yolov5/tree/master), and if necessary `git pull` or `git clone` a new
81
+ copy to ensure your problem has not already been resolved by previous commits.
82
+ - ✅ **Unmodified** – Your problem must be reproducible without any modifications to the codebase in this
83
+ repository. [Ultralytics](https://ultralytics.com/) does not provide support for custom code ⚠️.
84
+
85
+ If you believe your problem meets all of the above criteria, please close this issue and raise a new one using the 🐛
86
+ **Bug Report** [template](https://github.com/ultralytics/yolov5/issues/new/choose) and providing
87
+ a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) to help us better
88
+ understand and diagnose your problem.
89
+
90
+ ## License
91
+
92
+ By contributing, you agree that your contributions will be licensed under
93
+ the [GPL-3.0 license](https://choosealicense.com/licenses/gpl-3.0/)
LICENSE ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU GENERAL PUBLIC LICENSE
2
+ Version 3, 29 June 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU General Public License is a free, copyleft license for
11
+ software and other kinds of works.
12
+
13
+ The licenses for most software and other practical works are designed
14
+ to take away your freedom to share and change the works. By contrast,
15
+ the GNU General Public License is intended to guarantee your freedom to
16
+ share and change all versions of a program--to make sure it remains free
17
+ software for all its users. We, the Free Software Foundation, use the
18
+ GNU General Public License for most of our software; it applies also to
19
+ any other work released this way by its authors. You can apply it to
20
+ your programs, too.
21
+
22
+ When we speak of free software, we are referring to freedom, not
23
+ price. Our General Public Licenses are designed to make sure that you
24
+ have the freedom to distribute copies of free software (and charge for
25
+ them if you wish), that you receive source code or can get it if you
26
+ want it, that you can change the software or use pieces of it in new
27
+ free programs, and that you know you can do these things.
28
+
29
+ To protect your rights, we need to prevent others from denying you
30
+ these rights or asking you to surrender the rights. Therefore, you have
31
+ certain responsibilities if you distribute copies of the software, or if
32
+ you modify it: responsibilities to respect the freedom of others.
33
+
34
+ For example, if you distribute copies of such a program, whether
35
+ gratis or for a fee, you must pass on to the recipients the same
36
+ freedoms that you received. You must make sure that they, too, receive
37
+ or can get the source code. And you must show them these terms so they
38
+ know their rights.
39
+
40
+ Developers that use the GNU GPL protect your rights with two steps:
41
+ (1) assert copyright on the software, and (2) offer you this License
42
+ giving you legal permission to copy, distribute and/or modify it.
43
+
44
+ For the developers' and authors' protection, the GPL clearly explains
45
+ that there is no warranty for this free software. For both users' and
46
+ authors' sake, the GPL requires that modified versions be marked as
47
+ changed, so that their problems will not be attributed erroneously to
48
+ authors of previous versions.
49
+
50
+ Some devices are designed to deny users access to install or run
51
+ modified versions of the software inside them, although the manufacturer
52
+ can do so. This is fundamentally incompatible with the aim of
53
+ protecting users' freedom to change the software. The systematic
54
+ pattern of such abuse occurs in the area of products for individuals to
55
+ use, which is precisely where it is most unacceptable. Therefore, we
56
+ have designed this version of the GPL to prohibit the practice for those
57
+ products. If such problems arise substantially in other domains, we
58
+ stand ready to extend this provision to those domains in future versions
59
+ of the GPL, as needed to protect the freedom of users.
60
+
61
+ Finally, every program is threatened constantly by software patents.
62
+ States should not allow patents to restrict development and use of
63
+ software on general-purpose computers, but in those that do, we wish to
64
+ avoid the special danger that patents applied to a free program could
65
+ make it effectively proprietary. To prevent this, the GPL assures that
66
+ patents cannot be used to render the program non-free.
67
+
68
+ The precise terms and conditions for copying, distribution and
69
+ modification follow.
70
+
71
+ TERMS AND CONDITIONS
72
+
73
+ 0. Definitions.
74
+
75
+ "This License" refers to version 3 of the GNU General Public License.
76
+
77
+ "Copyright" also means copyright-like laws that apply to other kinds of
78
+ works, such as semiconductor masks.
79
+
80
+ "The Program" refers to any copyrightable work licensed under this
81
+ License. Each licensee is addressed as "you". "Licensees" and
82
+ "recipients" may be individuals or organizations.
83
+
84
+ To "modify" a work means to copy from or adapt all or part of the work
85
+ in a fashion requiring copyright permission, other than the making of an
86
+ exact copy. The resulting work is called a "modified version" of the
87
+ earlier work or a work "based on" the earlier work.
88
+
89
+ A "covered work" means either the unmodified Program or a work based
90
+ on the Program.
91
+
92
+ To "propagate" a work means to do anything with it that, without
93
+ permission, would make you directly or secondarily liable for
94
+ infringement under applicable copyright law, except executing it on a
95
+ computer or modifying a private copy. Propagation includes copying,
96
+ distribution (with or without modification), making available to the
97
+ public, and in some countries other activities as well.
98
+
99
+ To "convey" a work means any kind of propagation that enables other
100
+ parties to make or receive copies. Mere interaction with a user through
101
+ a computer network, with no transfer of a copy, is not conveying.
102
+
103
+ An interactive user interface displays "Appropriate Legal Notices"
104
+ to the extent that it includes a convenient and prominently visible
105
+ feature that (1) displays an appropriate copyright notice, and (2)
106
+ tells the user that there is no warranty for the work (except to the
107
+ extent that warranties are provided), that licensees may convey the
108
+ work under this License, and how to view a copy of this License. If
109
+ the interface presents a list of user commands or options, such as a
110
+ menu, a prominent item in the list meets this criterion.
111
+
112
+ 1. Source Code.
113
+
114
+ The "source code" for a work means the preferred form of the work
115
+ for making modifications to it. "Object code" means any non-source
116
+ form of a work.
117
+
118
+ A "Standard Interface" means an interface that either is an official
119
+ standard defined by a recognized standards body, or, in the case of
120
+ interfaces specified for a particular programming language, one that
121
+ is widely used among developers working in that language.
122
+
123
+ The "System Libraries" of an executable work include anything, other
124
+ than the work as a whole, that (a) is included in the normal form of
125
+ packaging a Major Component, but which is not part of that Major
126
+ Component, and (b) serves only to enable use of the work with that
127
+ Major Component, or to implement a Standard Interface for which an
128
+ implementation is available to the public in source code form. A
129
+ "Major Component", in this context, means a major essential component
130
+ (kernel, window system, and so on) of the specific operating system
131
+ (if any) on which the executable work runs, or a compiler used to
132
+ produce the work, or an object code interpreter used to run it.
133
+
134
+ The "Corresponding Source" for a work in object code form means all
135
+ the source code needed to generate, install, and (for an executable
136
+ work) run the object code and to modify the work, including scripts to
137
+ control those activities. However, it does not include the work's
138
+ System Libraries, or general-purpose tools or generally available free
139
+ programs which are used unmodified in performing those activities but
140
+ which are not part of the work. For example, Corresponding Source
141
+ includes interface definition files associated with source files for
142
+ the work, and the source code for shared libraries and dynamically
143
+ linked subprograms that the work is specifically designed to require,
144
+ such as by intimate data communication or control flow between those
145
+ subprograms and other parts of the work.
146
+
147
+ The Corresponding Source need not include anything that users
148
+ can regenerate automatically from other parts of the Corresponding
149
+ Source.
150
+
151
+ The Corresponding Source for a work in source code form is that
152
+ same work.
153
+
154
+ 2. Basic Permissions.
155
+
156
+ All rights granted under this License are granted for the term of
157
+ copyright on the Program, and are irrevocable provided the stated
158
+ conditions are met. This License explicitly affirms your unlimited
159
+ permission to run the unmodified Program. The output from running a
160
+ covered work is covered by this License only if the output, given its
161
+ content, constitutes a covered work. This License acknowledges your
162
+ rights of fair use or other equivalent, as provided by copyright law.
163
+
164
+ You may make, run and propagate covered works that you do not
165
+ convey, without conditions so long as your license otherwise remains
166
+ in force. You may convey covered works to others for the sole purpose
167
+ of having them make modifications exclusively for you, or provide you
168
+ with facilities for running those works, provided that you comply with
169
+ the terms of this License in conveying all material for which you do
170
+ not control copyright. Those thus making or running the covered works
171
+ for you must do so exclusively on your behalf, under your direction
172
+ and control, on terms that prohibit them from making any copies of
173
+ your copyrighted material outside their relationship with you.
174
+
175
+ Conveying under any other circumstances is permitted solely under
176
+ the conditions stated below. Sublicensing is not allowed; section 10
177
+ makes it unnecessary.
178
+
179
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180
+
181
+ No covered work shall be deemed part of an effective technological
182
+ measure under any applicable law fulfilling obligations under article
183
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184
+ similar laws prohibiting or restricting circumvention of such
185
+ measures.
186
+
187
+ When you convey a covered work, you waive any legal power to forbid
188
+ circumvention of technological measures to the extent such circumvention
189
+ is effected by exercising rights under this License with respect to
190
+ the covered work, and you disclaim any intention to limit operation or
191
+ modification of the work as a means of enforcing, against the work's
192
+ users, your or third parties' legal rights to forbid circumvention of
193
+ technological measures.
194
+
195
+ 4. Conveying Verbatim Copies.
196
+
197
+ You may convey verbatim copies of the Program's source code as you
198
+ receive it, in any medium, provided that you conspicuously and
199
+ appropriately publish on each copy an appropriate copyright notice;
200
+ keep intact all notices stating that this License and any
201
+ non-permissive terms added in accord with section 7 apply to the code;
202
+ keep intact all notices of the absence of any warranty; and give all
203
+ recipients a copy of this License along with the Program.
204
+
205
+ You may charge any price or no price for each copy that you convey,
206
+ and you may offer support or warranty protection for a fee.
207
+
208
+ 5. Conveying Modified Source Versions.
209
+
210
+ You may convey a work based on the Program, or the modifications to
211
+ produce it from the Program, in the form of source code under the
212
+ terms of section 4, provided that you also meet all of these conditions:
213
+
214
+ a) The work must carry prominent notices stating that you modified
215
+ it, and giving a relevant date.
216
+
217
+ b) The work must carry prominent notices stating that it is
218
+ released under this License and any conditions added under section
219
+ 7. This requirement modifies the requirement in section 4 to
220
+ "keep intact all notices".
221
+
222
+ c) You must license the entire work, as a whole, under this
223
+ License to anyone who comes into possession of a copy. This
224
+ License will therefore apply, along with any applicable section 7
225
+ additional terms, to the whole of the work, and all its parts,
226
+ regardless of how they are packaged. This License gives no
227
+ permission to license the work in any other way, but it does not
228
+ invalidate such permission if you have separately received it.
229
+
230
+ d) If the work has interactive user interfaces, each must display
231
+ Appropriate Legal Notices; however, if the Program has interactive
232
+ interfaces that do not display Appropriate Legal Notices, your
233
+ work need not make them do so.
234
+
235
+ A compilation of a covered work with other separate and independent
236
+ works, which are not by their nature extensions of the covered work,
237
+ and which are not combined with it such as to form a larger program,
238
+ in or on a volume of a storage or distribution medium, is called an
239
+ "aggregate" if the compilation and its resulting copyright are not
240
+ used to limit the access or legal rights of the compilation's users
241
+ beyond what the individual works permit. Inclusion of a covered work
242
+ in an aggregate does not cause this License to apply to the other
243
+ parts of the aggregate.
244
+
245
+ 6. Conveying Non-Source Forms.
246
+
247
+ You may convey a covered work in object code form under the terms
248
+ of sections 4 and 5, provided that you also convey the
249
+ machine-readable Corresponding Source under the terms of this License,
250
+ in one of these ways:
251
+
252
+ a) Convey the object code in, or embodied in, a physical product
253
+ (including a physical distribution medium), accompanied by the
254
+ Corresponding Source fixed on a durable physical medium
255
+ customarily used for software interchange.
256
+
257
+ b) Convey the object code in, or embodied in, a physical product
258
+ (including a physical distribution medium), accompanied by a
259
+ written offer, valid for at least three years and valid for as
260
+ long as you offer spare parts or customer support for that product
261
+ model, to give anyone who possesses the object code either (1) a
262
+ copy of the Corresponding Source for all the software in the
263
+ product that is covered by this License, on a durable physical
264
+ medium customarily used for software interchange, for a price no
265
+ more than your reasonable cost of physically performing this
266
+ conveying of source, or (2) access to copy the
267
+ Corresponding Source from a network server at no charge.
268
+
269
+ c) Convey individual copies of the object code with a copy of the
270
+ written offer to provide the Corresponding Source. This
271
+ alternative is allowed only occasionally and noncommercially, and
272
+ only if you received the object code with such an offer, in accord
273
+ with subsection 6b.
274
+
275
+ d) Convey the object code by offering access from a designated
276
+ place (gratis or for a charge), and offer equivalent access to the
277
+ Corresponding Source in the same way through the same place at no
278
+ further charge. You need not require recipients to copy the
279
+ Corresponding Source along with the object code. If the place to
280
+ copy the object code is a network server, the Corresponding Source
281
+ may be on a different server (operated by you or a third party)
282
+ that supports equivalent copying facilities, provided you maintain
283
+ clear directions next to the object code saying where to find the
284
+ Corresponding Source. Regardless of what server hosts the
285
+ Corresponding Source, you remain obligated to ensure that it is
286
+ available for as long as needed to satisfy these requirements.
287
+
288
+ e) Convey the object code using peer-to-peer transmission, provided
289
+ you inform other peers where the object code and Corresponding
290
+ Source of the work are being offered to the general public at no
291
+ charge under subsection 6d.
292
+
293
+ A separable portion of the object code, whose source code is excluded
294
+ from the Corresponding Source as a System Library, need not be
295
+ included in conveying the object code work.
296
+
297
+ A "User Product" is either (1) a "consumer product", which means any
298
+ tangible personal property which is normally used for personal, family,
299
+ or household purposes, or (2) anything designed or sold for incorporation
300
+ into a dwelling. In determining whether a product is a consumer product,
301
+ doubtful cases shall be resolved in favor of coverage. For a particular
302
+ product received by a particular user, "normally used" refers to a
303
+ typical or common use of that class of product, regardless of the status
304
+ of the particular user or of the way in which the particular user
305
+ actually uses, or expects or is expected to use, the product. A product
306
+ is a consumer product regardless of whether the product has substantial
307
+ commercial, industrial or non-consumer uses, unless such uses represent
308
+ the only significant mode of use of the product.
309
+
310
+ "Installation Information" for a User Product means any methods,
311
+ procedures, authorization keys, or other information required to install
312
+ and execute modified versions of a covered work in that User Product from
313
+ a modified version of its Corresponding Source. The information must
314
+ suffice to ensure that the continued functioning of the modified object
315
+ code is in no case prevented or interfered with solely because
316
+ modification has been made.
317
+
318
+ If you convey an object code work under this section in, or with, or
319
+ specifically for use in, a User Product, and the conveying occurs as
320
+ part of a transaction in which the right of possession and use of the
321
+ User Product is transferred to the recipient in perpetuity or for a
322
+ fixed term (regardless of how the transaction is characterized), the
323
+ Corresponding Source conveyed under this section must be accompanied
324
+ by the Installation Information. But this requirement does not apply
325
+ if neither you nor any third party retains the ability to install
326
+ modified object code on the User Product (for example, the work has
327
+ been installed in ROM).
328
+
329
+ The requirement to provide Installation Information does not include a
330
+ requirement to continue to provide support service, warranty, or updates
331
+ for a work that has been modified or installed by the recipient, or for
332
+ the User Product in which it has been modified or installed. Access to a
333
+ network may be denied when the modification itself materially and
334
+ adversely affects the operation of the network or violates the rules and
335
+ protocols for communication across the network.
336
+
337
+ Corresponding Source conveyed, and Installation Information provided,
338
+ in accord with this section must be in a format that is publicly
339
+ documented (and with an implementation available to the public in
340
+ source code form), and must require no special password or key for
341
+ unpacking, reading or copying.
342
+
343
+ 7. Additional Terms.
344
+
345
+ "Additional permissions" are terms that supplement the terms of this
346
+ License by making exceptions from one or more of its conditions.
347
+ Additional permissions that are applicable to the entire Program shall
348
+ be treated as though they were included in this License, to the extent
349
+ that they are valid under applicable law. If additional permissions
350
+ apply only to part of the Program, that part may be used separately
351
+ under those permissions, but the entire Program remains governed by
352
+ this License without regard to the additional permissions.
353
+
354
+ When you convey a copy of a covered work, you may at your option
355
+ remove any additional permissions from that copy, or from any part of
356
+ it. (Additional permissions may be written to require their own
357
+ removal in certain cases when you modify the work.) You may place
358
+ additional permissions on material, added by you to a covered work,
359
+ for which you have or can give appropriate copyright permission.
360
+
361
+ Notwithstanding any other provision of this License, for material you
362
+ add to a covered work, you may (if authorized by the copyright holders of
363
+ that material) supplement the terms of this License with terms:
364
+
365
+ a) Disclaiming warranty or limiting liability differently from the
366
+ terms of sections 15 and 16 of this License; or
367
+
368
+ b) Requiring preservation of specified reasonable legal notices or
369
+ author attributions in that material or in the Appropriate Legal
370
+ Notices displayed by works containing it; or
371
+
372
+ c) Prohibiting misrepresentation of the origin of that material, or
373
+ requiring that modified versions of such material be marked in
374
+ reasonable ways as different from the original version; or
375
+
376
+ d) Limiting the use for publicity purposes of names of licensors or
377
+ authors of the material; or
378
+
379
+ e) Declining to grant rights under trademark law for use of some
380
+ trade names, trademarks, or service marks; or
381
+
382
+ f) Requiring indemnification of licensors and authors of that
383
+ material by anyone who conveys the material (or modified versions of
384
+ it) with contractual assumptions of liability to the recipient, for
385
+ any liability that these contractual assumptions directly impose on
386
+ those licensors and authors.
387
+
388
+ All other non-permissive additional terms are considered "further
389
+ restrictions" within the meaning of section 10. If the Program as you
390
+ received it, or any part of it, contains a notice stating that it is
391
+ governed by this License along with a term that is a further
392
+ restriction, you may remove that term. If a license document contains
393
+ a further restriction but permits relicensing or conveying under this
394
+ License, you may add to a covered work material governed by the terms
395
+ of that license document, provided that the further restriction does
396
+ not survive such relicensing or conveying.
397
+
398
+ If you add terms to a covered work in accord with this section, you
399
+ must place, in the relevant source files, a statement of the
400
+ additional terms that apply to those files, or a notice indicating
401
+ where to find the applicable terms.
402
+
403
+ Additional terms, permissive or non-permissive, may be stated in the
404
+ form of a separately written license, or stated as exceptions;
405
+ the above requirements apply either way.
406
+
407
+ 8. Termination.
408
+
409
+ You may not propagate or modify a covered work except as expressly
410
+ provided under this License. Any attempt otherwise to propagate or
411
+ modify it is void, and will automatically terminate your rights under
412
+ this License (including any patent licenses granted under the third
413
+ paragraph of section 11).
414
+
415
+ However, if you cease all violation of this License, then your
416
+ license from a particular copyright holder is reinstated (a)
417
+ provisionally, unless and until the copyright holder explicitly and
418
+ finally terminates your license, and (b) permanently, if the copyright
419
+ holder fails to notify you of the violation by some reasonable means
420
+ prior to 60 days after the cessation.
421
+
422
+ Moreover, your license from a particular copyright holder is
423
+ reinstated permanently if the copyright holder notifies you of the
424
+ violation by some reasonable means, this is the first time you have
425
+ received notice of violation of this License (for any work) from that
426
+ copyright holder, and you cure the violation prior to 30 days after
427
+ your receipt of the notice.
428
+
429
+ Termination of your rights under this section does not terminate the
430
+ licenses of parties who have received copies or rights from you under
431
+ this License. If your rights have been terminated and not permanently
432
+ reinstated, you do not qualify to receive new licenses for the same
433
+ material under section 10.
434
+
435
+ 9. Acceptance Not Required for Having Copies.
436
+
437
+ You are not required to accept this License in order to receive or
438
+ run a copy of the Program. Ancillary propagation of a covered work
439
+ occurring solely as a consequence of using peer-to-peer transmission
440
+ to receive a copy likewise does not require acceptance. However,
441
+ nothing other than this License grants you permission to propagate or
442
+ modify any covered work. These actions infringe copyright if you do
443
+ not accept this License. Therefore, by modifying or propagating a
444
+ covered work, you indicate your acceptance of this License to do so.
445
+
446
+ 10. Automatic Licensing of Downstream Recipients.
447
+
448
+ Each time you convey a covered work, the recipient automatically
449
+ receives a license from the original licensors, to run, modify and
450
+ propagate that work, subject to this License. You are not responsible
451
+ for enforcing compliance by third parties with this License.
452
+
453
+ An "entity transaction" is a transaction transferring control of an
454
+ organization, or substantially all assets of one, or subdividing an
455
+ organization, or merging organizations. If propagation of a covered
456
+ work results from an entity transaction, each party to that
457
+ transaction who receives a copy of the work also receives whatever
458
+ licenses to the work the party's predecessor in interest had or could
459
+ give under the previous paragraph, plus a right to possession of the
460
+ Corresponding Source of the work from the predecessor in interest, if
461
+ the predecessor has it or can get it with reasonable efforts.
462
+
463
+ You may not impose any further restrictions on the exercise of the
464
+ rights granted or affirmed under this License. For example, you may
465
+ not impose a license fee, royalty, or other charge for exercise of
466
+ rights granted under this License, and you may not initiate litigation
467
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
468
+ any patent claim is infringed by making, using, selling, offering for
469
+ sale, or importing the Program or any portion of it.
470
+
471
+ 11. Patents.
472
+
473
+ A "contributor" is a copyright holder who authorizes use under this
474
+ License of the Program or a work on which the Program is based. The
475
+ work thus licensed is called the contributor's "contributor version".
476
+
477
+ A contributor's "essential patent claims" are all patent claims
478
+ owned or controlled by the contributor, whether already acquired or
479
+ hereafter acquired, that would be infringed by some manner, permitted
480
+ by this License, of making, using, or selling its contributor version,
481
+ but do not include claims that would be infringed only as a
482
+ consequence of further modification of the contributor version. For
483
+ purposes of this definition, "control" includes the right to grant
484
+ patent sublicenses in a manner consistent with the requirements of
485
+ this License.
486
+
487
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
488
+ patent license under the contributor's essential patent claims, to
489
+ make, use, sell, offer for sale, import and otherwise run, modify and
490
+ propagate the contents of its contributor version.
491
+
492
+ In the following three paragraphs, a "patent license" is any express
493
+ agreement or commitment, however denominated, not to enforce a patent
494
+ (such as an express permission to practice a patent or covenant not to
495
+ sue for patent infringement). To "grant" such a patent license to a
496
+ party means to make such an agreement or commitment not to enforce a
497
+ patent against the party.
498
+
499
+ If you convey a covered work, knowingly relying on a patent license,
500
+ and the Corresponding Source of the work is not available for anyone
501
+ to copy, free of charge and under the terms of this License, through a
502
+ publicly available network server or other readily accessible means,
503
+ then you must either (1) cause the Corresponding Source to be so
504
+ available, or (2) arrange to deprive yourself of the benefit of the
505
+ patent license for this particular work, or (3) arrange, in a manner
506
+ consistent with the requirements of this License, to extend the patent
507
+ license to downstream recipients. "Knowingly relying" means you have
508
+ actual knowledge that, but for the patent license, your conveying the
509
+ covered work in a country, or your recipient's use of the covered work
510
+ in a country, would infringe one or more identifiable patents in that
511
+ country that you have reason to believe are valid.
512
+
513
+ If, pursuant to or in connection with a single transaction or
514
+ arrangement, you convey, or propagate by procuring conveyance of, a
515
+ covered work, and grant a patent license to some of the parties
516
+ receiving the covered work authorizing them to use, propagate, modify
517
+ or convey a specific copy of the covered work, then the patent license
518
+ you grant is automatically extended to all recipients of the covered
519
+ work and works based on it.
520
+
521
+ A patent license is "discriminatory" if it does not include within
522
+ the scope of its coverage, prohibits the exercise of, or is
523
+ conditioned on the non-exercise of one or more of the rights that are
524
+ specifically granted under this License. You may not convey a covered
525
+ work if you are a party to an arrangement with a third party that is
526
+ in the business of distributing software, under which you make payment
527
+ to the third party based on the extent of your activity of conveying
528
+ the work, and under which the third party grants, to any of the
529
+ parties who would receive the covered work from you, a discriminatory
530
+ patent license (a) in connection with copies of the covered work
531
+ conveyed by you (or copies made from those copies), or (b) primarily
532
+ for and in connection with specific products or compilations that
533
+ contain the covered work, unless you entered into that arrangement,
534
+ or that patent license was granted, prior to 28 March 2007.
535
+
536
+ Nothing in this License shall be construed as excluding or limiting
537
+ any implied license or other defenses to infringement that may
538
+ otherwise be available to you under applicable patent law.
539
+
540
+ 12. No Surrender of Others' Freedom.
541
+
542
+ If conditions are imposed on you (whether by court order, agreement or
543
+ otherwise) that contradict the conditions of this License, they do not
544
+ excuse you from the conditions of this License. If you cannot convey a
545
+ covered work so as to satisfy simultaneously your obligations under this
546
+ License and any other pertinent obligations, then as a consequence you may
547
+ not convey it at all. For example, if you agree to terms that obligate you
548
+ to collect a royalty for further conveying from those to whom you convey
549
+ the Program, the only way you could satisfy both those terms and this
550
+ License would be to refrain entirely from conveying the Program.
551
+
552
+ 13. Use with the GNU Affero General Public License.
553
+
554
+ Notwithstanding any other provision of this License, you have
555
+ permission to link or combine any covered work with a work licensed
556
+ under version 3 of the GNU Affero General Public License into a single
557
+ combined work, and to convey the resulting work. The terms of this
558
+ License will continue to apply to the part which is the covered work,
559
+ but the special requirements of the GNU Affero General Public License,
560
+ section 13, concerning interaction through a network will apply to the
561
+ combination as such.
562
+
563
+ 14. Revised Versions of this License.
564
+
565
+ The Free Software Foundation may publish revised and/or new versions of
566
+ the GNU General Public License from time to time. Such new versions will
567
+ be similar in spirit to the present version, but may differ in detail to
568
+ address new problems or concerns.
569
+
570
+ Each version is given a distinguishing version number. If the
571
+ Program specifies that a certain numbered version of the GNU General
572
+ Public License "or any later version" applies to it, you have the
573
+ option of following the terms and conditions either of that numbered
574
+ version or of any later version published by the Free Software
575
+ Foundation. If the Program does not specify a version number of the
576
+ GNU General Public License, you may choose any version ever published
577
+ by the Free Software Foundation.
578
+
579
+ If the Program specifies that a proxy can decide which future
580
+ versions of the GNU General Public License can be used, that proxy's
581
+ public statement of acceptance of a version permanently authorizes you
582
+ to choose that version for the Program.
583
+
584
+ Later license versions may give you additional or different
585
+ permissions. However, no additional obligations are imposed on any
586
+ author or copyright holder as a result of your choosing to follow a
587
+ later version.
588
+
589
+ 15. Disclaimer of Warranty.
590
+
591
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599
+
600
+ 16. Limitation of Liability.
601
+
602
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610
+ SUCH DAMAGES.
611
+
612
+ 17. Interpretation of Sections 15 and 16.
613
+
614
+ If the disclaimer of warranty and limitation of liability provided
615
+ above cannot be given local legal effect according to their terms,
616
+ reviewing courts shall apply local law that most closely approximates
617
+ an absolute waiver of all civil liability in connection with the
618
+ Program, unless a warranty or assumption of liability accompanies a
619
+ copy of the Program in return for a fee.
620
+
621
+ END OF TERMS AND CONDITIONS
622
+
623
+ How to Apply These Terms to Your New Programs
624
+
625
+ If you develop a new program, and you want it to be of the greatest
626
+ possible use to the public, the best way to achieve this is to make it
627
+ free software which everyone can redistribute and change under these terms.
628
+
629
+ To do so, attach the following notices to the program. It is safest
630
+ to attach them to the start of each source file to most effectively
631
+ state the exclusion of warranty; and each file should have at least
632
+ the "copyright" line and a pointer to where the full notice is found.
633
+
634
+ <one line to give the program's name and a brief idea of what it does.>
635
+ Copyright (C) <year> <name of author>
636
+
637
+ This program is free software: you can redistribute it and/or modify
638
+ it under the terms of the GNU General Public License as published by
639
+ the Free Software Foundation, either version 3 of the License, or
640
+ (at your option) any later version.
641
+
642
+ This program is distributed in the hope that it will be useful,
643
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
644
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645
+ GNU General Public License for more details.
646
+
647
+ You should have received a copy of the GNU General Public License
648
+ along with this program. If not, see <http://www.gnu.org/licenses/>.
649
+
650
+ Also add information on how to contact you by electronic and paper mail.
651
+
652
+ If the program does terminal interaction, make it output a short
653
+ notice like this when it starts in an interactive mode:
654
+
655
+ <program> Copyright (C) <year> <name of author>
656
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657
+ This is free software, and you are welcome to redistribute it
658
+ under certain conditions; type `show c' for details.
659
+
660
+ The hypothetical commands `show w' and `show c' should show the appropriate
661
+ parts of the General Public License. Of course, your program's commands
662
+ might be different; for a GUI interface, you would use an "about box".
663
+
664
+ You should also get your employer (if you work as a programmer) or school,
665
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
666
+ For more information on this, and how to apply and follow the GNU GPL, see
667
+ <http://www.gnu.org/licenses/>.
668
+
669
+ The GNU General Public License does not permit incorporating your program
670
+ into proprietary programs. If your program is a subroutine library, you
671
+ may consider it more useful to permit linking proprietary applications with
672
+ the library. If this is what you want to do, use the GNU Lesser General
673
+ Public License instead of this License. But first, please read
674
+ <http://www.gnu.org/philosophy/why-not-lgpl.html>.
README.md CHANGED
@@ -1,13 +1,467 @@
1
- ---
2
- title: Unreal Engine 5 Tanks YOLOv5
3
- emoji:
4
- colorFrom: indigo
5
- colorTo: pink
6
- sdk: streamlit
7
- sdk_version: 1.15.2
8
- app_file: app.py
9
- pinned: false
10
- license: bsd
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <div align="center">
2
+ <p>
3
+ <a align="center" href="https://ultralytics.com/yolov5" target="_blank">
4
+ <img width="850" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png"></a>
5
+ </p>
6
+
7
+ [English](README.md) | [简体中文](README.zh-CN.md)
8
+ <br>
9
+ <div>
10
+ <a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI"></a>
11
+ <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
12
+ <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
13
+ <br>
14
+ <a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a>
15
+ <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
16
+ <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
17
+ </div>
18
+ <br>
19
+
20
+ YOLOv5 🚀 is the world's most loved vision AI, representing <a href="https://ultralytics.com">Ultralytics</a> open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
21
+
22
+ To request an Enterprise License please complete the form at <a href="https://ultralytics.com/license">Ultralytics Licensing</a>.
23
+
24
+ <div align="center">
25
+ <a href="https://github.com/ultralytics" style="text-decoration:none;">
26
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="" /></a>
27
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
28
+ <a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;">
29
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="" /></a>
30
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
31
+ <a href="https://twitter.com/ultralytics" style="text-decoration:none;">
32
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="" /></a>
33
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
34
+ <a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;">
35
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-producthunt.png" width="2%" alt="" /></a>
36
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
37
+ <a href="https://youtube.com/ultralytics" style="text-decoration:none;">
38
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="" /></a>
39
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
40
+ <a href="https://www.facebook.com/ultralytics" style="text-decoration:none;">
41
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-facebook.png" width="2%" alt="" /></a>
42
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
43
+ <a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
44
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="2%" alt="" /></a>
45
+ </div>
46
+ </div>
47
+
48
+ ## <div align="center">Segmentation ⭐ NEW</div>
49
+
50
+ <div align="center">
51
+ <a align="center" href="https://ultralytics.com/yolov5" target="_blank">
52
+ <img width="800" src="https://user-images.githubusercontent.com/61612323/204180385-84f3aca9-a5e9-43d8-a617-dda7ca12e54a.png"></a>
53
+ </div>
54
+
55
+ Our new YOLOv5 [release v7.0](https://github.com/ultralytics/yolov5/releases/v7.0) instance segmentation models are the fastest and most accurate in the world, beating all current [SOTA benchmarks](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco). We've made them super simple to train, validate and deploy. See full details in our [Release Notes](https://github.com/ultralytics/yolov5/releases/v7.0) and visit our [YOLOv5 Segmentation Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/segment/tutorial.ipynb) for quickstart tutorials.
56
+
57
+ <details>
58
+ <summary>Segmentation Checkpoints</summary>
59
+
60
+ <br>
61
+
62
+ We trained YOLOv5 segmentations models on COCO for 300 epochs at image size 640 using A100 GPUs. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on Google [Colab Pro](https://colab.research.google.com/signup) notebooks for easy reproducibility.
63
+
64
+ | Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Train time<br><sup>300 epochs<br>A100 (hours) | Speed<br><sup>ONNX CPU<br>(ms) | Speed<br><sup>TRT A100<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@640 (B) |
65
+ |----------------------------------------------------------------------------------------------------|-----------------------|----------------------|-----------------------|-----------------------------------------------|--------------------------------|--------------------------------|--------------------|------------------------|
66
+ | [YOLOv5n-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-seg.pt) | 640 | 27.6 | 23.4 | 80:17 | **62.7** | **1.2** | **2.0** | **7.1** |
67
+ | [YOLOv5s-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt) | 640 | 37.6 | 31.7 | 88:16 | 173.3 | 1.4 | 7.6 | 26.4 |
68
+ | [YOLOv5m-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-seg.pt) | 640 | 45.0 | 37.1 | 108:36 | 427.0 | 2.2 | 22.0 | 70.8 |
69
+ | [YOLOv5l-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-seg.pt) | 640 | 49.0 | 39.9 | 66:43 (2x) | 857.4 | 2.9 | 47.9 | 147.7 |
70
+ | [YOLOv5x-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-seg.pt) | 640 | **50.7** | **41.4** | 62:56 (3x) | 1579.2 | 4.5 | 88.8 | 265.7 |
71
+
72
+ - All checkpoints are trained to 300 epochs with SGD optimizer with `lr0=0.01` and `weight_decay=5e-5` at image size 640 and all default settings.<br>Runs logged to https://wandb.ai/glenn-jocher/YOLOv5_v70_official
73
+ - **Accuracy** values are for single-model single-scale on COCO dataset.<br>Reproduce by `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt`
74
+ - **Speed** averaged over 100 inference images using a [Colab Pro](https://colab.research.google.com/signup) A100 High-RAM instance. Values indicate inference speed only (NMS adds about 1ms per image). <br>Reproduce by `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt --batch 1`
75
+ - **Export** to ONNX at FP32 and TensorRT at FP16 done with `export.py`. <br>Reproduce by `python export.py --weights yolov5s-seg.pt --include engine --device 0 --half`
76
+
77
+ </details>
78
+
79
+ <details>
80
+ <summary>Segmentation Usage Examples &nbsp;<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/segment/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a></summary>
81
+
82
+ ### Train
83
+ YOLOv5 segmentation training supports auto-download COCO128-seg segmentation dataset with `--data coco128-seg.yaml` argument and manual download of COCO-segments dataset with `bash data/scripts/get_coco.sh --train --val --segments` and then `python train.py --data coco.yaml`.
84
+
85
+ ```bash
86
+ # Single-GPU
87
+ python segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640
88
+
89
+ # Multi-GPU DDP
90
+ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 --device 0,1,2,3
91
+ ```
92
+
93
+ ### Val
94
+ Validate YOLOv5s-seg mask mAP on COCO dataset:
95
+ ```bash
96
+ bash data/scripts/get_coco.sh --val --segments # download COCO val segments split (780MB, 5000 images)
97
+ python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640 # validate
98
+ ```
99
+
100
+ ### Predict
101
+ Use pretrained YOLOv5m-seg.pt to predict bus.jpg:
102
+ ```bash
103
+ python segment/predict.py --weights yolov5m-seg.pt --data data/images/bus.jpg
104
+ ```
105
+ ```python
106
+ model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5m-seg.pt') # load from PyTorch Hub (WARNING: inference not yet supported)
107
+ ```
108
+
109
+ ![zidane](https://user-images.githubusercontent.com/26833433/203113421-decef4c4-183d-4a0a-a6c2-6435b33bc5d3.jpg) | ![bus](https://user-images.githubusercontent.com/26833433/203113416-11fe0025-69f7-4874-a0a6-65d0bfe2999a.jpg)
110
+ --- |---
111
+
112
+ ### Export
113
+ Export YOLOv5s-seg model to ONNX and TensorRT:
114
+ ```bash
115
+ python export.py --weights yolov5s-seg.pt --include onnx engine --img 640 --device 0
116
+ ```
117
+
118
+ </details>
119
+
120
+
121
+ ## <div align="center">Documentation</div>
122
+
123
+ See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment. See below for quickstart examples.
124
+
125
+ <details open>
126
+ <summary>Install</summary>
127
+
128
+ Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a
129
+ [**Python>=3.7.0**](https://www.python.org/) environment, including
130
+ [**PyTorch>=1.7**](https://pytorch.org/get-started/locally/).
131
+
132
+ ```bash
133
+ git clone https://github.com/ultralytics/yolov5 # clone
134
+ cd yolov5
135
+ pip install -r requirements.txt # install
136
+ ```
137
+
138
+ </details>
139
+
140
+ <details>
141
+ <summary>Inference</summary>
142
+
143
+ YOLOv5 [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest
144
+ YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).
145
+
146
+ ```python
147
+ import torch
148
+
149
+ # Model
150
+ model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5n - yolov5x6, custom
151
+
152
+ # Images
153
+ img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
154
+
155
+ # Inference
156
+ results = model(img)
157
+
158
+ # Results
159
+ results.print() # or .show(), .save(), .crop(), .pandas(), etc.
160
+ ```
161
+
162
+ </details>
163
+
164
+ <details>
165
+ <summary>Inference with detect.py</summary>
166
+
167
+ `detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from
168
+ the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
169
+
170
+ ```bash
171
+ python detect.py --weights yolov5s.pt --source 0 # webcam
172
+ img.jpg # image
173
+ vid.mp4 # video
174
+ screen # screenshot
175
+ path/ # directory
176
+ list.txt # list of images
177
+ list.streams # list of streams
178
+ 'path/*.jpg' # glob
179
+ 'https://youtu.be/Zgi9g1ksQHc' # YouTube
180
+ 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
181
+ ```
182
+
183
+ </details>
184
+
185
+ <details>
186
+ <summary>Training</summary>
187
+
188
+ The commands below reproduce YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh)
189
+ results. [Models](https://github.com/ultralytics/yolov5/tree/master/models)
190
+ and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest
191
+ YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are
192
+ 1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://github.com/ultralytics/yolov5/issues/475) times faster). Use the
193
+ largest `--batch-size` possible, or pass `--batch-size -1` for
194
+ YOLOv5 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB.
195
+
196
+ ```bash
197
+ python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml --batch-size 128
198
+ yolov5s 64
199
+ yolov5m 40
200
+ yolov5l 24
201
+ yolov5x 16
202
+ ```
203
+
204
+ <img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
205
+
206
+ </details>
207
+
208
+ <details open>
209
+ <summary>Tutorials</summary>
210
+
211
+ - [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)  🚀 RECOMMENDED
212
+ - [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results)  ☘️
213
+ RECOMMENDED
214
+ - [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
215
+ - [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) 🌟 NEW
216
+ - [TFLite, ONNX, CoreML, TensorRT Export](https://github.com/ultralytics/yolov5/issues/251) 🚀
217
+ - [NVIDIA Jetson Nano Deployment](https://github.com/ultralytics/yolov5/issues/9627) 🌟 NEW
218
+ - [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
219
+ - [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
220
+ - [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
221
+ - [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
222
+ - [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314)
223
+ - [Architecture Summary](https://github.com/ultralytics/yolov5/issues/6998) 🌟 NEW
224
+ - [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975)  🌟 NEW
225
+ - [ClearML Logging](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml) 🌟 NEW
226
+ - [YOLOv5 with Neural Magic's Deepsparse](https://bit.ly/yolov5-neuralmagic) 🌟 NEW
227
+ - [Comet Logging](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/comet) 🌟 NEW
228
+
229
+ </details>
230
+
231
+
232
+ ## <div align="center">Integrations</div>
233
+
234
+ <br>
235
+ <a align="center" href="https://bit.ly/ultralytics_hub" target="_blank">
236
+ <img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/integrations-loop.png"></a>
237
+ <br>
238
+ <br>
239
+
240
+ <div align="center">
241
+ <a href="https://roboflow.com/?ref=ultralytics">
242
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow.png" width="10%" /></a>
243
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
244
+ <a href="https://cutt.ly/yolov5-readme-clearml">
245
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-clearml.png" width="10%" /></a>
246
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
247
+ <a href="https://bit.ly/yolov5-readme-comet">
248
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-comet.png" width="10%" /></a>
249
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
250
+ <a href="https://bit.ly/yolov5-neuralmagic">
251
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-neuralmagic.png" width="10%" /></a>
252
+ </div>
253
+
254
+ |Roboflow|ClearML ⭐ NEW|Comet ⭐ NEW|Neural Magic ⭐ NEW|
255
+ |:-:|:-:|:-:|:-:|
256
+ |Label and export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics)|Automatically track, visualize and even remotely train YOLOv5 using [ClearML](https://cutt.ly/yolov5-readme-clearml) (open-source!)|Free forever, [Comet](https://bit.ly/yolov5-readme-comet2) lets you save YOLOv5 models, resume training, and interactively visualise and debug predictions|Run YOLOv5 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic)|
257
+
258
+
259
+ ## <div align="center">Ultralytics HUB</div>
260
+
261
+ [Ultralytics HUB](https://bit.ly/ultralytics_hub) is our ⭐ **NEW** no-code solution to visualize datasets, train YOLOv5 🚀 models, and deploy to the real world in a seamless experience. Get started for **Free** now!
262
+
263
+ <a align="center" href="https://bit.ly/ultralytics_hub" target="_blank">
264
+ <img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png"></a>
265
+
266
+
267
+ ## <div align="center">Why YOLOv5</div>
268
+
269
+ YOLOv5 has been designed to be super easy to get started and simple to learn. We prioritize real-world results.
270
+
271
+ <p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040763-93c22a27-347c-4e3c-847a-8094621d3f4e.png"></p>
272
+ <details>
273
+ <summary>YOLOv5-P5 640 Figure</summary>
274
+
275
+ <p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040757-ce0934a3-06a6-43dc-a979-2edbbd69ea0e.png"></p>
276
+ </details>
277
+ <details>
278
+ <summary>Figure Notes</summary>
279
+
280
+ - **COCO AP val** denotes [email protected]:0.95 metric measured on the 5000-image [COCO val2017](http://cocodataset.org) dataset over various inference sizes from 256 to 1536.
281
+ - **GPU Speed** measures average inference time per image on [COCO val2017](http://cocodataset.org) dataset using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100 instance at batch-size 32.
282
+ - **EfficientDet** data from [google/automl](https://github.com/google/automl) at batch size 8.
283
+ - **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
284
+
285
+ </details>
286
+
287
+ ### Pretrained Checkpoints
288
+
289
+ | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | mAP<sup>val<br>50 | Speed<br><sup>CPU b1<br>(ms) | Speed<br><sup>V100 b1<br>(ms) | Speed<br><sup>V100 b32<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@640 (B) |
290
+ |------------------------------------------------------------------------------------------------------|-----------------------|----------------------|-------------------|------------------------------|-------------------------------|--------------------------------|--------------------|------------------------|
291
+ | [YOLOv5n](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5n.pt) | 640 | 28.0 | 45.7 | **45** | **6.3** | **0.6** | **1.9** | **4.5** |
292
+ | [YOLOv5s](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s.pt) | 640 | 37.4 | 56.8 | 98 | 6.4 | 0.9 | 7.2 | 16.5 |
293
+ | [YOLOv5m](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5m.pt) | 640 | 45.4 | 64.1 | 224 | 8.2 | 1.7 | 21.2 | 49.0 |
294
+ | [YOLOv5l](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5l.pt) | 640 | 49.0 | 67.3 | 430 | 10.1 | 2.7 | 46.5 | 109.1 |
295
+ | [YOLOv5x](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5x.pt) | 640 | 50.7 | 68.9 | 766 | 12.1 | 4.8 | 86.7 | 205.7 |
296
+ | | | | | | | | | |
297
+ | [YOLOv5n6](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5n6.pt) | 1280 | 36.0 | 54.4 | 153 | 8.1 | 2.1 | 3.2 | 4.6 |
298
+ | [YOLOv5s6](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s6.pt) | 1280 | 44.8 | 63.7 | 385 | 8.2 | 3.6 | 12.6 | 16.8 |
299
+ | [YOLOv5m6](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5m6.pt) | 1280 | 51.3 | 69.3 | 887 | 11.1 | 6.8 | 35.7 | 50.0 |
300
+ | [YOLOv5l6](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5l6.pt) | 1280 | 53.7 | 71.3 | 1784 | 15.8 | 10.5 | 76.8 | 111.4 |
301
+ | [YOLOv5x6](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5x6.pt)<br>+ [TTA][tta] | 1280<br>1536 | 55.0<br>**55.8** | 72.7<br>**72.7** | 3136<br>- | 26.2<br>- | 19.4<br>- | 140.7<br>- | 209.8<br>- |
302
+
303
+ <details>
304
+ <summary>Table Notes</summary>
305
+
306
+ - All checkpoints are trained to 300 epochs with default settings. Nano and Small models use [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) hyps, all others use [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml).
307
+ - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.<br>Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
308
+ - **Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) instance. NMS times (~1 ms/img) not included.<br>Reproduce by `python val.py --data coco.yaml --img 640 --task speed --batch 1`
309
+ - **TTA** [Test Time Augmentation](https://github.com/ultralytics/yolov5/issues/303) includes reflection and scale augmentations.<br>Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
310
+
311
+ </details>
312
+
313
+
314
+ ## <div align="center">Classification ⭐ NEW</div>
315
+
316
+ YOLOv5 [release v6.2](https://github.com/ultralytics/yolov5/releases) brings support for classification model training, validation and deployment! See full details in our [Release Notes](https://github.com/ultralytics/yolov5/releases/v6.2) and visit our [YOLOv5 Classification Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/classify/tutorial.ipynb) for quickstart tutorials.
317
+
318
+ <details>
319
+ <summary>Classification Checkpoints</summary>
320
+
321
+ <br>
322
+
323
+ We trained YOLOv5-cls classification models on ImageNet for 90 epochs using a 4xA100 instance, and we trained ResNet and EfficientNet models alongside with the same default training settings to compare. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on Google [Colab Pro](https://colab.research.google.com/signup) for easy reproducibility.
324
+
325
+ | Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Training<br><sup>90 epochs<br>4xA100 (hours) | Speed<br><sup>ONNX CPU<br>(ms) | Speed<br><sup>TensorRT V100<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@224 (B) |
326
+ |----------------------------------------------------------------------------------------------------|-----------------------|------------------|------------------|----------------------------------------------|--------------------------------|-------------------------------------|--------------------|------------------------|
327
+ | [YOLOv5n-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5n-cls.pt) | 224 | 64.6 | 85.4 | 7:59 | **3.3** | **0.5** | **2.5** | **0.5** |
328
+ | [YOLOv5s-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s-cls.pt) | 224 | 71.5 | 90.2 | 8:09 | 6.6 | 0.6 | 5.4 | 1.4 |
329
+ | [YOLOv5m-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5m-cls.pt) | 224 | 75.9 | 92.9 | 10:06 | 15.5 | 0.9 | 12.9 | 3.9 |
330
+ | [YOLOv5l-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5l-cls.pt) | 224 | 78.0 | 94.0 | 11:56 | 26.9 | 1.4 | 26.5 | 8.5 |
331
+ | [YOLOv5x-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5x-cls.pt) | 224 | **79.0** | **94.4** | 15:04 | 54.3 | 1.8 | 48.1 | 15.9 |
332
+ | |
333
+ | [ResNet18](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet18.pt) | 224 | 70.3 | 89.5 | **6:47** | 11.2 | 0.5 | 11.7 | 3.7 |
334
+ | [ResNet34](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet34.pt) | 224 | 73.9 | 91.8 | 8:33 | 20.6 | 0.9 | 21.8 | 7.4 |
335
+ | [ResNet50](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet50.pt) | 224 | 76.8 | 93.4 | 11:10 | 23.4 | 1.0 | 25.6 | 8.5 |
336
+ | [ResNet101](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet101.pt) | 224 | 78.5 | 94.3 | 17:10 | 42.1 | 1.9 | 44.5 | 15.9 |
337
+ | |
338
+ | [EfficientNet_b0](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b0.pt) | 224 | 75.1 | 92.4 | 13:03 | 12.5 | 1.3 | 5.3 | 1.0 |
339
+ | [EfficientNet_b1](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b1.pt) | 224 | 76.4 | 93.2 | 17:04 | 14.9 | 1.6 | 7.8 | 1.5 |
340
+ | [EfficientNet_b2](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b2.pt) | 224 | 76.6 | 93.4 | 17:10 | 15.9 | 1.6 | 9.1 | 1.7 |
341
+ | [EfficientNet_b3](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b3.pt) | 224 | 77.7 | 94.0 | 19:19 | 18.9 | 1.9 | 12.2 | 2.4 |
342
+
343
+ <details>
344
+ <summary>Table Notes (click to expand)</summary>
345
+
346
+ - All checkpoints are trained to 90 epochs with SGD optimizer with `lr0=0.001` and `weight_decay=5e-5` at image size 224 and all default settings.<br>Runs logged to https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2
347
+ - **Accuracy** values are for single-model single-scale on [ImageNet-1k](https://www.image-net.org/index.php) dataset.<br>Reproduce by `python classify/val.py --data ../datasets/imagenet --img 224`
348
+ - **Speed** averaged over 100 inference images using a Google [Colab Pro](https://colab.research.google.com/signup) V100 High-RAM instance.<br>Reproduce by `python classify/val.py --data ../datasets/imagenet --img 224 --batch 1`
349
+ - **Export** to ONNX at FP32 and TensorRT at FP16 done with `export.py`. <br>Reproduce by `python export.py --weights yolov5s-cls.pt --include engine onnx --imgsz 224`
350
+ </details>
351
+ </details>
352
+
353
+ <details>
354
+ <summary>Classification Usage Examples &nbsp;<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/classify/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a></summary>
355
+
356
+ ### Train
357
+ YOLOv5 classification training supports auto-download of MNIST, Fashion-MNIST, CIFAR10, CIFAR100, Imagenette, Imagewoof, and ImageNet datasets with the `--data` argument. To start training on MNIST for example use `--data mnist`.
358
+
359
+ ```bash
360
+ # Single-GPU
361
+ python classify/train.py --model yolov5s-cls.pt --data cifar100 --epochs 5 --img 224 --batch 128
362
+
363
+ # Multi-GPU DDP
364
+ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
365
+ ```
366
+
367
+ ### Val
368
+ Validate YOLOv5m-cls accuracy on ImageNet-1k dataset:
369
+ ```bash
370
+ bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images)
371
+ python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224 # validate
372
+ ```
373
+
374
+ ### Predict
375
+ Use pretrained YOLOv5s-cls.pt to predict bus.jpg:
376
+ ```bash
377
+ python classify/predict.py --weights yolov5s-cls.pt --data data/images/bus.jpg
378
+ ```
379
+ ```python
380
+ model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s-cls.pt') # load from PyTorch Hub
381
+ ```
382
+
383
+ ### Export
384
+ Export a group of trained YOLOv5s-cls, ResNet and EfficientNet models to ONNX and TensorRT:
385
+ ```bash
386
+ python export.py --weights yolov5s-cls.pt resnet50.pt efficientnet_b0.pt --include onnx engine --img 224
387
+ ```
388
+ </details>
389
+
390
+
391
+ ## <div align="center">Environments</div>
392
+
393
+ Get started in seconds with our verified environments. Click each icon below for details.
394
+
395
+ <div align="center">
396
+ <a href="https://bit.ly/yolov5-paperspace-notebook">
397
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gradient.png" width="10%" /></a>
398
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
399
+ <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
400
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="10%" /></a>
401
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
402
+ <a href="https://www.kaggle.com/ultralytics/yolov5">
403
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="10%" /></a>
404
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
405
+ <a href="https://hub.docker.com/r/ultralytics/yolov5">
406
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="10%" /></a>
407
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
408
+ <a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart">
409
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="10%" /></a>
410
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
411
+ <a href="https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart">
412
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="10%" /></a>
413
+ </div>
414
+
415
+ ## <div align="center">App</div>
416
+
417
+ Run YOLOv5 models on your iOS or Android device by downloading the [Ultralytics App](https://ultralytics.com/app_install)!
418
+
419
+ <a align="center" href="https://ultralytics.com/app_install" target="_blank">
420
+ <img width="100%" alt="Ultralytics mobile app" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-app.png">
421
+
422
+
423
+ ## <div align="center">Contribute</div>
424
+
425
+ We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our [Contributing Guide](CONTRIBUTING.md) to get started, and fill out the [YOLOv5 Survey](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experiences. Thank you to all our contributors!
426
+
427
+ <!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
428
+ <a href="https://github.com/ultralytics/yolov5/graphs/contributors"><img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/image-contributors-1280.png" /></a>
429
+
430
+
431
+ ## <div align="center">License</div>
432
+
433
+ YOLOv5 is available under two different licenses:
434
+
435
+ - **GPL-3.0 License**: See [LICENSE](https://github.com/ultralytics/yolov5/blob/master/LICENSE) file for details.
436
+ - **Enterprise License**: Provides greater flexibility for commercial product development without the open-source requirements of GPL-3.0. Typical use cases are embedding Ultralytics software and AI models in commercial products and applications. Request an Enterprise License at [Ultralytics Licensing](https://ultralytics.com/license).
437
+
438
+
439
+ ## <div align="center">Contact</div>
440
+
441
+ For YOLOv5 bugs and feature requests please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues). For professional support please [Contact Us](https://ultralytics.com/contact).
442
+
443
+ <br>
444
+ <div align="center">
445
+ <a href="https://github.com/ultralytics" style="text-decoration:none;">
446
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="3%" alt="" /></a>
447
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
448
+ <a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;">
449
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="3%" alt="" /></a>
450
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
451
+ <a href="https://twitter.com/ultralytics" style="text-decoration:none;">
452
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="3%" alt="" /></a>
453
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
454
+ <a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;">
455
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-producthunt.png" width="3%" alt="" /></a>
456
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
457
+ <a href="https://youtube.com/ultralytics" style="text-decoration:none;">
458
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="3%" alt="" /></a>
459
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
460
+ <a href="https://www.facebook.com/ultralytics" style="text-decoration:none;">
461
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-facebook.png" width="3%" alt="" /></a>
462
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
463
+ <a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
464
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="3%" alt="" /></a>
465
+ </div>
466
+
467
+ [tta]: https://github.com/ultralytics/yolov5/issues/303
app.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import torch
3
+ from detect import detect
4
+ from PIL import Image
5
+ from io import *
6
+ import glob
7
+ from datetime import datetime
8
+ import os
9
+ import wget
10
+ import time
11
+
12
+ def imageInput(device, src):
13
+
14
+ if src == 'Upload your own data.':
15
+ image_file = st.file_uploader("Upload An Image", type=['png', 'jpeg', 'jpg'])
16
+ col1, col2 = st.columns(2)
17
+ if image_file is not None:
18
+ img = Image.open(image_file)
19
+ with col1:
20
+ st.image(img, caption='Uploaded Image', use_column_width='always')
21
+ ts = datetime.timestamp(datetime.now())
22
+ imgpath = os.path.join('data/uploads', str(ts)+image_file.name)
23
+ outputpath = os.path.join('data/outputs', os.path.basename(imgpath))
24
+ with open(imgpath, mode="wb") as f:
25
+ f.write(image_file.getbuffer())
26
+
27
+ #call Model prediction--
28
+ model = torch.hub.load('ultralytics/yolov5', 'custom', path='models/YOLOv5m.pt', force_reload=True)
29
+ model.cuda() if device == 'cuda' else model.cpu()
30
+ pred = model(imgpath)
31
+ pred.render() # render bbox in image
32
+ for im in pred.ims:
33
+ im_base64 = Image.fromarray(im)
34
+ im_base64.save(outputpath)
35
+
36
+ #--Display predicton
37
+
38
+ img_ = Image.open(outputpath)
39
+ with col2:
40
+ st.image(img_, caption='Model Prediction(s)', use_column_width='always')
41
+
42
+ elif src == 'From test set.':
43
+ # Image selector slider
44
+ imgpath = glob.glob('data/images/*')
45
+ imgsel = st.slider('Select random images from test set.', min_value=1, max_value=len(imgpath), step=1)
46
+ image_file = imgpath[imgsel-1]
47
+ submit = st.button("Predict!")
48
+ col1, col2 = st.columns(2)
49
+ with col1:
50
+ img = Image.open(image_file)
51
+ st.image(img, caption='Selected Image', use_column_width='always')
52
+ with col2:
53
+ if image_file is not None and submit:
54
+ #call Model prediction--
55
+ model = torch.hub.load('ultralytics/yolov5', 'custom', path='models/YOLOv5m.pt', force_reload=True)
56
+ pred = model(image_file)
57
+ pred.render() # render bbox in image
58
+ for im in pred.ims:
59
+ im_base64 = Image.fromarray(im)
60
+ im_base64.save(os.path.join('data/outputs', os.path.basename(image_file)))
61
+ #--Display predicton
62
+ img_ = Image.open(os.path.join('data/outputs', os.path.basename(image_file)))
63
+ st.image(img_, caption='Model Prediction(s)')
64
+
65
+
66
+
67
+
68
+ def videoInput(device, src):
69
+ uploaded_video = st.file_uploader("Upload Video", type=['mp4', 'mpeg', 'mov'])
70
+ if uploaded_video != None:
71
+
72
+ ts = datetime.timestamp(datetime.now())
73
+ imgpath = os.path.join('data/uploads', str(ts)+uploaded_video.name)
74
+ outputpath = os.path.join('data/video_output', os.path.basename(imgpath))
75
+
76
+ with open(imgpath, mode='wb') as f:
77
+ f.write(uploaded_video.read()) # save video to disk
78
+
79
+ st_video = open(imgpath, 'rb')
80
+ video_bytes = st_video.read()
81
+ st.video(video_bytes)
82
+ st.write("Uploaded Video")
83
+ detect(weights="models/yoloTrained.pt", source=imgpath, device=0) if device == 'cuda' else detect(weights="models/YOLOv5m.pt", source=imgpath, device='cpu')
84
+ st_video2 = open(outputpath, 'rb')
85
+ video_bytes2 = st_video2.read()
86
+ st.video(video_bytes2)
87
+ st.write("Model Prediction")
88
+
89
+
90
+ def main():
91
+ # -- Sidebar
92
+ st.sidebar.title('⚙️Options')
93
+ datasrc = st.sidebar.radio("Select input source.", ['From test set.', 'Upload your own data.'])
94
+
95
+
96
+
97
+ option = st.sidebar.radio("Select input type.", ['Image', 'Video'], disabled = True)
98
+ if torch.cuda.is_available():
99
+ deviceoption = st.sidebar.radio("Select compute Device.", ['cpu', 'cuda'], disabled = False, index=1)
100
+ else:
101
+ deviceoption = st.sidebar.radio("Select compute Device.", ['cpu', 'cuda'], disabled = True, index=0)
102
+ # -- End of Sidebar
103
+
104
+ st.header('Unreal Engine 5 Tank Demo')
105
+ st.subheader('Select the options')
106
+ if option == "Image":
107
+ imageInput(deviceoption, datasrc)
108
+ elif option == "Video":
109
+ videoInput(deviceoption, datasrc)
110
+
111
+
112
+
113
+ if __name__ == '__main__':
114
+
115
+ main()
116
+ @st.cache
117
+ def loadModel():
118
+ start_dl = time.time()
119
+ model_file = wget.download('https://huggingface.co/sigil-ml/Unreal-Engine-5-Tanks-YOLOv5/blob/main/YOLOv5m.pt', out="models/")
120
+ finished_dl = time.time()
121
+ print(f"Model Downloaded, ETA:{finished_dl-start_dl}")
122
+ loadModel()
benchmarks.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ """
3
+ Run YOLOv5 benchmarks on all supported export formats
4
+
5
+ Format | `export.py --include` | Model
6
+ --- | --- | ---
7
+ PyTorch | - | yolov5s.pt
8
+ TorchScript | `torchscript` | yolov5s.torchscript
9
+ ONNX | `onnx` | yolov5s.onnx
10
+ OpenVINO | `openvino` | yolov5s_openvino_model/
11
+ TensorRT | `engine` | yolov5s.engine
12
+ CoreML | `coreml` | yolov5s.mlmodel
13
+ TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
14
+ TensorFlow GraphDef | `pb` | yolov5s.pb
15
+ TensorFlow Lite | `tflite` | yolov5s.tflite
16
+ TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
17
+ TensorFlow.js | `tfjs` | yolov5s_web_model/
18
+
19
+ Requirements:
20
+ $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
21
+ $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
22
+ $ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT
23
+
24
+ Usage:
25
+ $ python benchmarks.py --weights yolov5s.pt --img 640
26
+ """
27
+
28
+ import argparse
29
+ import platform
30
+ import sys
31
+ import time
32
+ from pathlib import Path
33
+
34
+ import pandas as pd
35
+
36
+ FILE = Path(__file__).resolve()
37
+ ROOT = FILE.parents[0] # YOLOv5 root directory
38
+ if str(ROOT) not in sys.path:
39
+ sys.path.append(str(ROOT)) # add ROOT to PATH
40
+ # ROOT = ROOT.relative_to(Path.cwd()) # relative
41
+
42
+ import export
43
+ from models.experimental import attempt_load
44
+ from models.yolo import SegmentationModel
45
+ from segment.val import run as val_seg
46
+ from utils import notebook_init
47
+ from utils.general import LOGGER, check_yaml, file_size, print_args
48
+ from utils.torch_utils import select_device
49
+ from val import run as val_det
50
+
51
+
52
+ def run(
53
+ weights=ROOT / 'yolov5s.pt', # weights path
54
+ imgsz=640, # inference size (pixels)
55
+ batch_size=1, # batch size
56
+ data=ROOT / 'data/coco128.yaml', # dataset.yaml path
57
+ device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
58
+ half=False, # use FP16 half-precision inference
59
+ test=False, # test exports only
60
+ pt_only=False, # test PyTorch only
61
+ hard_fail=False, # throw error on benchmark failure
62
+ ):
63
+ y, t = [], time.time()
64
+ device = select_device(device)
65
+ model_type = type(attempt_load(weights, fuse=False)) # DetectionModel, SegmentationModel, etc.
66
+ for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, CPU, GPU)
67
+ try:
68
+ assert i not in (9, 10), 'inference not supported' # Edge TPU and TF.js are unsupported
69
+ assert i != 5 or platform.system() == 'Darwin', 'inference only supported on macOS>=10.13' # CoreML
70
+ if 'cpu' in device.type:
71
+ assert cpu, 'inference not supported on CPU'
72
+ if 'cuda' in device.type:
73
+ assert gpu, 'inference not supported on GPU'
74
+
75
+ # Export
76
+ if f == '-':
77
+ w = weights # PyTorch format
78
+ else:
79
+ w = export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # all others
80
+ assert suffix in str(w), 'export failed'
81
+
82
+ # Validate
83
+ if model_type == SegmentationModel:
84
+ result = val_seg(data, w, batch_size, imgsz, plots=False, device=device, task='speed', half=half)
85
+ metric = result[0][7] # (box(p, r, map50, map), mask(p, r, map50, map), *loss(box, obj, cls))
86
+ else: # DetectionModel:
87
+ result = val_det(data, w, batch_size, imgsz, plots=False, device=device, task='speed', half=half)
88
+ metric = result[0][3] # (p, r, map50, map, *loss(box, obj, cls))
89
+ speed = result[2][1] # times (preprocess, inference, postprocess)
90
+ y.append([name, round(file_size(w), 1), round(metric, 4), round(speed, 2)]) # MB, mAP, t_inference
91
+ except Exception as e:
92
+ if hard_fail:
93
+ assert type(e) is AssertionError, f'Benchmark --hard-fail for {name}: {e}'
94
+ LOGGER.warning(f'WARNING ⚠️ Benchmark failure for {name}: {e}')
95
+ y.append([name, None, None, None]) # mAP, t_inference
96
+ if pt_only and i == 0:
97
+ break # break after PyTorch
98
+
99
+ # Print results
100
+ LOGGER.info('\n')
101
+ parse_opt()
102
+ notebook_init() # print system info
103
+ c = ['Format', 'Size (MB)', 'mAP50-95', 'Inference time (ms)'] if map else ['Format', 'Export', '', '']
104
+ py = pd.DataFrame(y, columns=c)
105
+ LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)')
106
+ LOGGER.info(str(py if map else py.iloc[:, :2]))
107
+ if hard_fail and isinstance(hard_fail, str):
108
+ metrics = py['mAP50-95'].array # values to compare to floor
109
+ floor = eval(hard_fail) # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n
110
+ assert all(x > floor for x in metrics if pd.notna(x)), f'HARD FAIL: mAP50-95 < floor {floor}'
111
+ return py
112
+
113
+
114
+ def test(
115
+ weights=ROOT / 'yolov5s.pt', # weights path
116
+ imgsz=640, # inference size (pixels)
117
+ batch_size=1, # batch size
118
+ data=ROOT / 'data/coco128.yaml', # dataset.yaml path
119
+ device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
120
+ half=False, # use FP16 half-precision inference
121
+ test=False, # test exports only
122
+ pt_only=False, # test PyTorch only
123
+ hard_fail=False, # throw error on benchmark failure
124
+ ):
125
+ y, t = [], time.time()
126
+ device = select_device(device)
127
+ for i, (name, f, suffix, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, gpu-capable)
128
+ try:
129
+ w = weights if f == '-' else \
130
+ export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # weights
131
+ assert suffix in str(w), 'export failed'
132
+ y.append([name, True])
133
+ except Exception:
134
+ y.append([name, False]) # mAP, t_inference
135
+
136
+ # Print results
137
+ LOGGER.info('\n')
138
+ parse_opt()
139
+ notebook_init() # print system info
140
+ py = pd.DataFrame(y, columns=['Format', 'Export'])
141
+ LOGGER.info(f'\nExports complete ({time.time() - t:.2f}s)')
142
+ LOGGER.info(str(py))
143
+ return py
144
+
145
+
146
+ def parse_opt():
147
+ parser = argparse.ArgumentParser()
148
+ parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
149
+ parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
150
+ parser.add_argument('--batch-size', type=int, default=1, help='batch size')
151
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
152
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
153
+ parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
154
+ parser.add_argument('--test', action='store_true', help='test exports only')
155
+ parser.add_argument('--pt-only', action='store_true', help='test PyTorch only')
156
+ parser.add_argument('--hard-fail', nargs='?', const=True, default=False, help='Exception on error or < min metric')
157
+ opt = parser.parse_args()
158
+ opt.data = check_yaml(opt.data) # check YAML
159
+ print_args(vars(opt))
160
+ return opt
161
+
162
+
163
+ def main(opt):
164
+ test(**vars(opt)) if opt.test else run(**vars(opt))
165
+
166
+
167
+ if __name__ == "__main__":
168
+ opt = parse_opt()
169
+ main(opt)
classify/predict.py ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ """
3
+ Run YOLOv5 classification inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
4
+
5
+ Usage - sources:
6
+ $ python classify/predict.py --weights yolov5s-cls.pt --source 0 # webcam
7
+ img.jpg # image
8
+ vid.mp4 # video
9
+ screen # screenshot
10
+ path/ # directory
11
+ list.txt # list of images
12
+ list.streams # list of streams
13
+ 'path/*.jpg' # glob
14
+ 'https://youtu.be/Zgi9g1ksQHc' # YouTube
15
+ 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
16
+
17
+ Usage - formats:
18
+ $ python classify/predict.py --weights yolov5s-cls.pt # PyTorch
19
+ yolov5s-cls.torchscript # TorchScript
20
+ yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn
21
+ yolov5s-cls_openvino_model # OpenVINO
22
+ yolov5s-cls.engine # TensorRT
23
+ yolov5s-cls.mlmodel # CoreML (macOS-only)
24
+ yolov5s-cls_saved_model # TensorFlow SavedModel
25
+ yolov5s-cls.pb # TensorFlow GraphDef
26
+ yolov5s-cls.tflite # TensorFlow Lite
27
+ yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU
28
+ yolov5s-cls_paddle_model # PaddlePaddle
29
+ """
30
+
31
+ import argparse
32
+ import os
33
+ import platform
34
+ import sys
35
+ from pathlib import Path
36
+
37
+ import torch
38
+ import torch.nn.functional as F
39
+
40
+ FILE = Path(__file__).resolve()
41
+ ROOT = FILE.parents[1] # YOLOv5 root directory
42
+ if str(ROOT) not in sys.path:
43
+ sys.path.append(str(ROOT)) # add ROOT to PATH
44
+ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
45
+
46
+ from models.common import DetectMultiBackend
47
+ from utils.augmentations import classify_transforms
48
+ from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
49
+ from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
50
+ increment_path, print_args, strip_optimizer)
51
+ from utils.plots import Annotator
52
+ from utils.torch_utils import select_device, smart_inference_mode
53
+
54
+
55
+ @smart_inference_mode()
56
+ def run(
57
+ weights=ROOT / 'yolov5s-cls.pt', # model.pt path(s)
58
+ source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam)
59
+ data=ROOT / 'data/coco128.yaml', # dataset.yaml path
60
+ imgsz=(224, 224), # inference size (height, width)
61
+ device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
62
+ view_img=False, # show results
63
+ save_txt=False, # save results to *.txt
64
+ nosave=False, # do not save images/videos
65
+ augment=False, # augmented inference
66
+ visualize=False, # visualize features
67
+ update=False, # update all models
68
+ project=ROOT / 'runs/predict-cls', # save results to project/name
69
+ name='exp', # save results to project/name
70
+ exist_ok=False, # existing project/name ok, do not increment
71
+ half=False, # use FP16 half-precision inference
72
+ dnn=False, # use OpenCV DNN for ONNX inference
73
+ vid_stride=1, # video frame-rate stride
74
+ ):
75
+ source = str(source)
76
+ save_img = not nosave and not source.endswith('.txt') # save inference images
77
+ is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
78
+ is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
79
+ webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file)
80
+ screenshot = source.lower().startswith('screen')
81
+ if is_url and is_file:
82
+ source = check_file(source) # download
83
+
84
+ # Directories
85
+ save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
86
+ (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
87
+
88
+ # Load model
89
+ device = select_device(device)
90
+ model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
91
+ stride, names, pt = model.stride, model.names, model.pt
92
+ imgsz = check_img_size(imgsz, s=stride) # check image size
93
+
94
+ # Dataloader
95
+ bs = 1 # batch_size
96
+ if webcam:
97
+ view_img = check_imshow(warn=True)
98
+ dataset = LoadStreams(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
99
+ bs = len(dataset)
100
+ elif screenshot:
101
+ dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
102
+ else:
103
+ dataset = LoadImages(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
104
+ vid_path, vid_writer = [None] * bs, [None] * bs
105
+
106
+ # Run inference
107
+ model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup
108
+ seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
109
+ for path, im, im0s, vid_cap, s in dataset:
110
+ with dt[0]:
111
+ im = torch.Tensor(im).to(model.device)
112
+ im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
113
+ if len(im.shape) == 3:
114
+ im = im[None] # expand for batch dim
115
+
116
+ # Inference
117
+ with dt[1]:
118
+ results = model(im)
119
+
120
+ # Post-process
121
+ with dt[2]:
122
+ pred = F.softmax(results, dim=1) # probabilities
123
+
124
+ # Process predictions
125
+ for i, prob in enumerate(pred): # per image
126
+ seen += 1
127
+ if webcam: # batch_size >= 1
128
+ p, im0, frame = path[i], im0s[i].copy(), dataset.count
129
+ s += f'{i}: '
130
+ else:
131
+ p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
132
+
133
+ p = Path(p) # to Path
134
+ save_path = str(save_dir / p.name) # im.jpg
135
+ txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
136
+
137
+ s += '%gx%g ' % im.shape[2:] # print string
138
+ annotator = Annotator(im0, example=str(names), pil=True)
139
+
140
+ # Print results
141
+ top5i = prob.argsort(0, descending=True)[:5].tolist() # top 5 indices
142
+ s += f"{', '.join(f'{names[j]} {prob[j]:.2f}' for j in top5i)}, "
143
+
144
+ # Write results
145
+ text = '\n'.join(f'{prob[j]:.2f} {names[j]}' for j in top5i)
146
+ if save_img or view_img: # Add bbox to image
147
+ annotator.text((32, 32), text, txt_color=(255, 255, 255))
148
+ if save_txt: # Write to file
149
+ with open(f'{txt_path}.txt', 'a') as f:
150
+ f.write(text + '\n')
151
+
152
+ # Stream results
153
+ im0 = annotator.result()
154
+ if view_img:
155
+ if platform.system() == 'Linux' and p not in windows:
156
+ windows.append(p)
157
+ cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
158
+ cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
159
+ cv2.imshow(str(p), im0)
160
+ cv2.waitKey(1) # 1 millisecond
161
+
162
+ # Save results (image with detections)
163
+ if save_img:
164
+ if dataset.mode == 'image':
165
+ cv2.imwrite(save_path, im0)
166
+ else: # 'video' or 'stream'
167
+ if vid_path[i] != save_path: # new video
168
+ vid_path[i] = save_path
169
+ if isinstance(vid_writer[i], cv2.VideoWriter):
170
+ vid_writer[i].release() # release previous video writer
171
+ if vid_cap: # video
172
+ fps = vid_cap.get(cv2.CAP_PROP_FPS)
173
+ w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
174
+ h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
175
+ else: # stream
176
+ fps, w, h = 30, im0.shape[1], im0.shape[0]
177
+ save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
178
+ vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
179
+ vid_writer[i].write(im0)
180
+
181
+ # Print time (inference-only)
182
+ LOGGER.info(f"{s}{dt[1].dt * 1E3:.1f}ms")
183
+
184
+ # Print results
185
+ t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
186
+ LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
187
+ if save_txt or save_img:
188
+ s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
189
+ LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
190
+ if update:
191
+ strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
192
+
193
+
194
+ def parse_opt():
195
+ parser = argparse.ArgumentParser()
196
+ parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-cls.pt', help='model path(s)')
197
+ parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)')
198
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
199
+ parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[224], help='inference size h,w')
200
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
201
+ parser.add_argument('--view-img', action='store_true', help='show results')
202
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
203
+ parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
204
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
205
+ parser.add_argument('--visualize', action='store_true', help='visualize features')
206
+ parser.add_argument('--update', action='store_true', help='update all models')
207
+ parser.add_argument('--project', default=ROOT / 'runs/predict-cls', help='save results to project/name')
208
+ parser.add_argument('--name', default='exp', help='save results to project/name')
209
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
210
+ parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
211
+ parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
212
+ parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
213
+ opt = parser.parse_args()
214
+ opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
215
+ print_args(vars(opt))
216
+ return opt
217
+
218
+
219
+ def main(opt):
220
+ check_requirements(exclude=('tensorboard', 'thop'))
221
+ run(**vars(opt))
222
+
223
+
224
+ if __name__ == "__main__":
225
+ opt = parse_opt()
226
+ main(opt)
classify/train.py ADDED
@@ -0,0 +1,333 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ """
3
+ Train a YOLOv5 classifier model on a classification dataset
4
+
5
+ Usage - Single-GPU training:
6
+ $ python classify/train.py --model yolov5s-cls.pt --data imagenette160 --epochs 5 --img 224
7
+
8
+ Usage - Multi-GPU DDP training:
9
+ $ python -m torch.distributed.run --nproc_per_node 4 --master_port 2022 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
10
+
11
+ Datasets: --data mnist, fashion-mnist, cifar10, cifar100, imagenette, imagewoof, imagenet, or 'path/to/data'
12
+ YOLOv5-cls models: --model yolov5n-cls.pt, yolov5s-cls.pt, yolov5m-cls.pt, yolov5l-cls.pt, yolov5x-cls.pt
13
+ Torchvision models: --model resnet50, efficientnet_b0, etc. See https://pytorch.org/vision/stable/models.html
14
+ """
15
+
16
+ import argparse
17
+ import os
18
+ import subprocess
19
+ import sys
20
+ import time
21
+ from copy import deepcopy
22
+ from datetime import datetime
23
+ from pathlib import Path
24
+
25
+ import torch
26
+ import torch.distributed as dist
27
+ import torch.hub as hub
28
+ import torch.optim.lr_scheduler as lr_scheduler
29
+ import torchvision
30
+ from torch.cuda import amp
31
+ from tqdm import tqdm
32
+
33
+ FILE = Path(__file__).resolve()
34
+ ROOT = FILE.parents[1] # YOLOv5 root directory
35
+ if str(ROOT) not in sys.path:
36
+ sys.path.append(str(ROOT)) # add ROOT to PATH
37
+ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
38
+
39
+ from classify import val as validate
40
+ from models.experimental import attempt_load
41
+ from models.yolo import ClassificationModel, DetectionModel
42
+ from utils.dataloaders import create_classification_dataloader
43
+ from utils.general import (DATASETS_DIR, LOGGER, TQDM_BAR_FORMAT, WorkingDirectory, check_git_info, check_git_status,
44
+ check_requirements, colorstr, download, increment_path, init_seeds, print_args, yaml_save)
45
+ from utils.loggers import GenericLogger
46
+ from utils.plots import imshow_cls
47
+ from utils.torch_utils import (ModelEMA, model_info, reshape_classifier_output, select_device, smart_DDP,
48
+ smart_optimizer, smartCrossEntropyLoss, torch_distributed_zero_first)
49
+
50
+ LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
51
+ RANK = int(os.getenv('RANK', -1))
52
+ WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
53
+ GIT_INFO = check_git_info()
54
+
55
+
56
+ def train(opt, device):
57
+ init_seeds(opt.seed + 1 + RANK, deterministic=True)
58
+ save_dir, data, bs, epochs, nw, imgsz, pretrained = \
59
+ opt.save_dir, Path(opt.data), opt.batch_size, opt.epochs, min(os.cpu_count() - 1, opt.workers), \
60
+ opt.imgsz, str(opt.pretrained).lower() == 'true'
61
+ cuda = device.type != 'cpu'
62
+
63
+ # Directories
64
+ wdir = save_dir / 'weights'
65
+ wdir.mkdir(parents=True, exist_ok=True) # make dir
66
+ last, best = wdir / 'last.pt', wdir / 'best.pt'
67
+
68
+ # Save run settings
69
+ yaml_save(save_dir / 'opt.yaml', vars(opt))
70
+
71
+ # Logger
72
+ logger = GenericLogger(opt=opt, console_logger=LOGGER) if RANK in {-1, 0} else None
73
+
74
+ # Download Dataset
75
+ with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT):
76
+ data_dir = data if data.is_dir() else (DATASETS_DIR / data)
77
+ if not data_dir.is_dir():
78
+ LOGGER.info(f'\nDataset not found ⚠️, missing path {data_dir}, attempting download...')
79
+ t = time.time()
80
+ if str(data) == 'imagenet':
81
+ subprocess.run(f"bash {ROOT / 'data/scripts/get_imagenet.sh'}", shell=True, check=True)
82
+ else:
83
+ url = f'https://github.com/ultralytics/yolov5/releases/download/v1.0/{data}.zip'
84
+ download(url, dir=data_dir.parent)
85
+ s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n"
86
+ LOGGER.info(s)
87
+
88
+ # Dataloaders
89
+ nc = len([x for x in (data_dir / 'train').glob('*') if x.is_dir()]) # number of classes
90
+ trainloader = create_classification_dataloader(path=data_dir / 'train',
91
+ imgsz=imgsz,
92
+ batch_size=bs // WORLD_SIZE,
93
+ augment=True,
94
+ cache=opt.cache,
95
+ rank=LOCAL_RANK,
96
+ workers=nw)
97
+
98
+ test_dir = data_dir / 'test' if (data_dir / 'test').exists() else data_dir / 'val' # data/test or data/val
99
+ if RANK in {-1, 0}:
100
+ testloader = create_classification_dataloader(path=test_dir,
101
+ imgsz=imgsz,
102
+ batch_size=bs // WORLD_SIZE * 2,
103
+ augment=False,
104
+ cache=opt.cache,
105
+ rank=-1,
106
+ workers=nw)
107
+
108
+ # Model
109
+ with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT):
110
+ if Path(opt.model).is_file() or opt.model.endswith('.pt'):
111
+ model = attempt_load(opt.model, device='cpu', fuse=False)
112
+ elif opt.model in torchvision.models.__dict__: # TorchVision models i.e. resnet50, efficientnet_b0
113
+ model = torchvision.models.__dict__[opt.model](weights='IMAGENET1K_V1' if pretrained else None)
114
+ else:
115
+ m = hub.list('ultralytics/yolov5') # + hub.list('pytorch/vision') # models
116
+ raise ModuleNotFoundError(f'--model {opt.model} not found. Available models are: \n' + '\n'.join(m))
117
+ if isinstance(model, DetectionModel):
118
+ LOGGER.warning("WARNING ⚠️ pass YOLOv5 classifier model with '-cls' suffix, i.e. '--model yolov5s-cls.pt'")
119
+ model = ClassificationModel(model=model, nc=nc, cutoff=opt.cutoff or 10) # convert to classification model
120
+ reshape_classifier_output(model, nc) # update class count
121
+ for m in model.modules():
122
+ if not pretrained and hasattr(m, 'reset_parameters'):
123
+ m.reset_parameters()
124
+ if isinstance(m, torch.nn.Dropout) and opt.dropout is not None:
125
+ m.p = opt.dropout # set dropout
126
+ for p in model.parameters():
127
+ p.requires_grad = True # for training
128
+ model = model.to(device)
129
+
130
+ # Info
131
+ if RANK in {-1, 0}:
132
+ model.names = trainloader.dataset.classes # attach class names
133
+ model.transforms = testloader.dataset.torch_transforms # attach inference transforms
134
+ model_info(model)
135
+ if opt.verbose:
136
+ LOGGER.info(model)
137
+ images, labels = next(iter(trainloader))
138
+ file = imshow_cls(images[:25], labels[:25], names=model.names, f=save_dir / 'train_images.jpg')
139
+ logger.log_images(file, name='Train Examples')
140
+ logger.log_graph(model, imgsz) # log model
141
+
142
+ # Optimizer
143
+ optimizer = smart_optimizer(model, opt.optimizer, opt.lr0, momentum=0.9, decay=opt.decay)
144
+
145
+ # Scheduler
146
+ lrf = 0.01 # final lr (fraction of lr0)
147
+ # lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - lrf) + lrf # cosine
148
+ lf = lambda x: (1 - x / epochs) * (1 - lrf) + lrf # linear
149
+ scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
150
+ # scheduler = lr_scheduler.OneCycleLR(optimizer, max_lr=lr0, total_steps=epochs, pct_start=0.1,
151
+ # final_div_factor=1 / 25 / lrf)
152
+
153
+ # EMA
154
+ ema = ModelEMA(model) if RANK in {-1, 0} else None
155
+
156
+ # DDP mode
157
+ if cuda and RANK != -1:
158
+ model = smart_DDP(model)
159
+
160
+ # Train
161
+ t0 = time.time()
162
+ criterion = smartCrossEntropyLoss(label_smoothing=opt.label_smoothing) # loss function
163
+ best_fitness = 0.0
164
+ scaler = amp.GradScaler(enabled=cuda)
165
+ val = test_dir.stem # 'val' or 'test'
166
+ LOGGER.info(f'Image sizes {imgsz} train, {imgsz} test\n'
167
+ f'Using {nw * WORLD_SIZE} dataloader workers\n'
168
+ f"Logging results to {colorstr('bold', save_dir)}\n"
169
+ f'Starting {opt.model} training on {data} dataset with {nc} classes for {epochs} epochs...\n\n'
170
+ f"{'Epoch':>10}{'GPU_mem':>10}{'train_loss':>12}{f'{val}_loss':>12}{'top1_acc':>12}{'top5_acc':>12}")
171
+ for epoch in range(epochs): # loop over the dataset multiple times
172
+ tloss, vloss, fitness = 0.0, 0.0, 0.0 # train loss, val loss, fitness
173
+ model.train()
174
+ if RANK != -1:
175
+ trainloader.sampler.set_epoch(epoch)
176
+ pbar = enumerate(trainloader)
177
+ if RANK in {-1, 0}:
178
+ pbar = tqdm(enumerate(trainloader), total=len(trainloader), bar_format=TQDM_BAR_FORMAT)
179
+ for i, (images, labels) in pbar: # progress bar
180
+ images, labels = images.to(device, non_blocking=True), labels.to(device)
181
+
182
+ # Forward
183
+ with amp.autocast(enabled=cuda): # stability issues when enabled
184
+ loss = criterion(model(images), labels)
185
+
186
+ # Backward
187
+ scaler.scale(loss).backward()
188
+
189
+ # Optimize
190
+ scaler.unscale_(optimizer) # unscale gradients
191
+ torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients
192
+ scaler.step(optimizer)
193
+ scaler.update()
194
+ optimizer.zero_grad()
195
+ if ema:
196
+ ema.update(model)
197
+
198
+ if RANK in {-1, 0}:
199
+ # Print
200
+ tloss = (tloss * i + loss.item()) / (i + 1) # update mean losses
201
+ mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
202
+ pbar.desc = f"{f'{epoch + 1}/{epochs}':>10}{mem:>10}{tloss:>12.3g}" + ' ' * 36
203
+
204
+ # Test
205
+ if i == len(pbar) - 1: # last batch
206
+ top1, top5, vloss = validate.run(model=ema.ema,
207
+ dataloader=testloader,
208
+ criterion=criterion,
209
+ pbar=pbar) # test accuracy, loss
210
+ fitness = top1 # define fitness as top1 accuracy
211
+
212
+ # Scheduler
213
+ scheduler.step()
214
+
215
+ # Log metrics
216
+ if RANK in {-1, 0}:
217
+ # Best fitness
218
+ if fitness > best_fitness:
219
+ best_fitness = fitness
220
+
221
+ # Log
222
+ metrics = {
223
+ "train/loss": tloss,
224
+ f"{val}/loss": vloss,
225
+ "metrics/accuracy_top1": top1,
226
+ "metrics/accuracy_top5": top5,
227
+ "lr/0": optimizer.param_groups[0]['lr']} # learning rate
228
+ logger.log_metrics(metrics, epoch)
229
+
230
+ # Save model
231
+ final_epoch = epoch + 1 == epochs
232
+ if (not opt.nosave) or final_epoch:
233
+ ckpt = {
234
+ 'epoch': epoch,
235
+ 'best_fitness': best_fitness,
236
+ 'model': deepcopy(ema.ema).half(), # deepcopy(de_parallel(model)).half(),
237
+ 'ema': None, # deepcopy(ema.ema).half(),
238
+ 'updates': ema.updates,
239
+ 'optimizer': None, # optimizer.state_dict(),
240
+ 'opt': vars(opt),
241
+ 'git': GIT_INFO, # {remote, branch, commit} if a git repo
242
+ 'date': datetime.now().isoformat()}
243
+
244
+ # Save last, best and delete
245
+ torch.save(ckpt, last)
246
+ if best_fitness == fitness:
247
+ torch.save(ckpt, best)
248
+ del ckpt
249
+
250
+ # Train complete
251
+ if RANK in {-1, 0} and final_epoch:
252
+ LOGGER.info(f'\nTraining complete ({(time.time() - t0) / 3600:.3f} hours)'
253
+ f"\nResults saved to {colorstr('bold', save_dir)}"
254
+ f"\nPredict: python classify/predict.py --weights {best} --source im.jpg"
255
+ f"\nValidate: python classify/val.py --weights {best} --data {data_dir}"
256
+ f"\nExport: python export.py --weights {best} --include onnx"
257
+ f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{best}')"
258
+ f"\nVisualize: https://netron.app\n")
259
+
260
+ # Plot examples
261
+ images, labels = (x[:25] for x in next(iter(testloader))) # first 25 images and labels
262
+ pred = torch.max(ema.ema(images.to(device)), 1)[1]
263
+ file = imshow_cls(images, labels, pred, model.names, verbose=False, f=save_dir / 'test_images.jpg')
264
+
265
+ # Log results
266
+ meta = {"epochs": epochs, "top1_acc": best_fitness, "date": datetime.now().isoformat()}
267
+ logger.log_images(file, name='Test Examples (true-predicted)', epoch=epoch)
268
+ logger.log_model(best, epochs, metadata=meta)
269
+
270
+
271
+ def parse_opt(known=False):
272
+ parser = argparse.ArgumentParser()
273
+ parser.add_argument('--model', type=str, default='yolov5s-cls.pt', help='initial weights path')
274
+ parser.add_argument('--data', type=str, default='imagenette160', help='cifar10, cifar100, mnist, imagenet, ...')
275
+ parser.add_argument('--epochs', type=int, default=10, help='total training epochs')
276
+ parser.add_argument('--batch-size', type=int, default=64, help='total batch size for all GPUs')
277
+ parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=224, help='train, val image size (pixels)')
278
+ parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
279
+ parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')
280
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
281
+ parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
282
+ parser.add_argument('--project', default=ROOT / 'runs/train-cls', help='save to project/name')
283
+ parser.add_argument('--name', default='exp', help='save to project/name')
284
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
285
+ parser.add_argument('--pretrained', nargs='?', const=True, default=True, help='start from i.e. --pretrained False')
286
+ parser.add_argument('--optimizer', choices=['SGD', 'Adam', 'AdamW', 'RMSProp'], default='Adam', help='optimizer')
287
+ parser.add_argument('--lr0', type=float, default=0.001, help='initial learning rate')
288
+ parser.add_argument('--decay', type=float, default=5e-5, help='weight decay')
289
+ parser.add_argument('--label-smoothing', type=float, default=0.1, help='Label smoothing epsilon')
290
+ parser.add_argument('--cutoff', type=int, default=None, help='Model layer cutoff index for Classify() head')
291
+ parser.add_argument('--dropout', type=float, default=None, help='Dropout (fraction)')
292
+ parser.add_argument('--verbose', action='store_true', help='Verbose mode')
293
+ parser.add_argument('--seed', type=int, default=0, help='Global training seed')
294
+ parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
295
+ return parser.parse_known_args()[0] if known else parser.parse_args()
296
+
297
+
298
+ def main(opt):
299
+ # Checks
300
+ if RANK in {-1, 0}:
301
+ print_args(vars(opt))
302
+ check_git_status()
303
+ check_requirements()
304
+
305
+ # DDP mode
306
+ device = select_device(opt.device, batch_size=opt.batch_size)
307
+ if LOCAL_RANK != -1:
308
+ assert opt.batch_size != -1, 'AutoBatch is coming soon for classification, please pass a valid --batch-size'
309
+ assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
310
+ assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
311
+ torch.cuda.set_device(LOCAL_RANK)
312
+ device = torch.device('cuda', LOCAL_RANK)
313
+ dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
314
+
315
+ # Parameters
316
+ opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run
317
+
318
+ # Train
319
+ train(opt, device)
320
+
321
+
322
+ def run(**kwargs):
323
+ # Usage: from yolov5 import classify; classify.train.run(data=mnist, imgsz=320, model='yolov5m')
324
+ opt = parse_opt(True)
325
+ for k, v in kwargs.items():
326
+ setattr(opt, k, v)
327
+ main(opt)
328
+ return opt
329
+
330
+
331
+ if __name__ == "__main__":
332
+ opt = parse_opt()
333
+ main(opt)
classify/tutorial.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
classify/val.py ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ """
3
+ Validate a trained YOLOv5 classification model on a classification dataset
4
+
5
+ Usage:
6
+ $ bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images)
7
+ $ python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224 # validate ImageNet
8
+
9
+ Usage - formats:
10
+ $ python classify/val.py --weights yolov5s-cls.pt # PyTorch
11
+ yolov5s-cls.torchscript # TorchScript
12
+ yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn
13
+ yolov5s-cls_openvino_model # OpenVINO
14
+ yolov5s-cls.engine # TensorRT
15
+ yolov5s-cls.mlmodel # CoreML (macOS-only)
16
+ yolov5s-cls_saved_model # TensorFlow SavedModel
17
+ yolov5s-cls.pb # TensorFlow GraphDef
18
+ yolov5s-cls.tflite # TensorFlow Lite
19
+ yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU
20
+ yolov5s-cls_paddle_model # PaddlePaddle
21
+ """
22
+
23
+ import argparse
24
+ import os
25
+ import sys
26
+ from pathlib import Path
27
+
28
+ import torch
29
+ from tqdm import tqdm
30
+
31
+ FILE = Path(__file__).resolve()
32
+ ROOT = FILE.parents[1] # YOLOv5 root directory
33
+ if str(ROOT) not in sys.path:
34
+ sys.path.append(str(ROOT)) # add ROOT to PATH
35
+ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
36
+
37
+ from models.common import DetectMultiBackend
38
+ from utils.dataloaders import create_classification_dataloader
39
+ from utils.general import (LOGGER, TQDM_BAR_FORMAT, Profile, check_img_size, check_requirements, colorstr,
40
+ increment_path, print_args)
41
+ from utils.torch_utils import select_device, smart_inference_mode
42
+
43
+
44
+ @smart_inference_mode()
45
+ def run(
46
+ data=ROOT / '../datasets/mnist', # dataset dir
47
+ weights=ROOT / 'yolov5s-cls.pt', # model.pt path(s)
48
+ batch_size=128, # batch size
49
+ imgsz=224, # inference size (pixels)
50
+ device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
51
+ workers=8, # max dataloader workers (per RANK in DDP mode)
52
+ verbose=False, # verbose output
53
+ project=ROOT / 'runs/val-cls', # save to project/name
54
+ name='exp', # save to project/name
55
+ exist_ok=False, # existing project/name ok, do not increment
56
+ half=False, # use FP16 half-precision inference
57
+ dnn=False, # use OpenCV DNN for ONNX inference
58
+ model=None,
59
+ dataloader=None,
60
+ criterion=None,
61
+ pbar=None,
62
+ ):
63
+ # Initialize/load model and set device
64
+ training = model is not None
65
+ if training: # called by train.py
66
+ device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
67
+ half &= device.type != 'cpu' # half precision only supported on CUDA
68
+ model.half() if half else model.float()
69
+ else: # called directly
70
+ device = select_device(device, batch_size=batch_size)
71
+
72
+ # Directories
73
+ save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
74
+ save_dir.mkdir(parents=True, exist_ok=True) # make dir
75
+
76
+ # Load model
77
+ model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half)
78
+ stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
79
+ imgsz = check_img_size(imgsz, s=stride) # check image size
80
+ half = model.fp16 # FP16 supported on limited backends with CUDA
81
+ if engine:
82
+ batch_size = model.batch_size
83
+ else:
84
+ device = model.device
85
+ if not (pt or jit):
86
+ batch_size = 1 # export.py models default to batch-size 1
87
+ LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
88
+
89
+ # Dataloader
90
+ data = Path(data)
91
+ test_dir = data / 'test' if (data / 'test').exists() else data / 'val' # data/test or data/val
92
+ dataloader = create_classification_dataloader(path=test_dir,
93
+ imgsz=imgsz,
94
+ batch_size=batch_size,
95
+ augment=False,
96
+ rank=-1,
97
+ workers=workers)
98
+
99
+ model.eval()
100
+ pred, targets, loss, dt = [], [], 0, (Profile(), Profile(), Profile())
101
+ n = len(dataloader) # number of batches
102
+ action = 'validating' if dataloader.dataset.root.stem == 'val' else 'testing'
103
+ desc = f"{pbar.desc[:-36]}{action:>36}" if pbar else f"{action}"
104
+ bar = tqdm(dataloader, desc, n, not training, bar_format=TQDM_BAR_FORMAT, position=0)
105
+ with torch.cuda.amp.autocast(enabled=device.type != 'cpu'):
106
+ for images, labels in bar:
107
+ with dt[0]:
108
+ images, labels = images.to(device, non_blocking=True), labels.to(device)
109
+
110
+ with dt[1]:
111
+ y = model(images)
112
+
113
+ with dt[2]:
114
+ pred.append(y.argsort(1, descending=True)[:, :5])
115
+ targets.append(labels)
116
+ if criterion:
117
+ loss += criterion(y, labels)
118
+
119
+ loss /= n
120
+ pred, targets = torch.cat(pred), torch.cat(targets)
121
+ correct = (targets[:, None] == pred).float()
122
+ acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1) # (top1, top5) accuracy
123
+ top1, top5 = acc.mean(0).tolist()
124
+
125
+ if pbar:
126
+ pbar.desc = f"{pbar.desc[:-36]}{loss:>12.3g}{top1:>12.3g}{top5:>12.3g}"
127
+ if verbose: # all classes
128
+ LOGGER.info(f"{'Class':>24}{'Images':>12}{'top1_acc':>12}{'top5_acc':>12}")
129
+ LOGGER.info(f"{'all':>24}{targets.shape[0]:>12}{top1:>12.3g}{top5:>12.3g}")
130
+ for i, c in model.names.items():
131
+ aci = acc[targets == i]
132
+ top1i, top5i = aci.mean(0).tolist()
133
+ LOGGER.info(f"{c:>24}{aci.shape[0]:>12}{top1i:>12.3g}{top5i:>12.3g}")
134
+
135
+ # Print results
136
+ t = tuple(x.t / len(dataloader.dataset.samples) * 1E3 for x in dt) # speeds per image
137
+ shape = (1, 3, imgsz, imgsz)
138
+ LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms post-process per image at shape {shape}' % t)
139
+ LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
140
+
141
+ return top1, top5, loss
142
+
143
+
144
+ def parse_opt():
145
+ parser = argparse.ArgumentParser()
146
+ parser.add_argument('--data', type=str, default=ROOT / '../datasets/mnist', help='dataset path')
147
+ parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-cls.pt', help='model.pt path(s)')
148
+ parser.add_argument('--batch-size', type=int, default=128, help='batch size')
149
+ parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=224, help='inference size (pixels)')
150
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
151
+ parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
152
+ parser.add_argument('--verbose', nargs='?', const=True, default=True, help='verbose output')
153
+ parser.add_argument('--project', default=ROOT / 'runs/val-cls', help='save to project/name')
154
+ parser.add_argument('--name', default='exp', help='save to project/name')
155
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
156
+ parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
157
+ parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
158
+ opt = parser.parse_args()
159
+ print_args(vars(opt))
160
+ return opt
161
+
162
+
163
+ def main(opt):
164
+ check_requirements(exclude=('tensorboard', 'thop'))
165
+ run(**vars(opt))
166
+
167
+
168
+ if __name__ == "__main__":
169
+ opt = parse_opt()
170
+ main(opt)
data.yaml ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ train: ../train/images
2
+ val: ../valid/images
3
+ test: ../test/images
4
+
5
+ nc: 1
6
+ names: ['M1A1 Abrams']
7
+
8
+ roboflow:
9
+ workspace: sigil
10
+ project: tankdemo
11
+ version: 5
12
+ license: CC BY 4.0
13
+ url: https://universe.roboflow.com/sigil/tankdemo/dataset/5
data/Argoverse.yaml ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ # Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
3
+ # Example usage: python train.py --data Argoverse.yaml
4
+ # parent
5
+ # ├── yolov5
6
+ # └── datasets
7
+ # └── Argoverse ← downloads here (31.3 GB)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/Argoverse # dataset root dir
12
+ train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
13
+ val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
14
+ test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
15
+
16
+ # Classes
17
+ names:
18
+ 0: person
19
+ 1: bicycle
20
+ 2: car
21
+ 3: motorcycle
22
+ 4: bus
23
+ 5: truck
24
+ 6: traffic_light
25
+ 7: stop_sign
26
+
27
+
28
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
29
+ download: |
30
+ import json
31
+
32
+ from tqdm import tqdm
33
+ from utils.general import download, Path
34
+
35
+
36
+ def argoverse2yolo(set):
37
+ labels = {}
38
+ a = json.load(open(set, "rb"))
39
+ for annot in tqdm(a['annotations'], desc=f"Converting {set} to YOLOv5 format..."):
40
+ img_id = annot['image_id']
41
+ img_name = a['images'][img_id]['name']
42
+ img_label_name = f'{img_name[:-3]}txt'
43
+
44
+ cls = annot['category_id'] # instance class id
45
+ x_center, y_center, width, height = annot['bbox']
46
+ x_center = (x_center + width / 2) / 1920.0 # offset and scale
47
+ y_center = (y_center + height / 2) / 1200.0 # offset and scale
48
+ width /= 1920.0 # scale
49
+ height /= 1200.0 # scale
50
+
51
+ img_dir = set.parents[2] / 'Argoverse-1.1' / 'labels' / a['seq_dirs'][a['images'][annot['image_id']]['sid']]
52
+ if not img_dir.exists():
53
+ img_dir.mkdir(parents=True, exist_ok=True)
54
+
55
+ k = str(img_dir / img_label_name)
56
+ if k not in labels:
57
+ labels[k] = []
58
+ labels[k].append(f"{cls} {x_center} {y_center} {width} {height}\n")
59
+
60
+ for k in labels:
61
+ with open(k, "w") as f:
62
+ f.writelines(labels[k])
63
+
64
+
65
+ # Download
66
+ dir = Path(yaml['path']) # dataset root dir
67
+ urls = ['https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip']
68
+ download(urls, dir=dir, delete=False)
69
+
70
+ # Convert
71
+ annotations_dir = 'Argoverse-HD/annotations/'
72
+ (dir / 'Argoverse-1.1' / 'tracking').rename(dir / 'Argoverse-1.1' / 'images') # rename 'tracking' to 'images'
73
+ for d in "train.json", "val.json":
74
+ argoverse2yolo(dir / annotations_dir / d) # convert VisDrone annotations to YOLO labels
data/GlobalWheat2020.yaml ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ # Global Wheat 2020 dataset http://www.global-wheat.com/ by University of Saskatchewan
3
+ # Example usage: python train.py --data GlobalWheat2020.yaml
4
+ # parent
5
+ # ├── yolov5
6
+ # └── datasets
7
+ # └── GlobalWheat2020 ← downloads here (7.0 GB)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/GlobalWheat2020 # dataset root dir
12
+ train: # train images (relative to 'path') 3422 images
13
+ - images/arvalis_1
14
+ - images/arvalis_2
15
+ - images/arvalis_3
16
+ - images/ethz_1
17
+ - images/rres_1
18
+ - images/inrae_1
19
+ - images/usask_1
20
+ val: # val images (relative to 'path') 748 images (WARNING: train set contains ethz_1)
21
+ - images/ethz_1
22
+ test: # test images (optional) 1276 images
23
+ - images/utokyo_1
24
+ - images/utokyo_2
25
+ - images/nau_1
26
+ - images/uq_1
27
+
28
+ # Classes
29
+ names:
30
+ 0: wheat_head
31
+
32
+
33
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
34
+ download: |
35
+ from utils.general import download, Path
36
+
37
+
38
+ # Download
39
+ dir = Path(yaml['path']) # dataset root dir
40
+ urls = ['https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip',
41
+ 'https://github.com/ultralytics/yolov5/releases/download/v1.0/GlobalWheat2020_labels.zip']
42
+ download(urls, dir=dir)
43
+
44
+ # Make Directories
45
+ for p in 'annotations', 'images', 'labels':
46
+ (dir / p).mkdir(parents=True, exist_ok=True)
47
+
48
+ # Move
49
+ for p in 'arvalis_1', 'arvalis_2', 'arvalis_3', 'ethz_1', 'rres_1', 'inrae_1', 'usask_1', \
50
+ 'utokyo_1', 'utokyo_2', 'nau_1', 'uq_1':
51
+ (dir / p).rename(dir / 'images' / p) # move to /images
52
+ f = (dir / p).with_suffix('.json') # json file
53
+ if f.exists():
54
+ f.rename((dir / 'annotations' / p).with_suffix('.json')) # move to /annotations
data/ImageNet.yaml ADDED
@@ -0,0 +1,1022 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ # ImageNet-1k dataset https://www.image-net.org/index.php by Stanford University
3
+ # Simplified class names from https://github.com/anishathalye/imagenet-simple-labels
4
+ # Example usage: python classify/train.py --data imagenet
5
+ # parent
6
+ # ├── yolov5
7
+ # └── datasets
8
+ # └── imagenet ← downloads here (144 GB)
9
+
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: ../datasets/imagenet # dataset root dir
13
+ train: train # train images (relative to 'path') 1281167 images
14
+ val: val # val images (relative to 'path') 50000 images
15
+ test: # test images (optional)
16
+
17
+ # Classes
18
+ names:
19
+ 0: tench
20
+ 1: goldfish
21
+ 2: great white shark
22
+ 3: tiger shark
23
+ 4: hammerhead shark
24
+ 5: electric ray
25
+ 6: stingray
26
+ 7: cock
27
+ 8: hen
28
+ 9: ostrich
29
+ 10: brambling
30
+ 11: goldfinch
31
+ 12: house finch
32
+ 13: junco
33
+ 14: indigo bunting
34
+ 15: American robin
35
+ 16: bulbul
36
+ 17: jay
37
+ 18: magpie
38
+ 19: chickadee
39
+ 20: American dipper
40
+ 21: kite
41
+ 22: bald eagle
42
+ 23: vulture
43
+ 24: great grey owl
44
+ 25: fire salamander
45
+ 26: smooth newt
46
+ 27: newt
47
+ 28: spotted salamander
48
+ 29: axolotl
49
+ 30: American bullfrog
50
+ 31: tree frog
51
+ 32: tailed frog
52
+ 33: loggerhead sea turtle
53
+ 34: leatherback sea turtle
54
+ 35: mud turtle
55
+ 36: terrapin
56
+ 37: box turtle
57
+ 38: banded gecko
58
+ 39: green iguana
59
+ 40: Carolina anole
60
+ 41: desert grassland whiptail lizard
61
+ 42: agama
62
+ 43: frilled-necked lizard
63
+ 44: alligator lizard
64
+ 45: Gila monster
65
+ 46: European green lizard
66
+ 47: chameleon
67
+ 48: Komodo dragon
68
+ 49: Nile crocodile
69
+ 50: American alligator
70
+ 51: triceratops
71
+ 52: worm snake
72
+ 53: ring-necked snake
73
+ 54: eastern hog-nosed snake
74
+ 55: smooth green snake
75
+ 56: kingsnake
76
+ 57: garter snake
77
+ 58: water snake
78
+ 59: vine snake
79
+ 60: night snake
80
+ 61: boa constrictor
81
+ 62: African rock python
82
+ 63: Indian cobra
83
+ 64: green mamba
84
+ 65: sea snake
85
+ 66: Saharan horned viper
86
+ 67: eastern diamondback rattlesnake
87
+ 68: sidewinder
88
+ 69: trilobite
89
+ 70: harvestman
90
+ 71: scorpion
91
+ 72: yellow garden spider
92
+ 73: barn spider
93
+ 74: European garden spider
94
+ 75: southern black widow
95
+ 76: tarantula
96
+ 77: wolf spider
97
+ 78: tick
98
+ 79: centipede
99
+ 80: black grouse
100
+ 81: ptarmigan
101
+ 82: ruffed grouse
102
+ 83: prairie grouse
103
+ 84: peacock
104
+ 85: quail
105
+ 86: partridge
106
+ 87: grey parrot
107
+ 88: macaw
108
+ 89: sulphur-crested cockatoo
109
+ 90: lorikeet
110
+ 91: coucal
111
+ 92: bee eater
112
+ 93: hornbill
113
+ 94: hummingbird
114
+ 95: jacamar
115
+ 96: toucan
116
+ 97: duck
117
+ 98: red-breasted merganser
118
+ 99: goose
119
+ 100: black swan
120
+ 101: tusker
121
+ 102: echidna
122
+ 103: platypus
123
+ 104: wallaby
124
+ 105: koala
125
+ 106: wombat
126
+ 107: jellyfish
127
+ 108: sea anemone
128
+ 109: brain coral
129
+ 110: flatworm
130
+ 111: nematode
131
+ 112: conch
132
+ 113: snail
133
+ 114: slug
134
+ 115: sea slug
135
+ 116: chiton
136
+ 117: chambered nautilus
137
+ 118: Dungeness crab
138
+ 119: rock crab
139
+ 120: fiddler crab
140
+ 121: red king crab
141
+ 122: American lobster
142
+ 123: spiny lobster
143
+ 124: crayfish
144
+ 125: hermit crab
145
+ 126: isopod
146
+ 127: white stork
147
+ 128: black stork
148
+ 129: spoonbill
149
+ 130: flamingo
150
+ 131: little blue heron
151
+ 132: great egret
152
+ 133: bittern
153
+ 134: crane (bird)
154
+ 135: limpkin
155
+ 136: common gallinule
156
+ 137: American coot
157
+ 138: bustard
158
+ 139: ruddy turnstone
159
+ 140: dunlin
160
+ 141: common redshank
161
+ 142: dowitcher
162
+ 143: oystercatcher
163
+ 144: pelican
164
+ 145: king penguin
165
+ 146: albatross
166
+ 147: grey whale
167
+ 148: killer whale
168
+ 149: dugong
169
+ 150: sea lion
170
+ 151: Chihuahua
171
+ 152: Japanese Chin
172
+ 153: Maltese
173
+ 154: Pekingese
174
+ 155: Shih Tzu
175
+ 156: King Charles Spaniel
176
+ 157: Papillon
177
+ 158: toy terrier
178
+ 159: Rhodesian Ridgeback
179
+ 160: Afghan Hound
180
+ 161: Basset Hound
181
+ 162: Beagle
182
+ 163: Bloodhound
183
+ 164: Bluetick Coonhound
184
+ 165: Black and Tan Coonhound
185
+ 166: Treeing Walker Coonhound
186
+ 167: English foxhound
187
+ 168: Redbone Coonhound
188
+ 169: borzoi
189
+ 170: Irish Wolfhound
190
+ 171: Italian Greyhound
191
+ 172: Whippet
192
+ 173: Ibizan Hound
193
+ 174: Norwegian Elkhound
194
+ 175: Otterhound
195
+ 176: Saluki
196
+ 177: Scottish Deerhound
197
+ 178: Weimaraner
198
+ 179: Staffordshire Bull Terrier
199
+ 180: American Staffordshire Terrier
200
+ 181: Bedlington Terrier
201
+ 182: Border Terrier
202
+ 183: Kerry Blue Terrier
203
+ 184: Irish Terrier
204
+ 185: Norfolk Terrier
205
+ 186: Norwich Terrier
206
+ 187: Yorkshire Terrier
207
+ 188: Wire Fox Terrier
208
+ 189: Lakeland Terrier
209
+ 190: Sealyham Terrier
210
+ 191: Airedale Terrier
211
+ 192: Cairn Terrier
212
+ 193: Australian Terrier
213
+ 194: Dandie Dinmont Terrier
214
+ 195: Boston Terrier
215
+ 196: Miniature Schnauzer
216
+ 197: Giant Schnauzer
217
+ 198: Standard Schnauzer
218
+ 199: Scottish Terrier
219
+ 200: Tibetan Terrier
220
+ 201: Australian Silky Terrier
221
+ 202: Soft-coated Wheaten Terrier
222
+ 203: West Highland White Terrier
223
+ 204: Lhasa Apso
224
+ 205: Flat-Coated Retriever
225
+ 206: Curly-coated Retriever
226
+ 207: Golden Retriever
227
+ 208: Labrador Retriever
228
+ 209: Chesapeake Bay Retriever
229
+ 210: German Shorthaired Pointer
230
+ 211: Vizsla
231
+ 212: English Setter
232
+ 213: Irish Setter
233
+ 214: Gordon Setter
234
+ 215: Brittany
235
+ 216: Clumber Spaniel
236
+ 217: English Springer Spaniel
237
+ 218: Welsh Springer Spaniel
238
+ 219: Cocker Spaniels
239
+ 220: Sussex Spaniel
240
+ 221: Irish Water Spaniel
241
+ 222: Kuvasz
242
+ 223: Schipperke
243
+ 224: Groenendael
244
+ 225: Malinois
245
+ 226: Briard
246
+ 227: Australian Kelpie
247
+ 228: Komondor
248
+ 229: Old English Sheepdog
249
+ 230: Shetland Sheepdog
250
+ 231: collie
251
+ 232: Border Collie
252
+ 233: Bouvier des Flandres
253
+ 234: Rottweiler
254
+ 235: German Shepherd Dog
255
+ 236: Dobermann
256
+ 237: Miniature Pinscher
257
+ 238: Greater Swiss Mountain Dog
258
+ 239: Bernese Mountain Dog
259
+ 240: Appenzeller Sennenhund
260
+ 241: Entlebucher Sennenhund
261
+ 242: Boxer
262
+ 243: Bullmastiff
263
+ 244: Tibetan Mastiff
264
+ 245: French Bulldog
265
+ 246: Great Dane
266
+ 247: St. Bernard
267
+ 248: husky
268
+ 249: Alaskan Malamute
269
+ 250: Siberian Husky
270
+ 251: Dalmatian
271
+ 252: Affenpinscher
272
+ 253: Basenji
273
+ 254: pug
274
+ 255: Leonberger
275
+ 256: Newfoundland
276
+ 257: Pyrenean Mountain Dog
277
+ 258: Samoyed
278
+ 259: Pomeranian
279
+ 260: Chow Chow
280
+ 261: Keeshond
281
+ 262: Griffon Bruxellois
282
+ 263: Pembroke Welsh Corgi
283
+ 264: Cardigan Welsh Corgi
284
+ 265: Toy Poodle
285
+ 266: Miniature Poodle
286
+ 267: Standard Poodle
287
+ 268: Mexican hairless dog
288
+ 269: grey wolf
289
+ 270: Alaskan tundra wolf
290
+ 271: red wolf
291
+ 272: coyote
292
+ 273: dingo
293
+ 274: dhole
294
+ 275: African wild dog
295
+ 276: hyena
296
+ 277: red fox
297
+ 278: kit fox
298
+ 279: Arctic fox
299
+ 280: grey fox
300
+ 281: tabby cat
301
+ 282: tiger cat
302
+ 283: Persian cat
303
+ 284: Siamese cat
304
+ 285: Egyptian Mau
305
+ 286: cougar
306
+ 287: lynx
307
+ 288: leopard
308
+ 289: snow leopard
309
+ 290: jaguar
310
+ 291: lion
311
+ 292: tiger
312
+ 293: cheetah
313
+ 294: brown bear
314
+ 295: American black bear
315
+ 296: polar bear
316
+ 297: sloth bear
317
+ 298: mongoose
318
+ 299: meerkat
319
+ 300: tiger beetle
320
+ 301: ladybug
321
+ 302: ground beetle
322
+ 303: longhorn beetle
323
+ 304: leaf beetle
324
+ 305: dung beetle
325
+ 306: rhinoceros beetle
326
+ 307: weevil
327
+ 308: fly
328
+ 309: bee
329
+ 310: ant
330
+ 311: grasshopper
331
+ 312: cricket
332
+ 313: stick insect
333
+ 314: cockroach
334
+ 315: mantis
335
+ 316: cicada
336
+ 317: leafhopper
337
+ 318: lacewing
338
+ 319: dragonfly
339
+ 320: damselfly
340
+ 321: red admiral
341
+ 322: ringlet
342
+ 323: monarch butterfly
343
+ 324: small white
344
+ 325: sulphur butterfly
345
+ 326: gossamer-winged butterfly
346
+ 327: starfish
347
+ 328: sea urchin
348
+ 329: sea cucumber
349
+ 330: cottontail rabbit
350
+ 331: hare
351
+ 332: Angora rabbit
352
+ 333: hamster
353
+ 334: porcupine
354
+ 335: fox squirrel
355
+ 336: marmot
356
+ 337: beaver
357
+ 338: guinea pig
358
+ 339: common sorrel
359
+ 340: zebra
360
+ 341: pig
361
+ 342: wild boar
362
+ 343: warthog
363
+ 344: hippopotamus
364
+ 345: ox
365
+ 346: water buffalo
366
+ 347: bison
367
+ 348: ram
368
+ 349: bighorn sheep
369
+ 350: Alpine ibex
370
+ 351: hartebeest
371
+ 352: impala
372
+ 353: gazelle
373
+ 354: dromedary
374
+ 355: llama
375
+ 356: weasel
376
+ 357: mink
377
+ 358: European polecat
378
+ 359: black-footed ferret
379
+ 360: otter
380
+ 361: skunk
381
+ 362: badger
382
+ 363: armadillo
383
+ 364: three-toed sloth
384
+ 365: orangutan
385
+ 366: gorilla
386
+ 367: chimpanzee
387
+ 368: gibbon
388
+ 369: siamang
389
+ 370: guenon
390
+ 371: patas monkey
391
+ 372: baboon
392
+ 373: macaque
393
+ 374: langur
394
+ 375: black-and-white colobus
395
+ 376: proboscis monkey
396
+ 377: marmoset
397
+ 378: white-headed capuchin
398
+ 379: howler monkey
399
+ 380: titi
400
+ 381: Geoffroy's spider monkey
401
+ 382: common squirrel monkey
402
+ 383: ring-tailed lemur
403
+ 384: indri
404
+ 385: Asian elephant
405
+ 386: African bush elephant
406
+ 387: red panda
407
+ 388: giant panda
408
+ 389: snoek
409
+ 390: eel
410
+ 391: coho salmon
411
+ 392: rock beauty
412
+ 393: clownfish
413
+ 394: sturgeon
414
+ 395: garfish
415
+ 396: lionfish
416
+ 397: pufferfish
417
+ 398: abacus
418
+ 399: abaya
419
+ 400: academic gown
420
+ 401: accordion
421
+ 402: acoustic guitar
422
+ 403: aircraft carrier
423
+ 404: airliner
424
+ 405: airship
425
+ 406: altar
426
+ 407: ambulance
427
+ 408: amphibious vehicle
428
+ 409: analog clock
429
+ 410: apiary
430
+ 411: apron
431
+ 412: waste container
432
+ 413: assault rifle
433
+ 414: backpack
434
+ 415: bakery
435
+ 416: balance beam
436
+ 417: balloon
437
+ 418: ballpoint pen
438
+ 419: Band-Aid
439
+ 420: banjo
440
+ 421: baluster
441
+ 422: barbell
442
+ 423: barber chair
443
+ 424: barbershop
444
+ 425: barn
445
+ 426: barometer
446
+ 427: barrel
447
+ 428: wheelbarrow
448
+ 429: baseball
449
+ 430: basketball
450
+ 431: bassinet
451
+ 432: bassoon
452
+ 433: swimming cap
453
+ 434: bath towel
454
+ 435: bathtub
455
+ 436: station wagon
456
+ 437: lighthouse
457
+ 438: beaker
458
+ 439: military cap
459
+ 440: beer bottle
460
+ 441: beer glass
461
+ 442: bell-cot
462
+ 443: bib
463
+ 444: tandem bicycle
464
+ 445: bikini
465
+ 446: ring binder
466
+ 447: binoculars
467
+ 448: birdhouse
468
+ 449: boathouse
469
+ 450: bobsleigh
470
+ 451: bolo tie
471
+ 452: poke bonnet
472
+ 453: bookcase
473
+ 454: bookstore
474
+ 455: bottle cap
475
+ 456: bow
476
+ 457: bow tie
477
+ 458: brass
478
+ 459: bra
479
+ 460: breakwater
480
+ 461: breastplate
481
+ 462: broom
482
+ 463: bucket
483
+ 464: buckle
484
+ 465: bulletproof vest
485
+ 466: high-speed train
486
+ 467: butcher shop
487
+ 468: taxicab
488
+ 469: cauldron
489
+ 470: candle
490
+ 471: cannon
491
+ 472: canoe
492
+ 473: can opener
493
+ 474: cardigan
494
+ 475: car mirror
495
+ 476: carousel
496
+ 477: tool kit
497
+ 478: carton
498
+ 479: car wheel
499
+ 480: automated teller machine
500
+ 481: cassette
501
+ 482: cassette player
502
+ 483: castle
503
+ 484: catamaran
504
+ 485: CD player
505
+ 486: cello
506
+ 487: mobile phone
507
+ 488: chain
508
+ 489: chain-link fence
509
+ 490: chain mail
510
+ 491: chainsaw
511
+ 492: chest
512
+ 493: chiffonier
513
+ 494: chime
514
+ 495: china cabinet
515
+ 496: Christmas stocking
516
+ 497: church
517
+ 498: movie theater
518
+ 499: cleaver
519
+ 500: cliff dwelling
520
+ 501: cloak
521
+ 502: clogs
522
+ 503: cocktail shaker
523
+ 504: coffee mug
524
+ 505: coffeemaker
525
+ 506: coil
526
+ 507: combination lock
527
+ 508: computer keyboard
528
+ 509: confectionery store
529
+ 510: container ship
530
+ 511: convertible
531
+ 512: corkscrew
532
+ 513: cornet
533
+ 514: cowboy boot
534
+ 515: cowboy hat
535
+ 516: cradle
536
+ 517: crane (machine)
537
+ 518: crash helmet
538
+ 519: crate
539
+ 520: infant bed
540
+ 521: Crock Pot
541
+ 522: croquet ball
542
+ 523: crutch
543
+ 524: cuirass
544
+ 525: dam
545
+ 526: desk
546
+ 527: desktop computer
547
+ 528: rotary dial telephone
548
+ 529: diaper
549
+ 530: digital clock
550
+ 531: digital watch
551
+ 532: dining table
552
+ 533: dishcloth
553
+ 534: dishwasher
554
+ 535: disc brake
555
+ 536: dock
556
+ 537: dog sled
557
+ 538: dome
558
+ 539: doormat
559
+ 540: drilling rig
560
+ 541: drum
561
+ 542: drumstick
562
+ 543: dumbbell
563
+ 544: Dutch oven
564
+ 545: electric fan
565
+ 546: electric guitar
566
+ 547: electric locomotive
567
+ 548: entertainment center
568
+ 549: envelope
569
+ 550: espresso machine
570
+ 551: face powder
571
+ 552: feather boa
572
+ 553: filing cabinet
573
+ 554: fireboat
574
+ 555: fire engine
575
+ 556: fire screen sheet
576
+ 557: flagpole
577
+ 558: flute
578
+ 559: folding chair
579
+ 560: football helmet
580
+ 561: forklift
581
+ 562: fountain
582
+ 563: fountain pen
583
+ 564: four-poster bed
584
+ 565: freight car
585
+ 566: French horn
586
+ 567: frying pan
587
+ 568: fur coat
588
+ 569: garbage truck
589
+ 570: gas mask
590
+ 571: gas pump
591
+ 572: goblet
592
+ 573: go-kart
593
+ 574: golf ball
594
+ 575: golf cart
595
+ 576: gondola
596
+ 577: gong
597
+ 578: gown
598
+ 579: grand piano
599
+ 580: greenhouse
600
+ 581: grille
601
+ 582: grocery store
602
+ 583: guillotine
603
+ 584: barrette
604
+ 585: hair spray
605
+ 586: half-track
606
+ 587: hammer
607
+ 588: hamper
608
+ 589: hair dryer
609
+ 590: hand-held computer
610
+ 591: handkerchief
611
+ 592: hard disk drive
612
+ 593: harmonica
613
+ 594: harp
614
+ 595: harvester
615
+ 596: hatchet
616
+ 597: holster
617
+ 598: home theater
618
+ 599: honeycomb
619
+ 600: hook
620
+ 601: hoop skirt
621
+ 602: horizontal bar
622
+ 603: horse-drawn vehicle
623
+ 604: hourglass
624
+ 605: iPod
625
+ 606: clothes iron
626
+ 607: jack-o'-lantern
627
+ 608: jeans
628
+ 609: jeep
629
+ 610: T-shirt
630
+ 611: jigsaw puzzle
631
+ 612: pulled rickshaw
632
+ 613: joystick
633
+ 614: kimono
634
+ 615: knee pad
635
+ 616: knot
636
+ 617: lab coat
637
+ 618: ladle
638
+ 619: lampshade
639
+ 620: laptop computer
640
+ 621: lawn mower
641
+ 622: lens cap
642
+ 623: paper knife
643
+ 624: library
644
+ 625: lifeboat
645
+ 626: lighter
646
+ 627: limousine
647
+ 628: ocean liner
648
+ 629: lipstick
649
+ 630: slip-on shoe
650
+ 631: lotion
651
+ 632: speaker
652
+ 633: loupe
653
+ 634: sawmill
654
+ 635: magnetic compass
655
+ 636: mail bag
656
+ 637: mailbox
657
+ 638: tights
658
+ 639: tank suit
659
+ 640: manhole cover
660
+ 641: maraca
661
+ 642: marimba
662
+ 643: mask
663
+ 644: match
664
+ 645: maypole
665
+ 646: maze
666
+ 647: measuring cup
667
+ 648: medicine chest
668
+ 649: megalith
669
+ 650: microphone
670
+ 651: microwave oven
671
+ 652: military uniform
672
+ 653: milk can
673
+ 654: minibus
674
+ 655: miniskirt
675
+ 656: minivan
676
+ 657: missile
677
+ 658: mitten
678
+ 659: mixing bowl
679
+ 660: mobile home
680
+ 661: Model T
681
+ 662: modem
682
+ 663: monastery
683
+ 664: monitor
684
+ 665: moped
685
+ 666: mortar
686
+ 667: square academic cap
687
+ 668: mosque
688
+ 669: mosquito net
689
+ 670: scooter
690
+ 671: mountain bike
691
+ 672: tent
692
+ 673: computer mouse
693
+ 674: mousetrap
694
+ 675: moving van
695
+ 676: muzzle
696
+ 677: nail
697
+ 678: neck brace
698
+ 679: necklace
699
+ 680: nipple
700
+ 681: notebook computer
701
+ 682: obelisk
702
+ 683: oboe
703
+ 684: ocarina
704
+ 685: odometer
705
+ 686: oil filter
706
+ 687: organ
707
+ 688: oscilloscope
708
+ 689: overskirt
709
+ 690: bullock cart
710
+ 691: oxygen mask
711
+ 692: packet
712
+ 693: paddle
713
+ 694: paddle wheel
714
+ 695: padlock
715
+ 696: paintbrush
716
+ 697: pajamas
717
+ 698: palace
718
+ 699: pan flute
719
+ 700: paper towel
720
+ 701: parachute
721
+ 702: parallel bars
722
+ 703: park bench
723
+ 704: parking meter
724
+ 705: passenger car
725
+ 706: patio
726
+ 707: payphone
727
+ 708: pedestal
728
+ 709: pencil case
729
+ 710: pencil sharpener
730
+ 711: perfume
731
+ 712: Petri dish
732
+ 713: photocopier
733
+ 714: plectrum
734
+ 715: Pickelhaube
735
+ 716: picket fence
736
+ 717: pickup truck
737
+ 718: pier
738
+ 719: piggy bank
739
+ 720: pill bottle
740
+ 721: pillow
741
+ 722: ping-pong ball
742
+ 723: pinwheel
743
+ 724: pirate ship
744
+ 725: pitcher
745
+ 726: hand plane
746
+ 727: planetarium
747
+ 728: plastic bag
748
+ 729: plate rack
749
+ 730: plow
750
+ 731: plunger
751
+ 732: Polaroid camera
752
+ 733: pole
753
+ 734: police van
754
+ 735: poncho
755
+ 736: billiard table
756
+ 737: soda bottle
757
+ 738: pot
758
+ 739: potter's wheel
759
+ 740: power drill
760
+ 741: prayer rug
761
+ 742: printer
762
+ 743: prison
763
+ 744: projectile
764
+ 745: projector
765
+ 746: hockey puck
766
+ 747: punching bag
767
+ 748: purse
768
+ 749: quill
769
+ 750: quilt
770
+ 751: race car
771
+ 752: racket
772
+ 753: radiator
773
+ 754: radio
774
+ 755: radio telescope
775
+ 756: rain barrel
776
+ 757: recreational vehicle
777
+ 758: reel
778
+ 759: reflex camera
779
+ 760: refrigerator
780
+ 761: remote control
781
+ 762: restaurant
782
+ 763: revolver
783
+ 764: rifle
784
+ 765: rocking chair
785
+ 766: rotisserie
786
+ 767: eraser
787
+ 768: rugby ball
788
+ 769: ruler
789
+ 770: running shoe
790
+ 771: safe
791
+ 772: safety pin
792
+ 773: salt shaker
793
+ 774: sandal
794
+ 775: sarong
795
+ 776: saxophone
796
+ 777: scabbard
797
+ 778: weighing scale
798
+ 779: school bus
799
+ 780: schooner
800
+ 781: scoreboard
801
+ 782: CRT screen
802
+ 783: screw
803
+ 784: screwdriver
804
+ 785: seat belt
805
+ 786: sewing machine
806
+ 787: shield
807
+ 788: shoe store
808
+ 789: shoji
809
+ 790: shopping basket
810
+ 791: shopping cart
811
+ 792: shovel
812
+ 793: shower cap
813
+ 794: shower curtain
814
+ 795: ski
815
+ 796: ski mask
816
+ 797: sleeping bag
817
+ 798: slide rule
818
+ 799: sliding door
819
+ 800: slot machine
820
+ 801: snorkel
821
+ 802: snowmobile
822
+ 803: snowplow
823
+ 804: soap dispenser
824
+ 805: soccer ball
825
+ 806: sock
826
+ 807: solar thermal collector
827
+ 808: sombrero
828
+ 809: soup bowl
829
+ 810: space bar
830
+ 811: space heater
831
+ 812: space shuttle
832
+ 813: spatula
833
+ 814: motorboat
834
+ 815: spider web
835
+ 816: spindle
836
+ 817: sports car
837
+ 818: spotlight
838
+ 819: stage
839
+ 820: steam locomotive
840
+ 821: through arch bridge
841
+ 822: steel drum
842
+ 823: stethoscope
843
+ 824: scarf
844
+ 825: stone wall
845
+ 826: stopwatch
846
+ 827: stove
847
+ 828: strainer
848
+ 829: tram
849
+ 830: stretcher
850
+ 831: couch
851
+ 832: stupa
852
+ 833: submarine
853
+ 834: suit
854
+ 835: sundial
855
+ 836: sunglass
856
+ 837: sunglasses
857
+ 838: sunscreen
858
+ 839: suspension bridge
859
+ 840: mop
860
+ 841: sweatshirt
861
+ 842: swimsuit
862
+ 843: swing
863
+ 844: switch
864
+ 845: syringe
865
+ 846: table lamp
866
+ 847: tank
867
+ 848: tape player
868
+ 849: teapot
869
+ 850: teddy bear
870
+ 851: television
871
+ 852: tennis ball
872
+ 853: thatched roof
873
+ 854: front curtain
874
+ 855: thimble
875
+ 856: threshing machine
876
+ 857: throne
877
+ 858: tile roof
878
+ 859: toaster
879
+ 860: tobacco shop
880
+ 861: toilet seat
881
+ 862: torch
882
+ 863: totem pole
883
+ 864: tow truck
884
+ 865: toy store
885
+ 866: tractor
886
+ 867: semi-trailer truck
887
+ 868: tray
888
+ 869: trench coat
889
+ 870: tricycle
890
+ 871: trimaran
891
+ 872: tripod
892
+ 873: triumphal arch
893
+ 874: trolleybus
894
+ 875: trombone
895
+ 876: tub
896
+ 877: turnstile
897
+ 878: typewriter keyboard
898
+ 879: umbrella
899
+ 880: unicycle
900
+ 881: upright piano
901
+ 882: vacuum cleaner
902
+ 883: vase
903
+ 884: vault
904
+ 885: velvet
905
+ 886: vending machine
906
+ 887: vestment
907
+ 888: viaduct
908
+ 889: violin
909
+ 890: volleyball
910
+ 891: waffle iron
911
+ 892: wall clock
912
+ 893: wallet
913
+ 894: wardrobe
914
+ 895: military aircraft
915
+ 896: sink
916
+ 897: washing machine
917
+ 898: water bottle
918
+ 899: water jug
919
+ 900: water tower
920
+ 901: whiskey jug
921
+ 902: whistle
922
+ 903: wig
923
+ 904: window screen
924
+ 905: window shade
925
+ 906: Windsor tie
926
+ 907: wine bottle
927
+ 908: wing
928
+ 909: wok
929
+ 910: wooden spoon
930
+ 911: wool
931
+ 912: split-rail fence
932
+ 913: shipwreck
933
+ 914: yawl
934
+ 915: yurt
935
+ 916: website
936
+ 917: comic book
937
+ 918: crossword
938
+ 919: traffic sign
939
+ 920: traffic light
940
+ 921: dust jacket
941
+ 922: menu
942
+ 923: plate
943
+ 924: guacamole
944
+ 925: consomme
945
+ 926: hot pot
946
+ 927: trifle
947
+ 928: ice cream
948
+ 929: ice pop
949
+ 930: baguette
950
+ 931: bagel
951
+ 932: pretzel
952
+ 933: cheeseburger
953
+ 934: hot dog
954
+ 935: mashed potato
955
+ 936: cabbage
956
+ 937: broccoli
957
+ 938: cauliflower
958
+ 939: zucchini
959
+ 940: spaghetti squash
960
+ 941: acorn squash
961
+ 942: butternut squash
962
+ 943: cucumber
963
+ 944: artichoke
964
+ 945: bell pepper
965
+ 946: cardoon
966
+ 947: mushroom
967
+ 948: Granny Smith
968
+ 949: strawberry
969
+ 950: orange
970
+ 951: lemon
971
+ 952: fig
972
+ 953: pineapple
973
+ 954: banana
974
+ 955: jackfruit
975
+ 956: custard apple
976
+ 957: pomegranate
977
+ 958: hay
978
+ 959: carbonara
979
+ 960: chocolate syrup
980
+ 961: dough
981
+ 962: meatloaf
982
+ 963: pizza
983
+ 964: pot pie
984
+ 965: burrito
985
+ 966: red wine
986
+ 967: espresso
987
+ 968: cup
988
+ 969: eggnog
989
+ 970: alp
990
+ 971: bubble
991
+ 972: cliff
992
+ 973: coral reef
993
+ 974: geyser
994
+ 975: lakeshore
995
+ 976: promontory
996
+ 977: shoal
997
+ 978: seashore
998
+ 979: valley
999
+ 980: volcano
1000
+ 981: baseball player
1001
+ 982: bridegroom
1002
+ 983: scuba diver
1003
+ 984: rapeseed
1004
+ 985: daisy
1005
+ 986: yellow lady's slipper
1006
+ 987: corn
1007
+ 988: acorn
1008
+ 989: rose hip
1009
+ 990: horse chestnut seed
1010
+ 991: coral fungus
1011
+ 992: agaric
1012
+ 993: gyromitra
1013
+ 994: stinkhorn mushroom
1014
+ 995: earth star
1015
+ 996: hen-of-the-woods
1016
+ 997: bolete
1017
+ 998: ear
1018
+ 999: toilet paper
1019
+
1020
+
1021
+ # Download script/URL (optional)
1022
+ download: data/scripts/get_imagenet.sh
data/Objects365.yaml ADDED
@@ -0,0 +1,438 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ # Objects365 dataset https://www.objects365.org/ by Megvii
3
+ # Example usage: python train.py --data Objects365.yaml
4
+ # parent
5
+ # ├── yolov5
6
+ # └── datasets
7
+ # └── Objects365 ← downloads here (712 GB = 367G data + 345G zips)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/Objects365 # dataset root dir
12
+ train: images/train # train images (relative to 'path') 1742289 images
13
+ val: images/val # val images (relative to 'path') 80000 images
14
+ test: # test images (optional)
15
+
16
+ # Classes
17
+ names:
18
+ 0: Person
19
+ 1: Sneakers
20
+ 2: Chair
21
+ 3: Other Shoes
22
+ 4: Hat
23
+ 5: Car
24
+ 6: Lamp
25
+ 7: Glasses
26
+ 8: Bottle
27
+ 9: Desk
28
+ 10: Cup
29
+ 11: Street Lights
30
+ 12: Cabinet/shelf
31
+ 13: Handbag/Satchel
32
+ 14: Bracelet
33
+ 15: Plate
34
+ 16: Picture/Frame
35
+ 17: Helmet
36
+ 18: Book
37
+ 19: Gloves
38
+ 20: Storage box
39
+ 21: Boat
40
+ 22: Leather Shoes
41
+ 23: Flower
42
+ 24: Bench
43
+ 25: Potted Plant
44
+ 26: Bowl/Basin
45
+ 27: Flag
46
+ 28: Pillow
47
+ 29: Boots
48
+ 30: Vase
49
+ 31: Microphone
50
+ 32: Necklace
51
+ 33: Ring
52
+ 34: SUV
53
+ 35: Wine Glass
54
+ 36: Belt
55
+ 37: Monitor/TV
56
+ 38: Backpack
57
+ 39: Umbrella
58
+ 40: Traffic Light
59
+ 41: Speaker
60
+ 42: Watch
61
+ 43: Tie
62
+ 44: Trash bin Can
63
+ 45: Slippers
64
+ 46: Bicycle
65
+ 47: Stool
66
+ 48: Barrel/bucket
67
+ 49: Van
68
+ 50: Couch
69
+ 51: Sandals
70
+ 52: Basket
71
+ 53: Drum
72
+ 54: Pen/Pencil
73
+ 55: Bus
74
+ 56: Wild Bird
75
+ 57: High Heels
76
+ 58: Motorcycle
77
+ 59: Guitar
78
+ 60: Carpet
79
+ 61: Cell Phone
80
+ 62: Bread
81
+ 63: Camera
82
+ 64: Canned
83
+ 65: Truck
84
+ 66: Traffic cone
85
+ 67: Cymbal
86
+ 68: Lifesaver
87
+ 69: Towel
88
+ 70: Stuffed Toy
89
+ 71: Candle
90
+ 72: Sailboat
91
+ 73: Laptop
92
+ 74: Awning
93
+ 75: Bed
94
+ 76: Faucet
95
+ 77: Tent
96
+ 78: Horse
97
+ 79: Mirror
98
+ 80: Power outlet
99
+ 81: Sink
100
+ 82: Apple
101
+ 83: Air Conditioner
102
+ 84: Knife
103
+ 85: Hockey Stick
104
+ 86: Paddle
105
+ 87: Pickup Truck
106
+ 88: Fork
107
+ 89: Traffic Sign
108
+ 90: Balloon
109
+ 91: Tripod
110
+ 92: Dog
111
+ 93: Spoon
112
+ 94: Clock
113
+ 95: Pot
114
+ 96: Cow
115
+ 97: Cake
116
+ 98: Dinning Table
117
+ 99: Sheep
118
+ 100: Hanger
119
+ 101: Blackboard/Whiteboard
120
+ 102: Napkin
121
+ 103: Other Fish
122
+ 104: Orange/Tangerine
123
+ 105: Toiletry
124
+ 106: Keyboard
125
+ 107: Tomato
126
+ 108: Lantern
127
+ 109: Machinery Vehicle
128
+ 110: Fan
129
+ 111: Green Vegetables
130
+ 112: Banana
131
+ 113: Baseball Glove
132
+ 114: Airplane
133
+ 115: Mouse
134
+ 116: Train
135
+ 117: Pumpkin
136
+ 118: Soccer
137
+ 119: Skiboard
138
+ 120: Luggage
139
+ 121: Nightstand
140
+ 122: Tea pot
141
+ 123: Telephone
142
+ 124: Trolley
143
+ 125: Head Phone
144
+ 126: Sports Car
145
+ 127: Stop Sign
146
+ 128: Dessert
147
+ 129: Scooter
148
+ 130: Stroller
149
+ 131: Crane
150
+ 132: Remote
151
+ 133: Refrigerator
152
+ 134: Oven
153
+ 135: Lemon
154
+ 136: Duck
155
+ 137: Baseball Bat
156
+ 138: Surveillance Camera
157
+ 139: Cat
158
+ 140: Jug
159
+ 141: Broccoli
160
+ 142: Piano
161
+ 143: Pizza
162
+ 144: Elephant
163
+ 145: Skateboard
164
+ 146: Surfboard
165
+ 147: Gun
166
+ 148: Skating and Skiing shoes
167
+ 149: Gas stove
168
+ 150: Donut
169
+ 151: Bow Tie
170
+ 152: Carrot
171
+ 153: Toilet
172
+ 154: Kite
173
+ 155: Strawberry
174
+ 156: Other Balls
175
+ 157: Shovel
176
+ 158: Pepper
177
+ 159: Computer Box
178
+ 160: Toilet Paper
179
+ 161: Cleaning Products
180
+ 162: Chopsticks
181
+ 163: Microwave
182
+ 164: Pigeon
183
+ 165: Baseball
184
+ 166: Cutting/chopping Board
185
+ 167: Coffee Table
186
+ 168: Side Table
187
+ 169: Scissors
188
+ 170: Marker
189
+ 171: Pie
190
+ 172: Ladder
191
+ 173: Snowboard
192
+ 174: Cookies
193
+ 175: Radiator
194
+ 176: Fire Hydrant
195
+ 177: Basketball
196
+ 178: Zebra
197
+ 179: Grape
198
+ 180: Giraffe
199
+ 181: Potato
200
+ 182: Sausage
201
+ 183: Tricycle
202
+ 184: Violin
203
+ 185: Egg
204
+ 186: Fire Extinguisher
205
+ 187: Candy
206
+ 188: Fire Truck
207
+ 189: Billiards
208
+ 190: Converter
209
+ 191: Bathtub
210
+ 192: Wheelchair
211
+ 193: Golf Club
212
+ 194: Briefcase
213
+ 195: Cucumber
214
+ 196: Cigar/Cigarette
215
+ 197: Paint Brush
216
+ 198: Pear
217
+ 199: Heavy Truck
218
+ 200: Hamburger
219
+ 201: Extractor
220
+ 202: Extension Cord
221
+ 203: Tong
222
+ 204: Tennis Racket
223
+ 205: Folder
224
+ 206: American Football
225
+ 207: earphone
226
+ 208: Mask
227
+ 209: Kettle
228
+ 210: Tennis
229
+ 211: Ship
230
+ 212: Swing
231
+ 213: Coffee Machine
232
+ 214: Slide
233
+ 215: Carriage
234
+ 216: Onion
235
+ 217: Green beans
236
+ 218: Projector
237
+ 219: Frisbee
238
+ 220: Washing Machine/Drying Machine
239
+ 221: Chicken
240
+ 222: Printer
241
+ 223: Watermelon
242
+ 224: Saxophone
243
+ 225: Tissue
244
+ 226: Toothbrush
245
+ 227: Ice cream
246
+ 228: Hot-air balloon
247
+ 229: Cello
248
+ 230: French Fries
249
+ 231: Scale
250
+ 232: Trophy
251
+ 233: Cabbage
252
+ 234: Hot dog
253
+ 235: Blender
254
+ 236: Peach
255
+ 237: Rice
256
+ 238: Wallet/Purse
257
+ 239: Volleyball
258
+ 240: Deer
259
+ 241: Goose
260
+ 242: Tape
261
+ 243: Tablet
262
+ 244: Cosmetics
263
+ 245: Trumpet
264
+ 246: Pineapple
265
+ 247: Golf Ball
266
+ 248: Ambulance
267
+ 249: Parking meter
268
+ 250: Mango
269
+ 251: Key
270
+ 252: Hurdle
271
+ 253: Fishing Rod
272
+ 254: Medal
273
+ 255: Flute
274
+ 256: Brush
275
+ 257: Penguin
276
+ 258: Megaphone
277
+ 259: Corn
278
+ 260: Lettuce
279
+ 261: Garlic
280
+ 262: Swan
281
+ 263: Helicopter
282
+ 264: Green Onion
283
+ 265: Sandwich
284
+ 266: Nuts
285
+ 267: Speed Limit Sign
286
+ 268: Induction Cooker
287
+ 269: Broom
288
+ 270: Trombone
289
+ 271: Plum
290
+ 272: Rickshaw
291
+ 273: Goldfish
292
+ 274: Kiwi fruit
293
+ 275: Router/modem
294
+ 276: Poker Card
295
+ 277: Toaster
296
+ 278: Shrimp
297
+ 279: Sushi
298
+ 280: Cheese
299
+ 281: Notepaper
300
+ 282: Cherry
301
+ 283: Pliers
302
+ 284: CD
303
+ 285: Pasta
304
+ 286: Hammer
305
+ 287: Cue
306
+ 288: Avocado
307
+ 289: Hamimelon
308
+ 290: Flask
309
+ 291: Mushroom
310
+ 292: Screwdriver
311
+ 293: Soap
312
+ 294: Recorder
313
+ 295: Bear
314
+ 296: Eggplant
315
+ 297: Board Eraser
316
+ 298: Coconut
317
+ 299: Tape Measure/Ruler
318
+ 300: Pig
319
+ 301: Showerhead
320
+ 302: Globe
321
+ 303: Chips
322
+ 304: Steak
323
+ 305: Crosswalk Sign
324
+ 306: Stapler
325
+ 307: Camel
326
+ 308: Formula 1
327
+ 309: Pomegranate
328
+ 310: Dishwasher
329
+ 311: Crab
330
+ 312: Hoverboard
331
+ 313: Meat ball
332
+ 314: Rice Cooker
333
+ 315: Tuba
334
+ 316: Calculator
335
+ 317: Papaya
336
+ 318: Antelope
337
+ 319: Parrot
338
+ 320: Seal
339
+ 321: Butterfly
340
+ 322: Dumbbell
341
+ 323: Donkey
342
+ 324: Lion
343
+ 325: Urinal
344
+ 326: Dolphin
345
+ 327: Electric Drill
346
+ 328: Hair Dryer
347
+ 329: Egg tart
348
+ 330: Jellyfish
349
+ 331: Treadmill
350
+ 332: Lighter
351
+ 333: Grapefruit
352
+ 334: Game board
353
+ 335: Mop
354
+ 336: Radish
355
+ 337: Baozi
356
+ 338: Target
357
+ 339: French
358
+ 340: Spring Rolls
359
+ 341: Monkey
360
+ 342: Rabbit
361
+ 343: Pencil Case
362
+ 344: Yak
363
+ 345: Red Cabbage
364
+ 346: Binoculars
365
+ 347: Asparagus
366
+ 348: Barbell
367
+ 349: Scallop
368
+ 350: Noddles
369
+ 351: Comb
370
+ 352: Dumpling
371
+ 353: Oyster
372
+ 354: Table Tennis paddle
373
+ 355: Cosmetics Brush/Eyeliner Pencil
374
+ 356: Chainsaw
375
+ 357: Eraser
376
+ 358: Lobster
377
+ 359: Durian
378
+ 360: Okra
379
+ 361: Lipstick
380
+ 362: Cosmetics Mirror
381
+ 363: Curling
382
+ 364: Table Tennis
383
+
384
+
385
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
386
+ download: |
387
+ from tqdm import tqdm
388
+
389
+ from utils.general import Path, check_requirements, download, np, xyxy2xywhn
390
+
391
+ check_requirements(('pycocotools>=2.0',))
392
+ from pycocotools.coco import COCO
393
+
394
+ # Make Directories
395
+ dir = Path(yaml['path']) # dataset root dir
396
+ for p in 'images', 'labels':
397
+ (dir / p).mkdir(parents=True, exist_ok=True)
398
+ for q in 'train', 'val':
399
+ (dir / p / q).mkdir(parents=True, exist_ok=True)
400
+
401
+ # Train, Val Splits
402
+ for split, patches in [('train', 50 + 1), ('val', 43 + 1)]:
403
+ print(f"Processing {split} in {patches} patches ...")
404
+ images, labels = dir / 'images' / split, dir / 'labels' / split
405
+
406
+ # Download
407
+ url = f"https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/{split}/"
408
+ if split == 'train':
409
+ download([f'{url}zhiyuan_objv2_{split}.tar.gz'], dir=dir, delete=False) # annotations json
410
+ download([f'{url}patch{i}.tar.gz' for i in range(patches)], dir=images, curl=True, delete=False, threads=8)
411
+ elif split == 'val':
412
+ download([f'{url}zhiyuan_objv2_{split}.json'], dir=dir, delete=False) # annotations json
413
+ download([f'{url}images/v1/patch{i}.tar.gz' for i in range(15 + 1)], dir=images, curl=True, delete=False, threads=8)
414
+ download([f'{url}images/v2/patch{i}.tar.gz' for i in range(16, patches)], dir=images, curl=True, delete=False, threads=8)
415
+
416
+ # Move
417
+ for f in tqdm(images.rglob('*.jpg'), desc=f'Moving {split} images'):
418
+ f.rename(images / f.name) # move to /images/{split}
419
+
420
+ # Labels
421
+ coco = COCO(dir / f'zhiyuan_objv2_{split}.json')
422
+ names = [x["name"] for x in coco.loadCats(coco.getCatIds())]
423
+ for cid, cat in enumerate(names):
424
+ catIds = coco.getCatIds(catNms=[cat])
425
+ imgIds = coco.getImgIds(catIds=catIds)
426
+ for im in tqdm(coco.loadImgs(imgIds), desc=f'Class {cid + 1}/{len(names)} {cat}'):
427
+ width, height = im["width"], im["height"]
428
+ path = Path(im["file_name"]) # image filename
429
+ try:
430
+ with open(labels / path.with_suffix('.txt').name, 'a') as file:
431
+ annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=None)
432
+ for a in coco.loadAnns(annIds):
433
+ x, y, w, h = a['bbox'] # bounding box in xywh (xy top-left corner)
434
+ xyxy = np.array([x, y, x + w, y + h])[None] # pixels(1,4)
435
+ x, y, w, h = xyxy2xywhn(xyxy, w=width, h=height, clip=True)[0] # normalized and clipped
436
+ file.write(f"{cid} {x:.5f} {y:.5f} {w:.5f} {h:.5f}\n")
437
+ except Exception as e:
438
+ print(e)
data/SKU-110K.yaml ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ # SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail
3
+ # Example usage: python train.py --data SKU-110K.yaml
4
+ # parent
5
+ # ├── yolov5
6
+ # └── datasets
7
+ # └── SKU-110K ← downloads here (13.6 GB)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/SKU-110K # dataset root dir
12
+ train: train.txt # train images (relative to 'path') 8219 images
13
+ val: val.txt # val images (relative to 'path') 588 images
14
+ test: test.txt # test images (optional) 2936 images
15
+
16
+ # Classes
17
+ names:
18
+ 0: object
19
+
20
+
21
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
22
+ download: |
23
+ import shutil
24
+ from tqdm import tqdm
25
+ from utils.general import np, pd, Path, download, xyxy2xywh
26
+
27
+
28
+ # Download
29
+ dir = Path(yaml['path']) # dataset root dir
30
+ parent = Path(dir.parent) # download dir
31
+ urls = ['http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz']
32
+ download(urls, dir=parent, delete=False)
33
+
34
+ # Rename directories
35
+ if dir.exists():
36
+ shutil.rmtree(dir)
37
+ (parent / 'SKU110K_fixed').rename(dir) # rename dir
38
+ (dir / 'labels').mkdir(parents=True, exist_ok=True) # create labels dir
39
+
40
+ # Convert labels
41
+ names = 'image', 'x1', 'y1', 'x2', 'y2', 'class', 'image_width', 'image_height' # column names
42
+ for d in 'annotations_train.csv', 'annotations_val.csv', 'annotations_test.csv':
43
+ x = pd.read_csv(dir / 'annotations' / d, names=names).values # annotations
44
+ images, unique_images = x[:, 0], np.unique(x[:, 0])
45
+ with open((dir / d).with_suffix('.txt').__str__().replace('annotations_', ''), 'w') as f:
46
+ f.writelines(f'./images/{s}\n' for s in unique_images)
47
+ for im in tqdm(unique_images, desc=f'Converting {dir / d}'):
48
+ cls = 0 # single-class dataset
49
+ with open((dir / 'labels' / im).with_suffix('.txt'), 'a') as f:
50
+ for r in x[images == im]:
51
+ w, h = r[6], r[7] # image width, height
52
+ xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0] # instance
53
+ f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n") # write label
data/VOC.yaml ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ # PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford
3
+ # Example usage: python train.py --data VOC.yaml
4
+ # parent
5
+ # ├── yolov5
6
+ # └── datasets
7
+ # └── VOC ← downloads here (2.8 GB)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/VOC
12
+ train: # train images (relative to 'path') 16551 images
13
+ - images/train2012
14
+ - images/train2007
15
+ - images/val2012
16
+ - images/val2007
17
+ val: # val images (relative to 'path') 4952 images
18
+ - images/test2007
19
+ test: # test images (optional)
20
+ - images/test2007
21
+
22
+ # Classes
23
+ names:
24
+ 0: aeroplane
25
+ 1: bicycle
26
+ 2: bird
27
+ 3: boat
28
+ 4: bottle
29
+ 5: bus
30
+ 6: car
31
+ 7: cat
32
+ 8: chair
33
+ 9: cow
34
+ 10: diningtable
35
+ 11: dog
36
+ 12: horse
37
+ 13: motorbike
38
+ 14: person
39
+ 15: pottedplant
40
+ 16: sheep
41
+ 17: sofa
42
+ 18: train
43
+ 19: tvmonitor
44
+
45
+
46
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
47
+ download: |
48
+ import xml.etree.ElementTree as ET
49
+
50
+ from tqdm import tqdm
51
+ from utils.general import download, Path
52
+
53
+
54
+ def convert_label(path, lb_path, year, image_id):
55
+ def convert_box(size, box):
56
+ dw, dh = 1. / size[0], 1. / size[1]
57
+ x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2]
58
+ return x * dw, y * dh, w * dw, h * dh
59
+
60
+ in_file = open(path / f'VOC{year}/Annotations/{image_id}.xml')
61
+ out_file = open(lb_path, 'w')
62
+ tree = ET.parse(in_file)
63
+ root = tree.getroot()
64
+ size = root.find('size')
65
+ w = int(size.find('width').text)
66
+ h = int(size.find('height').text)
67
+
68
+ names = list(yaml['names'].values()) # names list
69
+ for obj in root.iter('object'):
70
+ cls = obj.find('name').text
71
+ if cls in names and int(obj.find('difficult').text) != 1:
72
+ xmlbox = obj.find('bndbox')
73
+ bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ('xmin', 'xmax', 'ymin', 'ymax')])
74
+ cls_id = names.index(cls) # class id
75
+ out_file.write(" ".join([str(a) for a in (cls_id, *bb)]) + '\n')
76
+
77
+
78
+ # Download
79
+ dir = Path(yaml['path']) # dataset root dir
80
+ url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
81
+ urls = [f'{url}VOCtrainval_06-Nov-2007.zip', # 446MB, 5012 images
82
+ f'{url}VOCtest_06-Nov-2007.zip', # 438MB, 4953 images
83
+ f'{url}VOCtrainval_11-May-2012.zip'] # 1.95GB, 17126 images
84
+ download(urls, dir=dir / 'images', delete=False, curl=True, threads=3)
85
+
86
+ # Convert
87
+ path = dir / 'images/VOCdevkit'
88
+ for year, image_set in ('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test'):
89
+ imgs_path = dir / 'images' / f'{image_set}{year}'
90
+ lbs_path = dir / 'labels' / f'{image_set}{year}'
91
+ imgs_path.mkdir(exist_ok=True, parents=True)
92
+ lbs_path.mkdir(exist_ok=True, parents=True)
93
+
94
+ with open(path / f'VOC{year}/ImageSets/Main/{image_set}.txt') as f:
95
+ image_ids = f.read().strip().split()
96
+ for id in tqdm(image_ids, desc=f'{image_set}{year}'):
97
+ f = path / f'VOC{year}/JPEGImages/{id}.jpg' # old img path
98
+ lb_path = (lbs_path / f.name).with_suffix('.txt') # new label path
99
+ f.rename(imgs_path / f.name) # move image
100
+ convert_label(path, lb_path, year, id) # convert labels to YOLO format
data/VisDrone.yaml ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ # VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University
3
+ # Example usage: python train.py --data VisDrone.yaml
4
+ # parent
5
+ # ├── yolov5
6
+ # └── datasets
7
+ # └── VisDrone ← downloads here (2.3 GB)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/VisDrone # dataset root dir
12
+ train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images
13
+ val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
14
+ test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
15
+
16
+ # Classes
17
+ names:
18
+ 0: pedestrian
19
+ 1: people
20
+ 2: bicycle
21
+ 3: car
22
+ 4: van
23
+ 5: truck
24
+ 6: tricycle
25
+ 7: awning-tricycle
26
+ 8: bus
27
+ 9: motor
28
+
29
+
30
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
31
+ download: |
32
+ from utils.general import download, os, Path
33
+
34
+ def visdrone2yolo(dir):
35
+ from PIL import Image
36
+ from tqdm import tqdm
37
+
38
+ def convert_box(size, box):
39
+ # Convert VisDrone box to YOLO xywh box
40
+ dw = 1. / size[0]
41
+ dh = 1. / size[1]
42
+ return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh
43
+
44
+ (dir / 'labels').mkdir(parents=True, exist_ok=True) # make labels directory
45
+ pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}')
46
+ for f in pbar:
47
+ img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size
48
+ lines = []
49
+ with open(f, 'r') as file: # read annotation.txt
50
+ for row in [x.split(',') for x in file.read().strip().splitlines()]:
51
+ if row[4] == '0': # VisDrone 'ignored regions' class 0
52
+ continue
53
+ cls = int(row[5]) - 1
54
+ box = convert_box(img_size, tuple(map(int, row[:4])))
55
+ lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")
56
+ with open(str(f).replace(os.sep + 'annotations' + os.sep, os.sep + 'labels' + os.sep), 'w') as fl:
57
+ fl.writelines(lines) # write label.txt
58
+
59
+
60
+ # Download
61
+ dir = Path(yaml['path']) # dataset root dir
62
+ urls = ['https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-train.zip',
63
+ 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip',
64
+ 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip',
65
+ 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-challenge.zip']
66
+ download(urls, dir=dir, curl=True, threads=4)
67
+
68
+ # Convert
69
+ for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev':
70
+ visdrone2yolo(dir / d) # convert VisDrone annotations to YOLO labels
data/coco.yaml ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ # COCO 2017 dataset http://cocodataset.org by Microsoft
3
+ # Example usage: python train.py --data coco.yaml
4
+ # parent
5
+ # ├── yolov5
6
+ # └── datasets
7
+ # └── coco ← downloads here (20.1 GB)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/coco # dataset root dir
12
+ train: train2017.txt # train images (relative to 'path') 118287 images
13
+ val: val2017.txt # val images (relative to 'path') 5000 images
14
+ test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
15
+
16
+ # Classes
17
+ names:
18
+ 0: person
19
+ 1: bicycle
20
+ 2: car
21
+ 3: motorcycle
22
+ 4: airplane
23
+ 5: bus
24
+ 6: train
25
+ 7: truck
26
+ 8: boat
27
+ 9: traffic light
28
+ 10: fire hydrant
29
+ 11: stop sign
30
+ 12: parking meter
31
+ 13: bench
32
+ 14: bird
33
+ 15: cat
34
+ 16: dog
35
+ 17: horse
36
+ 18: sheep
37
+ 19: cow
38
+ 20: elephant
39
+ 21: bear
40
+ 22: zebra
41
+ 23: giraffe
42
+ 24: backpack
43
+ 25: umbrella
44
+ 26: handbag
45
+ 27: tie
46
+ 28: suitcase
47
+ 29: frisbee
48
+ 30: skis
49
+ 31: snowboard
50
+ 32: sports ball
51
+ 33: kite
52
+ 34: baseball bat
53
+ 35: baseball glove
54
+ 36: skateboard
55
+ 37: surfboard
56
+ 38: tennis racket
57
+ 39: bottle
58
+ 40: wine glass
59
+ 41: cup
60
+ 42: fork
61
+ 43: knife
62
+ 44: spoon
63
+ 45: bowl
64
+ 46: banana
65
+ 47: apple
66
+ 48: sandwich
67
+ 49: orange
68
+ 50: broccoli
69
+ 51: carrot
70
+ 52: hot dog
71
+ 53: pizza
72
+ 54: donut
73
+ 55: cake
74
+ 56: chair
75
+ 57: couch
76
+ 58: potted plant
77
+ 59: bed
78
+ 60: dining table
79
+ 61: toilet
80
+ 62: tv
81
+ 63: laptop
82
+ 64: mouse
83
+ 65: remote
84
+ 66: keyboard
85
+ 67: cell phone
86
+ 68: microwave
87
+ 69: oven
88
+ 70: toaster
89
+ 71: sink
90
+ 72: refrigerator
91
+ 73: book
92
+ 74: clock
93
+ 75: vase
94
+ 76: scissors
95
+ 77: teddy bear
96
+ 78: hair drier
97
+ 79: toothbrush
98
+
99
+
100
+ # Download script/URL (optional)
101
+ download: |
102
+ from utils.general import download, Path
103
+
104
+
105
+ # Download labels
106
+ segments = False # segment or box labels
107
+ dir = Path(yaml['path']) # dataset root dir
108
+ url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
109
+ urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')] # labels
110
+ download(urls, dir=dir.parent)
111
+
112
+ # Download data
113
+ urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images
114
+ 'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images
115
+ 'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional)
116
+ download(urls, dir=dir / 'images', threads=3)
data/coco128-seg.yaml ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ # COCO128-seg dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
3
+ # Example usage: python train.py --data coco128.yaml
4
+ # parent
5
+ # ├── yolov5
6
+ # └── datasets
7
+ # └── coco128-seg ← downloads here (7 MB)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/coco128-seg # dataset root dir
12
+ train: images/train2017 # train images (relative to 'path') 128 images
13
+ val: images/train2017 # val images (relative to 'path') 128 images
14
+ test: # test images (optional)
15
+
16
+ # Classes
17
+ names:
18
+ 0: person
19
+ 1: bicycle
20
+ 2: car
21
+ 3: motorcycle
22
+ 4: airplane
23
+ 5: bus
24
+ 6: train
25
+ 7: truck
26
+ 8: boat
27
+ 9: traffic light
28
+ 10: fire hydrant
29
+ 11: stop sign
30
+ 12: parking meter
31
+ 13: bench
32
+ 14: bird
33
+ 15: cat
34
+ 16: dog
35
+ 17: horse
36
+ 18: sheep
37
+ 19: cow
38
+ 20: elephant
39
+ 21: bear
40
+ 22: zebra
41
+ 23: giraffe
42
+ 24: backpack
43
+ 25: umbrella
44
+ 26: handbag
45
+ 27: tie
46
+ 28: suitcase
47
+ 29: frisbee
48
+ 30: skis
49
+ 31: snowboard
50
+ 32: sports ball
51
+ 33: kite
52
+ 34: baseball bat
53
+ 35: baseball glove
54
+ 36: skateboard
55
+ 37: surfboard
56
+ 38: tennis racket
57
+ 39: bottle
58
+ 40: wine glass
59
+ 41: cup
60
+ 42: fork
61
+ 43: knife
62
+ 44: spoon
63
+ 45: bowl
64
+ 46: banana
65
+ 47: apple
66
+ 48: sandwich
67
+ 49: orange
68
+ 50: broccoli
69
+ 51: carrot
70
+ 52: hot dog
71
+ 53: pizza
72
+ 54: donut
73
+ 55: cake
74
+ 56: chair
75
+ 57: couch
76
+ 58: potted plant
77
+ 59: bed
78
+ 60: dining table
79
+ 61: toilet
80
+ 62: tv
81
+ 63: laptop
82
+ 64: mouse
83
+ 65: remote
84
+ 66: keyboard
85
+ 67: cell phone
86
+ 68: microwave
87
+ 69: oven
88
+ 70: toaster
89
+ 71: sink
90
+ 72: refrigerator
91
+ 73: book
92
+ 74: clock
93
+ 75: vase
94
+ 76: scissors
95
+ 77: teddy bear
96
+ 78: hair drier
97
+ 79: toothbrush
98
+
99
+
100
+ # Download script/URL (optional)
101
+ download: https://ultralytics.com/assets/coco128-seg.zip
data/coco128.yaml ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ # COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
3
+ # Example usage: python train.py --data coco128.yaml
4
+ # parent
5
+ # ├── yolov5
6
+ # └── datasets
7
+ # └── coco128 ← downloads here (7 MB)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/coco128 # dataset root dir
12
+ train: images/train2017 # train images (relative to 'path') 128 images
13
+ val: images/train2017 # val images (relative to 'path') 128 images
14
+ test: # test images (optional)
15
+
16
+ # Classes
17
+ names:
18
+ 0: person
19
+ 1: bicycle
20
+ 2: car
21
+ 3: motorcycle
22
+ 4: airplane
23
+ 5: bus
24
+ 6: train
25
+ 7: truck
26
+ 8: boat
27
+ 9: traffic light
28
+ 10: fire hydrant
29
+ 11: stop sign
30
+ 12: parking meter
31
+ 13: bench
32
+ 14: bird
33
+ 15: cat
34
+ 16: dog
35
+ 17: horse
36
+ 18: sheep
37
+ 19: cow
38
+ 20: elephant
39
+ 21: bear
40
+ 22: zebra
41
+ 23: giraffe
42
+ 24: backpack
43
+ 25: umbrella
44
+ 26: handbag
45
+ 27: tie
46
+ 28: suitcase
47
+ 29: frisbee
48
+ 30: skis
49
+ 31: snowboard
50
+ 32: sports ball
51
+ 33: kite
52
+ 34: baseball bat
53
+ 35: baseball glove
54
+ 36: skateboard
55
+ 37: surfboard
56
+ 38: tennis racket
57
+ 39: bottle
58
+ 40: wine glass
59
+ 41: cup
60
+ 42: fork
61
+ 43: knife
62
+ 44: spoon
63
+ 45: bowl
64
+ 46: banana
65
+ 47: apple
66
+ 48: sandwich
67
+ 49: orange
68
+ 50: broccoli
69
+ 51: carrot
70
+ 52: hot dog
71
+ 53: pizza
72
+ 54: donut
73
+ 55: cake
74
+ 56: chair
75
+ 57: couch
76
+ 58: potted plant
77
+ 59: bed
78
+ 60: dining table
79
+ 61: toilet
80
+ 62: tv
81
+ 63: laptop
82
+ 64: mouse
83
+ 65: remote
84
+ 66: keyboard
85
+ 67: cell phone
86
+ 68: microwave
87
+ 69: oven
88
+ 70: toaster
89
+ 71: sink
90
+ 72: refrigerator
91
+ 73: book
92
+ 74: clock
93
+ 75: vase
94
+ 76: scissors
95
+ 77: teddy bear
96
+ 78: hair drier
97
+ 79: toothbrush
98
+
99
+
100
+ # Download script/URL (optional)
101
+ download: https://ultralytics.com/assets/coco128.zip
data/hyps/hyp.Objects365.yaml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ # Hyperparameters for Objects365 training
3
+ # python train.py --weights yolov5m.pt --data Objects365.yaml --evolve
4
+ # See Hyperparameter Evolution tutorial for details https://github.com/ultralytics/yolov5#tutorials
5
+
6
+ lr0: 0.00258
7
+ lrf: 0.17
8
+ momentum: 0.779
9
+ weight_decay: 0.00058
10
+ warmup_epochs: 1.33
11
+ warmup_momentum: 0.86
12
+ warmup_bias_lr: 0.0711
13
+ box: 0.0539
14
+ cls: 0.299
15
+ cls_pw: 0.825
16
+ obj: 0.632
17
+ obj_pw: 1.0
18
+ iou_t: 0.2
19
+ anchor_t: 3.44
20
+ anchors: 3.2
21
+ fl_gamma: 0.0
22
+ hsv_h: 0.0188
23
+ hsv_s: 0.704
24
+ hsv_v: 0.36
25
+ degrees: 0.0
26
+ translate: 0.0902
27
+ scale: 0.491
28
+ shear: 0.0
29
+ perspective: 0.0
30
+ flipud: 0.0
31
+ fliplr: 0.5
32
+ mosaic: 1.0
33
+ mixup: 0.0
34
+ copy_paste: 0.0
data/hyps/hyp.VOC.yaml ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ # Hyperparameters for VOC training
3
+ # python train.py --batch 128 --weights yolov5m6.pt --data VOC.yaml --epochs 50 --img 512 --hyp hyp.scratch-med.yaml --evolve
4
+ # See Hyperparameter Evolution tutorial for details https://github.com/ultralytics/yolov5#tutorials
5
+
6
+ # YOLOv5 Hyperparameter Evolution Results
7
+ # Best generation: 467
8
+ # Last generation: 996
9
+ # metrics/precision, metrics/recall, metrics/mAP_0.5, metrics/mAP_0.5:0.95, val/box_loss, val/obj_loss, val/cls_loss
10
+ # 0.87729, 0.85125, 0.91286, 0.72664, 0.0076739, 0.0042529, 0.0013865
11
+
12
+ lr0: 0.00334
13
+ lrf: 0.15135
14
+ momentum: 0.74832
15
+ weight_decay: 0.00025
16
+ warmup_epochs: 3.3835
17
+ warmup_momentum: 0.59462
18
+ warmup_bias_lr: 0.18657
19
+ box: 0.02
20
+ cls: 0.21638
21
+ cls_pw: 0.5
22
+ obj: 0.51728
23
+ obj_pw: 0.67198
24
+ iou_t: 0.2
25
+ anchor_t: 3.3744
26
+ fl_gamma: 0.0
27
+ hsv_h: 0.01041
28
+ hsv_s: 0.54703
29
+ hsv_v: 0.27739
30
+ degrees: 0.0
31
+ translate: 0.04591
32
+ scale: 0.75544
33
+ shear: 0.0
34
+ perspective: 0.0
35
+ flipud: 0.0
36
+ fliplr: 0.5
37
+ mosaic: 0.85834
38
+ mixup: 0.04266
39
+ copy_paste: 0.0
40
+ anchors: 3.412
data/hyps/hyp.no-augmentation.yaml ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ # Hyperparameters when using Albumentations frameworks
3
+ # python train.py --hyp hyp.no-augmentation.yaml
4
+ # See https://github.com/ultralytics/yolov5/pull/3882 for YOLOv5 + Albumentations Usage examples
5
+
6
+ lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
7
+ lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
8
+ momentum: 0.937 # SGD momentum/Adam beta1
9
+ weight_decay: 0.0005 # optimizer weight decay 5e-4
10
+ warmup_epochs: 3.0 # warmup epochs (fractions ok)
11
+ warmup_momentum: 0.8 # warmup initial momentum
12
+ warmup_bias_lr: 0.1 # warmup initial bias lr
13
+ box: 0.05 # box loss gain
14
+ cls: 0.3 # cls loss gain
15
+ cls_pw: 1.0 # cls BCELoss positive_weight
16
+ obj: 0.7 # obj loss gain (scale with pixels)
17
+ obj_pw: 1.0 # obj BCELoss positive_weight
18
+ iou_t: 0.20 # IoU training threshold
19
+ anchor_t: 4.0 # anchor-multiple threshold
20
+ # anchors: 3 # anchors per output layer (0 to ignore)
21
+ # this parameters are all zero since we want to use albumentation framework
22
+ fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
23
+ hsv_h: 0 # image HSV-Hue augmentation (fraction)
24
+ hsv_s: 00 # image HSV-Saturation augmentation (fraction)
25
+ hsv_v: 0 # image HSV-Value augmentation (fraction)
26
+ degrees: 0.0 # image rotation (+/- deg)
27
+ translate: 0 # image translation (+/- fraction)
28
+ scale: 0 # image scale (+/- gain)
29
+ shear: 0 # image shear (+/- deg)
30
+ perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
31
+ flipud: 0.0 # image flip up-down (probability)
32
+ fliplr: 0.0 # image flip left-right (probability)
33
+ mosaic: 0.0 # image mosaic (probability)
34
+ mixup: 0.0 # image mixup (probability)
35
+ copy_paste: 0.0 # segment copy-paste (probability)
data/hyps/hyp.scratch-high.yaml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ # Hyperparameters for high-augmentation COCO training from scratch
3
+ # python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
4
+ # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
5
+
6
+ lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
7
+ lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
8
+ momentum: 0.937 # SGD momentum/Adam beta1
9
+ weight_decay: 0.0005 # optimizer weight decay 5e-4
10
+ warmup_epochs: 3.0 # warmup epochs (fractions ok)
11
+ warmup_momentum: 0.8 # warmup initial momentum
12
+ warmup_bias_lr: 0.1 # warmup initial bias lr
13
+ box: 0.05 # box loss gain
14
+ cls: 0.3 # cls loss gain
15
+ cls_pw: 1.0 # cls BCELoss positive_weight
16
+ obj: 0.7 # obj loss gain (scale with pixels)
17
+ obj_pw: 1.0 # obj BCELoss positive_weight
18
+ iou_t: 0.20 # IoU training threshold
19
+ anchor_t: 4.0 # anchor-multiple threshold
20
+ # anchors: 3 # anchors per output layer (0 to ignore)
21
+ fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
22
+ hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
23
+ hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
24
+ hsv_v: 0.4 # image HSV-Value augmentation (fraction)
25
+ degrees: 0.0 # image rotation (+/- deg)
26
+ translate: 0.1 # image translation (+/- fraction)
27
+ scale: 0.9 # image scale (+/- gain)
28
+ shear: 0.0 # image shear (+/- deg)
29
+ perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
30
+ flipud: 0.0 # image flip up-down (probability)
31
+ fliplr: 0.5 # image flip left-right (probability)
32
+ mosaic: 1.0 # image mosaic (probability)
33
+ mixup: 0.1 # image mixup (probability)
34
+ copy_paste: 0.1 # segment copy-paste (probability)
data/hyps/hyp.scratch-low.yaml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ # Hyperparameters for low-augmentation COCO training from scratch
3
+ # python train.py --batch 64 --cfg yolov5n6.yaml --weights '' --data coco.yaml --img 640 --epochs 300 --linear
4
+ # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
5
+
6
+ lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
7
+ lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
8
+ momentum: 0.937 # SGD momentum/Adam beta1
9
+ weight_decay: 0.0005 # optimizer weight decay 5e-4
10
+ warmup_epochs: 3.0 # warmup epochs (fractions ok)
11
+ warmup_momentum: 0.8 # warmup initial momentum
12
+ warmup_bias_lr: 0.1 # warmup initial bias lr
13
+ box: 0.05 # box loss gain
14
+ cls: 0.5 # cls loss gain
15
+ cls_pw: 1.0 # cls BCELoss positive_weight
16
+ obj: 1.0 # obj loss gain (scale with pixels)
17
+ obj_pw: 1.0 # obj BCELoss positive_weight
18
+ iou_t: 0.20 # IoU training threshold
19
+ anchor_t: 4.0 # anchor-multiple threshold
20
+ # anchors: 3 # anchors per output layer (0 to ignore)
21
+ fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
22
+ hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
23
+ hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
24
+ hsv_v: 0.4 # image HSV-Value augmentation (fraction)
25
+ degrees: 0.0 # image rotation (+/- deg)
26
+ translate: 0.1 # image translation (+/- fraction)
27
+ scale: 0.5 # image scale (+/- gain)
28
+ shear: 0.0 # image shear (+/- deg)
29
+ perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
30
+ flipud: 0.0 # image flip up-down (probability)
31
+ fliplr: 0.5 # image flip left-right (probability)
32
+ mosaic: 1.0 # image mosaic (probability)
33
+ mixup: 0.0 # image mixup (probability)
34
+ copy_paste: 0.0 # segment copy-paste (probability)
data/hyps/hyp.scratch-med.yaml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ # Hyperparameters for medium-augmentation COCO training from scratch
3
+ # python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
4
+ # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
5
+
6
+ lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
7
+ lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
8
+ momentum: 0.937 # SGD momentum/Adam beta1
9
+ weight_decay: 0.0005 # optimizer weight decay 5e-4
10
+ warmup_epochs: 3.0 # warmup epochs (fractions ok)
11
+ warmup_momentum: 0.8 # warmup initial momentum
12
+ warmup_bias_lr: 0.1 # warmup initial bias lr
13
+ box: 0.05 # box loss gain
14
+ cls: 0.3 # cls loss gain
15
+ cls_pw: 1.0 # cls BCELoss positive_weight
16
+ obj: 0.7 # obj loss gain (scale with pixels)
17
+ obj_pw: 1.0 # obj BCELoss positive_weight
18
+ iou_t: 0.20 # IoU training threshold
19
+ anchor_t: 4.0 # anchor-multiple threshold
20
+ # anchors: 3 # anchors per output layer (0 to ignore)
21
+ fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
22
+ hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
23
+ hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
24
+ hsv_v: 0.4 # image HSV-Value augmentation (fraction)
25
+ degrees: 0.0 # image rotation (+/- deg)
26
+ translate: 0.1 # image translation (+/- fraction)
27
+ scale: 0.9 # image scale (+/- gain)
28
+ shear: 0.0 # image shear (+/- deg)
29
+ perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
30
+ flipud: 0.0 # image flip up-down (probability)
31
+ fliplr: 0.5 # image flip left-right (probability)
32
+ mosaic: 1.0 # image mosaic (probability)
33
+ mixup: 0.1 # image mixup (probability)
34
+ copy_paste: 0.0 # segment copy-paste (probability)
data/scripts/download_weights.sh ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
3
+ # Download latest models from https://github.com/ultralytics/yolov5/releases
4
+ # Example usage: bash data/scripts/download_weights.sh
5
+ # parent
6
+ # └── yolov5
7
+ # ├── yolov5s.pt ← downloads here
8
+ # ├── yolov5m.pt
9
+ # └── ...
10
+
11
+ python - <<EOF
12
+ from utils.downloads import attempt_download
13
+
14
+ p5 = list('nsmlx') # P5 models
15
+ p6 = [f'{x}6' for x in p5] # P6 models
16
+ cls = [f'{x}-cls' for x in p5] # classification models
17
+ seg = [f'{x}-seg' for x in p5] # classification models
18
+
19
+ for x in p5 + p6 + cls + seg:
20
+ attempt_download(f'weights/yolov5{x}.pt')
21
+
22
+ EOF
data/scripts/get_coco.sh ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
3
+ # Download COCO 2017 dataset http://cocodataset.org
4
+ # Example usage: bash data/scripts/get_coco.sh
5
+ # parent
6
+ # ├── yolov5
7
+ # └── datasets
8
+ # └── coco ← downloads here
9
+
10
+ # Arguments (optional) Usage: bash data/scripts/get_coco.sh --train --val --test --segments
11
+ if [ "$#" -gt 0 ]; then
12
+ for opt in "$@"; do
13
+ case "${opt}" in
14
+ --train) train=true ;;
15
+ --val) val=true ;;
16
+ --test) test=true ;;
17
+ --segments) segments=true ;;
18
+ esac
19
+ done
20
+ else
21
+ train=true
22
+ val=true
23
+ test=false
24
+ segments=false
25
+ fi
26
+
27
+ # Download/unzip labels
28
+ d='../datasets' # unzip directory
29
+ url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
30
+ if [ "$segments" == "true" ]; then
31
+ f='coco2017labels-segments.zip' # 168 MB
32
+ else
33
+ f='coco2017labels.zip' # 46 MB
34
+ fi
35
+ echo 'Downloading' $url$f ' ...'
36
+ curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
37
+
38
+ # Download/unzip images
39
+ d='../datasets/coco/images' # unzip directory
40
+ url=http://images.cocodataset.org/zips/
41
+ if [ "$train" == "true" ]; then
42
+ f='train2017.zip' # 19G, 118k images
43
+ echo 'Downloading' $url$f '...'
44
+ curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
45
+ fi
46
+ if [ "$val" == "true" ]; then
47
+ f='val2017.zip' # 1G, 5k images
48
+ echo 'Downloading' $url$f '...'
49
+ curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
50
+ fi
51
+ if [ "$test" == "true" ]; then
52
+ f='test2017.zip' # 7G, 41k images (optional)
53
+ echo 'Downloading' $url$f '...'
54
+ curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
55
+ fi
56
+ wait # finish background tasks
data/scripts/get_coco128.sh ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
3
+ # Download COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017)
4
+ # Example usage: bash data/scripts/get_coco128.sh
5
+ # parent
6
+ # ├── yolov5
7
+ # └── datasets
8
+ # └── coco128 ← downloads here
9
+
10
+ # Download/unzip images and labels
11
+ d='../datasets' # unzip directory
12
+ url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
13
+ f='coco128.zip' # or 'coco128-segments.zip', 68 MB
14
+ echo 'Downloading' $url$f ' ...'
15
+ curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
16
+
17
+ wait # finish background tasks
data/scripts/get_imagenet.sh ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
3
+ # Download ILSVRC2012 ImageNet dataset https://image-net.org
4
+ # Example usage: bash data/scripts/get_imagenet.sh
5
+ # parent
6
+ # ├── yolov5
7
+ # └── datasets
8
+ # └── imagenet ← downloads here
9
+
10
+ # Arguments (optional) Usage: bash data/scripts/get_imagenet.sh --train --val
11
+ if [ "$#" -gt 0 ]; then
12
+ for opt in "$@"; do
13
+ case "${opt}" in
14
+ --train) train=true ;;
15
+ --val) val=true ;;
16
+ esac
17
+ done
18
+ else
19
+ train=true
20
+ val=true
21
+ fi
22
+
23
+ # Make dir
24
+ d='../datasets/imagenet' # unzip directory
25
+ mkdir -p $d && cd $d
26
+
27
+ # Download/unzip train
28
+ if [ "$train" == "true" ]; then
29
+ wget https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_train.tar # download 138G, 1281167 images
30
+ mkdir train && mv ILSVRC2012_img_train.tar train/ && cd train
31
+ tar -xf ILSVRC2012_img_train.tar && rm -f ILSVRC2012_img_train.tar
32
+ find . -name "*.tar" | while read NAME; do
33
+ mkdir -p "${NAME%.tar}"
34
+ tar -xf "${NAME}" -C "${NAME%.tar}"
35
+ rm -f "${NAME}"
36
+ done
37
+ cd ..
38
+ fi
39
+
40
+ # Download/unzip val
41
+ if [ "$val" == "true" ]; then
42
+ wget https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_val.tar # download 6.3G, 50000 images
43
+ mkdir val && mv ILSVRC2012_img_val.tar val/ && cd val && tar -xf ILSVRC2012_img_val.tar
44
+ wget -qO- https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh | bash # move into subdirs
45
+ fi
46
+
47
+ # Delete corrupted image (optional: PNG under JPEG name that may cause dataloaders to fail)
48
+ # rm train/n04266014/n04266014_10835.JPEG
49
+
50
+ # TFRecords (optional)
51
+ # wget https://raw.githubusercontent.com/tensorflow/models/master/research/slim/datasets/imagenet_lsvrc_2015_synsets.txt
data/xView.yaml ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ # DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA)
3
+ # -------- DOWNLOAD DATA MANUALLY and jar xf val_images.zip to 'datasets/xView' before running train command! --------
4
+ # Example usage: python train.py --data xView.yaml
5
+ # parent
6
+ # ├── yolov5
7
+ # └── datasets
8
+ # └── xView ← downloads here (20.7 GB)
9
+
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: ../datasets/xView # dataset root dir
13
+ train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images
14
+ val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images
15
+
16
+ # Classes
17
+ names:
18
+ 0: Fixed-wing Aircraft
19
+ 1: Small Aircraft
20
+ 2: Cargo Plane
21
+ 3: Helicopter
22
+ 4: Passenger Vehicle
23
+ 5: Small Car
24
+ 6: Bus
25
+ 7: Pickup Truck
26
+ 8: Utility Truck
27
+ 9: Truck
28
+ 10: Cargo Truck
29
+ 11: Truck w/Box
30
+ 12: Truck Tractor
31
+ 13: Trailer
32
+ 14: Truck w/Flatbed
33
+ 15: Truck w/Liquid
34
+ 16: Crane Truck
35
+ 17: Railway Vehicle
36
+ 18: Passenger Car
37
+ 19: Cargo Car
38
+ 20: Flat Car
39
+ 21: Tank car
40
+ 22: Locomotive
41
+ 23: Maritime Vessel
42
+ 24: Motorboat
43
+ 25: Sailboat
44
+ 26: Tugboat
45
+ 27: Barge
46
+ 28: Fishing Vessel
47
+ 29: Ferry
48
+ 30: Yacht
49
+ 31: Container Ship
50
+ 32: Oil Tanker
51
+ 33: Engineering Vehicle
52
+ 34: Tower crane
53
+ 35: Container Crane
54
+ 36: Reach Stacker
55
+ 37: Straddle Carrier
56
+ 38: Mobile Crane
57
+ 39: Dump Truck
58
+ 40: Haul Truck
59
+ 41: Scraper/Tractor
60
+ 42: Front loader/Bulldozer
61
+ 43: Excavator
62
+ 44: Cement Mixer
63
+ 45: Ground Grader
64
+ 46: Hut/Tent
65
+ 47: Shed
66
+ 48: Building
67
+ 49: Aircraft Hangar
68
+ 50: Damaged Building
69
+ 51: Facility
70
+ 52: Construction Site
71
+ 53: Vehicle Lot
72
+ 54: Helipad
73
+ 55: Storage Tank
74
+ 56: Shipping container lot
75
+ 57: Shipping Container
76
+ 58: Pylon
77
+ 59: Tower
78
+
79
+
80
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
81
+ download: |
82
+ import json
83
+ import os
84
+ from pathlib import Path
85
+
86
+ import numpy as np
87
+ from PIL import Image
88
+ from tqdm import tqdm
89
+
90
+ from utils.dataloaders import autosplit
91
+ from utils.general import download, xyxy2xywhn
92
+
93
+
94
+ def convert_labels(fname=Path('xView/xView_train.geojson')):
95
+ # Convert xView geoJSON labels to YOLO format
96
+ path = fname.parent
97
+ with open(fname) as f:
98
+ print(f'Loading {fname}...')
99
+ data = json.load(f)
100
+
101
+ # Make dirs
102
+ labels = Path(path / 'labels' / 'train')
103
+ os.system(f'rm -rf {labels}')
104
+ labels.mkdir(parents=True, exist_ok=True)
105
+
106
+ # xView classes 11-94 to 0-59
107
+ xview_class2index = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, -1, 9, 10, 11,
108
+ 12, 13, 14, 15, -1, -1, 16, 17, 18, 19, 20, 21, 22, -1, 23, 24, 25, -1, 26, 27, -1, 28, -1,
109
+ 29, 30, 31, 32, 33, 34, 35, 36, 37, -1, 38, 39, 40, 41, 42, 43, 44, 45, -1, -1, -1, -1, 46,
110
+ 47, 48, 49, -1, 50, 51, -1, 52, -1, -1, -1, 53, 54, -1, 55, -1, -1, 56, -1, 57, -1, 58, 59]
111
+
112
+ shapes = {}
113
+ for feature in tqdm(data['features'], desc=f'Converting {fname}'):
114
+ p = feature['properties']
115
+ if p['bounds_imcoords']:
116
+ id = p['image_id']
117
+ file = path / 'train_images' / id
118
+ if file.exists(): # 1395.tif missing
119
+ try:
120
+ box = np.array([int(num) for num in p['bounds_imcoords'].split(",")])
121
+ assert box.shape[0] == 4, f'incorrect box shape {box.shape[0]}'
122
+ cls = p['type_id']
123
+ cls = xview_class2index[int(cls)] # xView class to 0-60
124
+ assert 59 >= cls >= 0, f'incorrect class index {cls}'
125
+
126
+ # Write YOLO label
127
+ if id not in shapes:
128
+ shapes[id] = Image.open(file).size
129
+ box = xyxy2xywhn(box[None].astype(np.float), w=shapes[id][0], h=shapes[id][1], clip=True)
130
+ with open((labels / id).with_suffix('.txt'), 'a') as f:
131
+ f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n") # write label.txt
132
+ except Exception as e:
133
+ print(f'WARNING: skipping one label for {file}: {e}')
134
+
135
+
136
+ # Download manually from https://challenge.xviewdataset.org
137
+ dir = Path(yaml['path']) # dataset root dir
138
+ # urls = ['https://d307kc0mrhucc3.cloudfront.net/train_labels.zip', # train labels
139
+ # 'https://d307kc0mrhucc3.cloudfront.net/train_images.zip', # 15G, 847 train images
140
+ # 'https://d307kc0mrhucc3.cloudfront.net/val_images.zip'] # 5G, 282 val images (no labels)
141
+ # download(urls, dir=dir, delete=False)
142
+
143
+ # Convert labels
144
+ convert_labels(dir / 'xView_train.geojson')
145
+
146
+ # Move images
147
+ images = Path(dir / 'images')
148
+ images.mkdir(parents=True, exist_ok=True)
149
+ Path(dir / 'train_images').rename(dir / 'images' / 'train')
150
+ Path(dir / 'val_images').rename(dir / 'images' / 'val')
151
+
152
+ # Split
153
+ autosplit(dir / 'images' / 'train')
detect.py ADDED
@@ -0,0 +1,261 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ """
3
+ Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
4
+
5
+ Usage - sources:
6
+ $ python detect.py --weights yolov5s.pt --source 0 # webcam
7
+ img.jpg # image
8
+ vid.mp4 # video
9
+ screen # screenshot
10
+ path/ # directory
11
+ list.txt # list of images
12
+ list.streams # list of streams
13
+ 'path/*.jpg' # glob
14
+ 'https://youtu.be/Zgi9g1ksQHc' # YouTube
15
+ 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
16
+
17
+ Usage - formats:
18
+ $ python detect.py --weights yolov5s.pt # PyTorch
19
+ yolov5s.torchscript # TorchScript
20
+ yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
21
+ yolov5s_openvino_model # OpenVINO
22
+ yolov5s.engine # TensorRT
23
+ yolov5s.mlmodel # CoreML (macOS-only)
24
+ yolov5s_saved_model # TensorFlow SavedModel
25
+ yolov5s.pb # TensorFlow GraphDef
26
+ yolov5s.tflite # TensorFlow Lite
27
+ yolov5s_edgetpu.tflite # TensorFlow Edge TPU
28
+ yolov5s_paddle_model # PaddlePaddle
29
+ """
30
+
31
+ import argparse
32
+ import os
33
+ import platform
34
+ import sys
35
+ from pathlib import Path
36
+
37
+ import torch
38
+
39
+ FILE = Path(__file__).resolve()
40
+ ROOT = FILE.parents[0] # YOLOv5 root directory
41
+ if str(ROOT) not in sys.path:
42
+ sys.path.append(str(ROOT)) # add ROOT to PATH
43
+ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
44
+
45
+ from models.common import DetectMultiBackend
46
+ from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
47
+ from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
48
+ increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh)
49
+ from utils.plots import Annotator, colors, save_one_box
50
+ from utils.torch_utils import select_device, smart_inference_mode
51
+
52
+
53
+ @smart_inference_mode()
54
+ def run(
55
+ weights=ROOT / 'yolov5s.pt', # model path or triton URL
56
+ source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam)
57
+ data=ROOT / 'data/coco128.yaml', # dataset.yaml path
58
+ imgsz=(640, 640), # inference size (height, width)
59
+ conf_thres=0.25, # confidence threshold
60
+ iou_thres=0.45, # NMS IOU threshold
61
+ max_det=1000, # maximum detections per image
62
+ device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
63
+ view_img=False, # show results
64
+ save_txt=False, # save results to *.txt
65
+ save_conf=False, # save confidences in --save-txt labels
66
+ save_crop=False, # save cropped prediction boxes
67
+ nosave=False, # do not save images/videos
68
+ classes=None, # filter by class: --class 0, or --class 0 2 3
69
+ agnostic_nms=False, # class-agnostic NMS
70
+ augment=False, # augmented inference
71
+ visualize=False, # visualize features
72
+ update=False, # update all models
73
+ project=ROOT / 'runs/detect', # save results to project/name
74
+ name='exp', # save results to project/name
75
+ exist_ok=False, # existing project/name ok, do not increment
76
+ line_thickness=3, # bounding box thickness (pixels)
77
+ hide_labels=False, # hide labels
78
+ hide_conf=False, # hide confidences
79
+ half=False, # use FP16 half-precision inference
80
+ dnn=False, # use OpenCV DNN for ONNX inference
81
+ vid_stride=1, # video frame-rate stride
82
+ ):
83
+ source = str(source)
84
+ save_img = not nosave and not source.endswith('.txt') # save inference images
85
+ is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
86
+ is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
87
+ webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file)
88
+ screenshot = source.lower().startswith('screen')
89
+ if is_url and is_file:
90
+ source = check_file(source) # download
91
+
92
+ # Directories
93
+ save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
94
+ (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
95
+
96
+ # Load model
97
+ device = select_device(device)
98
+ model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
99
+ stride, names, pt = model.stride, model.names, model.pt
100
+ imgsz = check_img_size(imgsz, s=stride) # check image size
101
+
102
+ # Dataloader
103
+ bs = 1 # batch_size
104
+ if webcam:
105
+ view_img = check_imshow(warn=True)
106
+ dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
107
+ bs = len(dataset)
108
+ elif screenshot:
109
+ dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
110
+ else:
111
+ dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
112
+ vid_path, vid_writer = [None] * bs, [None] * bs
113
+
114
+ # Run inference
115
+ model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
116
+ seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
117
+ for path, im, im0s, vid_cap, s in dataset:
118
+ with dt[0]:
119
+ im = torch.from_numpy(im).to(model.device)
120
+ im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
121
+ im /= 255 # 0 - 255 to 0.0 - 1.0
122
+ if len(im.shape) == 3:
123
+ im = im[None] # expand for batch dim
124
+
125
+ # Inference
126
+ with dt[1]:
127
+ visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
128
+ pred = model(im, augment=augment, visualize=visualize)
129
+
130
+ # NMS
131
+ with dt[2]:
132
+ pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
133
+
134
+ # Second-stage classifier (optional)
135
+ # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
136
+
137
+ # Process predictions
138
+ for i, det in enumerate(pred): # per image
139
+ seen += 1
140
+ if webcam: # batch_size >= 1
141
+ p, im0, frame = path[i], im0s[i].copy(), dataset.count
142
+ s += f'{i}: '
143
+ else:
144
+ p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
145
+
146
+ p = Path(p) # to Path
147
+ save_path = str(save_dir / p.name) # im.jpg
148
+ txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
149
+ s += '%gx%g ' % im.shape[2:] # print string
150
+ gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
151
+ imc = im0.copy() if save_crop else im0 # for save_crop
152
+ annotator = Annotator(im0, line_width=line_thickness, example=str(names))
153
+ if len(det):
154
+ # Rescale boxes from img_size to im0 size
155
+ det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
156
+
157
+ # Print results
158
+ for c in det[:, 5].unique():
159
+ n = (det[:, 5] == c).sum() # detections per class
160
+ s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
161
+
162
+ # Write results
163
+ for *xyxy, conf, cls in reversed(det):
164
+ if save_txt: # Write to file
165
+ xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
166
+ line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
167
+ with open(f'{txt_path}.txt', 'a') as f:
168
+ f.write(('%g ' * len(line)).rstrip() % line + '\n')
169
+
170
+ if save_img or save_crop or view_img: # Add bbox to image
171
+ c = int(cls) # integer class
172
+ label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
173
+ annotator.box_label(xyxy, label, color=colors(c, True))
174
+ if save_crop:
175
+ save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
176
+
177
+ # Stream results
178
+ im0 = annotator.result()
179
+ if view_img:
180
+ if platform.system() == 'Linux' and p not in windows:
181
+ windows.append(p)
182
+ cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
183
+ cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
184
+ cv2.imshow(str(p), im0)
185
+ cv2.waitKey(1) # 1 millisecond
186
+
187
+ # Save results (image with detections)
188
+ if save_img:
189
+ if dataset.mode == 'image':
190
+ cv2.imwrite(save_path, im0)
191
+ else: # 'video' or 'stream'
192
+ if vid_path[i] != save_path: # new video
193
+ vid_path[i] = save_path
194
+ if isinstance(vid_writer[i], cv2.VideoWriter):
195
+ vid_writer[i].release() # release previous video writer
196
+ if vid_cap: # video
197
+ fps = vid_cap.get(cv2.CAP_PROP_FPS)
198
+ w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
199
+ h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
200
+ else: # stream
201
+ fps, w, h = 30, im0.shape[1], im0.shape[0]
202
+ save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
203
+ vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
204
+ vid_writer[i].write(im0)
205
+
206
+ # Print time (inference-only)
207
+ LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
208
+
209
+ # Print results
210
+ t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
211
+ LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
212
+ if save_txt or save_img:
213
+ s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
214
+ LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
215
+ if update:
216
+ strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
217
+
218
+
219
+ def parse_opt():
220
+ parser = argparse.ArgumentParser()
221
+ parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path or triton URL')
222
+ parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)')
223
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
224
+ parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
225
+ parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
226
+ parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
227
+ parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
228
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
229
+ parser.add_argument('--view-img', action='store_true', help='show results')
230
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
231
+ parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
232
+ parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
233
+ parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
234
+ parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
235
+ parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
236
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
237
+ parser.add_argument('--visualize', action='store_true', help='visualize features')
238
+ parser.add_argument('--update', action='store_true', help='update all models')
239
+ parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
240
+ parser.add_argument('--name', default='exp', help='save results to project/name')
241
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
242
+ parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
243
+ parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
244
+ parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
245
+ parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
246
+ parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
247
+ parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
248
+ opt = parser.parse_args()
249
+ opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
250
+ print_args(vars(opt))
251
+ return opt
252
+
253
+
254
+ def main(opt):
255
+ check_requirements(exclude=('tensorboard', 'thop'))
256
+ run(**vars(opt))
257
+
258
+
259
+ if __name__ == "__main__":
260
+ opt = parse_opt()
261
+ main(opt)
export.py ADDED
@@ -0,0 +1,653 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ """
3
+ Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit
4
+
5
+ Format | `export.py --include` | Model
6
+ --- | --- | ---
7
+ PyTorch | - | yolov5s.pt
8
+ TorchScript | `torchscript` | yolov5s.torchscript
9
+ ONNX | `onnx` | yolov5s.onnx
10
+ OpenVINO | `openvino` | yolov5s_openvino_model/
11
+ TensorRT | `engine` | yolov5s.engine
12
+ CoreML | `coreml` | yolov5s.mlmodel
13
+ TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
14
+ TensorFlow GraphDef | `pb` | yolov5s.pb
15
+ TensorFlow Lite | `tflite` | yolov5s.tflite
16
+ TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
17
+ TensorFlow.js | `tfjs` | yolov5s_web_model/
18
+ PaddlePaddle | `paddle` | yolov5s_paddle_model/
19
+
20
+ Requirements:
21
+ $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
22
+ $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
23
+
24
+ Usage:
25
+ $ python export.py --weights yolov5s.pt --include torchscript onnx openvino engine coreml tflite ...
26
+
27
+ Inference:
28
+ $ python detect.py --weights yolov5s.pt # PyTorch
29
+ yolov5s.torchscript # TorchScript
30
+ yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
31
+ yolov5s_openvino_model # OpenVINO
32
+ yolov5s.engine # TensorRT
33
+ yolov5s.mlmodel # CoreML (macOS-only)
34
+ yolov5s_saved_model # TensorFlow SavedModel
35
+ yolov5s.pb # TensorFlow GraphDef
36
+ yolov5s.tflite # TensorFlow Lite
37
+ yolov5s_edgetpu.tflite # TensorFlow Edge TPU
38
+ yolov5s_paddle_model # PaddlePaddle
39
+
40
+ TensorFlow.js:
41
+ $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
42
+ $ npm install
43
+ $ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model
44
+ $ npm start
45
+ """
46
+
47
+ import argparse
48
+ import contextlib
49
+ import json
50
+ import os
51
+ import platform
52
+ import re
53
+ import subprocess
54
+ import sys
55
+ import time
56
+ import warnings
57
+ from pathlib import Path
58
+
59
+ import pandas as pd
60
+ import torch
61
+ from torch.utils.mobile_optimizer import optimize_for_mobile
62
+
63
+ FILE = Path(__file__).resolve()
64
+ ROOT = FILE.parents[0] # YOLOv5 root directory
65
+ if str(ROOT) not in sys.path:
66
+ sys.path.append(str(ROOT)) # add ROOT to PATH
67
+ if platform.system() != 'Windows':
68
+ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
69
+
70
+ from models.experimental import attempt_load
71
+ from models.yolo import ClassificationModel, Detect, DetectionModel, SegmentationModel
72
+ from utils.dataloaders import LoadImages
73
+ from utils.general import (LOGGER, Profile, check_dataset, check_img_size, check_requirements, check_version,
74
+ check_yaml, colorstr, file_size, get_default_args, print_args, url2file, yaml_save)
75
+ from utils.torch_utils import select_device, smart_inference_mode
76
+
77
+ MACOS = platform.system() == 'Darwin' # macOS environment
78
+
79
+
80
+ def export_formats():
81
+ # YOLOv5 export formats
82
+ x = [
83
+ ['PyTorch', '-', '.pt', True, True],
84
+ ['TorchScript', 'torchscript', '.torchscript', True, True],
85
+ ['ONNX', 'onnx', '.onnx', True, True],
86
+ ['OpenVINO', 'openvino', '_openvino_model', True, False],
87
+ ['TensorRT', 'engine', '.engine', False, True],
88
+ ['CoreML', 'coreml', '.mlmodel', True, False],
89
+ ['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True],
90
+ ['TensorFlow GraphDef', 'pb', '.pb', True, True],
91
+ ['TensorFlow Lite', 'tflite', '.tflite', True, False],
92
+ ['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False, False],
93
+ ['TensorFlow.js', 'tfjs', '_web_model', False, False],
94
+ ['PaddlePaddle', 'paddle', '_paddle_model', True, True],]
95
+ return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
96
+
97
+
98
+ def try_export(inner_func):
99
+ # YOLOv5 export decorator, i..e @try_export
100
+ inner_args = get_default_args(inner_func)
101
+
102
+ def outer_func(*args, **kwargs):
103
+ prefix = inner_args['prefix']
104
+ try:
105
+ with Profile() as dt:
106
+ f, model = inner_func(*args, **kwargs)
107
+ LOGGER.info(f'{prefix} export success ✅ {dt.t:.1f}s, saved as {f} ({file_size(f):.1f} MB)')
108
+ return f, model
109
+ except Exception as e:
110
+ LOGGER.info(f'{prefix} export failure ❌ {dt.t:.1f}s: {e}')
111
+ return None, None
112
+
113
+ return outer_func
114
+
115
+
116
+ @try_export
117
+ def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
118
+ # YOLOv5 TorchScript model export
119
+ LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...')
120
+ f = file.with_suffix('.torchscript')
121
+
122
+ ts = torch.jit.trace(model, im, strict=False)
123
+ d = {"shape": im.shape, "stride": int(max(model.stride)), "names": model.names}
124
+ extra_files = {'config.txt': json.dumps(d)} # torch._C.ExtraFilesMap()
125
+ if optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
126
+ optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
127
+ else:
128
+ ts.save(str(f), _extra_files=extra_files)
129
+ return f, None
130
+
131
+
132
+ @try_export
133
+ def export_onnx(model, im, file, opset, dynamic, simplify, prefix=colorstr('ONNX:')):
134
+ # YOLOv5 ONNX export
135
+ check_requirements('onnx>=1.12.0')
136
+ import onnx
137
+
138
+ LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
139
+ f = file.with_suffix('.onnx')
140
+
141
+ output_names = ['output0', 'output1'] if isinstance(model, SegmentationModel) else ['output0']
142
+ if dynamic:
143
+ dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640)
144
+ if isinstance(model, SegmentationModel):
145
+ dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
146
+ dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
147
+ elif isinstance(model, DetectionModel):
148
+ dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
149
+
150
+ torch.onnx.export(
151
+ model.cpu() if dynamic else model, # --dynamic only compatible with cpu
152
+ im.cpu() if dynamic else im,
153
+ f,
154
+ verbose=False,
155
+ opset_version=opset,
156
+ do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
157
+ input_names=['images'],
158
+ output_names=output_names,
159
+ dynamic_axes=dynamic or None)
160
+
161
+ # Checks
162
+ model_onnx = onnx.load(f) # load onnx model
163
+ onnx.checker.check_model(model_onnx) # check onnx model
164
+
165
+ # Metadata
166
+ d = {'stride': int(max(model.stride)), 'names': model.names}
167
+ for k, v in d.items():
168
+ meta = model_onnx.metadata_props.add()
169
+ meta.key, meta.value = k, str(v)
170
+ onnx.save(model_onnx, f)
171
+
172
+ # Simplify
173
+ if simplify:
174
+ try:
175
+ cuda = torch.cuda.is_available()
176
+ check_requirements(('onnxruntime-gpu' if cuda else 'onnxruntime', 'onnx-simplifier>=0.4.1'))
177
+ import onnxsim
178
+
179
+ LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
180
+ model_onnx, check = onnxsim.simplify(model_onnx)
181
+ assert check, 'assert check failed'
182
+ onnx.save(model_onnx, f)
183
+ except Exception as e:
184
+ LOGGER.info(f'{prefix} simplifier failure: {e}')
185
+ return f, model_onnx
186
+
187
+
188
+ @try_export
189
+ def export_openvino(file, metadata, half, prefix=colorstr('OpenVINO:')):
190
+ # YOLOv5 OpenVINO export
191
+ check_requirements('openvino-dev') # requires openvino-dev: https://pypi.org/project/openvino-dev/
192
+ import openvino.inference_engine as ie
193
+
194
+ LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...')
195
+ f = str(file).replace('.pt', f'_openvino_model{os.sep}')
196
+
197
+ cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f} --data_type {'FP16' if half else 'FP32'}"
198
+ subprocess.run(cmd.split(), check=True, env=os.environ) # export
199
+ yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) # add metadata.yaml
200
+ return f, None
201
+
202
+
203
+ @try_export
204
+ def export_paddle(model, im, file, metadata, prefix=colorstr('PaddlePaddle:')):
205
+ # YOLOv5 Paddle export
206
+ check_requirements(('paddlepaddle', 'x2paddle'))
207
+ import x2paddle
208
+ from x2paddle.convert import pytorch2paddle
209
+
210
+ LOGGER.info(f'\n{prefix} starting export with X2Paddle {x2paddle.__version__}...')
211
+ f = str(file).replace('.pt', f'_paddle_model{os.sep}')
212
+
213
+ pytorch2paddle(module=model, save_dir=f, jit_type='trace', input_examples=[im]) # export
214
+ yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) # add metadata.yaml
215
+ return f, None
216
+
217
+
218
+ @try_export
219
+ def export_coreml(model, im, file, int8, half, prefix=colorstr('CoreML:')):
220
+ # YOLOv5 CoreML export
221
+ check_requirements('coremltools')
222
+ import coremltools as ct
223
+
224
+ LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
225
+ f = file.with_suffix('.mlmodel')
226
+
227
+ ts = torch.jit.trace(model, im, strict=False) # TorchScript model
228
+ ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])])
229
+ bits, mode = (8, 'kmeans_lut') if int8 else (16, 'linear') if half else (32, None)
230
+ if bits < 32:
231
+ if MACOS: # quantization only supported on macOS
232
+ with warnings.catch_warnings():
233
+ warnings.filterwarnings("ignore", category=DeprecationWarning) # suppress numpy==1.20 float warning
234
+ ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
235
+ else:
236
+ print(f'{prefix} quantization only supported on macOS, skipping...')
237
+ ct_model.save(f)
238
+ return f, ct_model
239
+
240
+
241
+ @try_export
242
+ def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')):
243
+ # YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt
244
+ assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`'
245
+ try:
246
+ import tensorrt as trt
247
+ except Exception:
248
+ if platform.system() == 'Linux':
249
+ check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com')
250
+ import tensorrt as trt
251
+
252
+ if trt.__version__[0] == '7': # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012
253
+ grid = model.model[-1].anchor_grid
254
+ model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid]
255
+ export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
256
+ model.model[-1].anchor_grid = grid
257
+ else: # TensorRT >= 8
258
+ check_version(trt.__version__, '8.0.0', hard=True) # require tensorrt>=8.0.0
259
+ export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
260
+ onnx = file.with_suffix('.onnx')
261
+
262
+ LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...')
263
+ assert onnx.exists(), f'failed to export ONNX file: {onnx}'
264
+ f = file.with_suffix('.engine') # TensorRT engine file
265
+ logger = trt.Logger(trt.Logger.INFO)
266
+ if verbose:
267
+ logger.min_severity = trt.Logger.Severity.VERBOSE
268
+
269
+ builder = trt.Builder(logger)
270
+ config = builder.create_builder_config()
271
+ config.max_workspace_size = workspace * 1 << 30
272
+ # config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice
273
+
274
+ flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
275
+ network = builder.create_network(flag)
276
+ parser = trt.OnnxParser(network, logger)
277
+ if not parser.parse_from_file(str(onnx)):
278
+ raise RuntimeError(f'failed to load ONNX file: {onnx}')
279
+
280
+ inputs = [network.get_input(i) for i in range(network.num_inputs)]
281
+ outputs = [network.get_output(i) for i in range(network.num_outputs)]
282
+ for inp in inputs:
283
+ LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
284
+ for out in outputs:
285
+ LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
286
+
287
+ if dynamic:
288
+ if im.shape[0] <= 1:
289
+ LOGGER.warning(f"{prefix} WARNING ⚠️ --dynamic model requires maximum --batch-size argument")
290
+ profile = builder.create_optimization_profile()
291
+ for inp in inputs:
292
+ profile.set_shape(inp.name, (1, *im.shape[1:]), (max(1, im.shape[0] // 2), *im.shape[1:]), im.shape)
293
+ config.add_optimization_profile(profile)
294
+
295
+ LOGGER.info(f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine as {f}')
296
+ if builder.platform_has_fast_fp16 and half:
297
+ config.set_flag(trt.BuilderFlag.FP16)
298
+ with builder.build_engine(network, config) as engine, open(f, 'wb') as t:
299
+ t.write(engine.serialize())
300
+ return f, None
301
+
302
+
303
+ @try_export
304
+ def export_saved_model(model,
305
+ im,
306
+ file,
307
+ dynamic,
308
+ tf_nms=False,
309
+ agnostic_nms=False,
310
+ topk_per_class=100,
311
+ topk_all=100,
312
+ iou_thres=0.45,
313
+ conf_thres=0.25,
314
+ keras=False,
315
+ prefix=colorstr('TensorFlow SavedModel:')):
316
+ # YOLOv5 TensorFlow SavedModel export
317
+ try:
318
+ import tensorflow as tf
319
+ except Exception:
320
+ check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}")
321
+ import tensorflow as tf
322
+ from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
323
+
324
+ from models.tf import TFModel
325
+
326
+ LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
327
+ f = str(file).replace('.pt', '_saved_model')
328
+ batch_size, ch, *imgsz = list(im.shape) # BCHW
329
+
330
+ tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
331
+ im = tf.zeros((batch_size, *imgsz, ch)) # BHWC order for TensorFlow
332
+ _ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
333
+ inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size)
334
+ outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
335
+ keras_model = tf.keras.Model(inputs=inputs, outputs=outputs)
336
+ keras_model.trainable = False
337
+ keras_model.summary()
338
+ if keras:
339
+ keras_model.save(f, save_format='tf')
340
+ else:
341
+ spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)
342
+ m = tf.function(lambda x: keras_model(x)) # full model
343
+ m = m.get_concrete_function(spec)
344
+ frozen_func = convert_variables_to_constants_v2(m)
345
+ tfm = tf.Module()
346
+ tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x), [spec])
347
+ tfm.__call__(im)
348
+ tf.saved_model.save(tfm,
349
+ f,
350
+ options=tf.saved_model.SaveOptions(experimental_custom_gradients=False) if check_version(
351
+ tf.__version__, '2.6') else tf.saved_model.SaveOptions())
352
+ return f, keras_model
353
+
354
+
355
+ @try_export
356
+ def export_pb(keras_model, file, prefix=colorstr('TensorFlow GraphDef:')):
357
+ # YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
358
+ import tensorflow as tf
359
+ from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
360
+
361
+ LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
362
+ f = file.with_suffix('.pb')
363
+
364
+ m = tf.function(lambda x: keras_model(x)) # full model
365
+ m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
366
+ frozen_func = convert_variables_to_constants_v2(m)
367
+ frozen_func.graph.as_graph_def()
368
+ tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
369
+ return f, None
370
+
371
+
372
+ @try_export
373
+ def export_tflite(keras_model, im, file, int8, data, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')):
374
+ # YOLOv5 TensorFlow Lite export
375
+ import tensorflow as tf
376
+
377
+ LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
378
+ batch_size, ch, *imgsz = list(im.shape) # BCHW
379
+ f = str(file).replace('.pt', '-fp16.tflite')
380
+
381
+ converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
382
+ converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
383
+ converter.target_spec.supported_types = [tf.float16]
384
+ converter.optimizations = [tf.lite.Optimize.DEFAULT]
385
+ if int8:
386
+ from models.tf import representative_dataset_gen
387
+ dataset = LoadImages(check_dataset(check_yaml(data))['train'], img_size=imgsz, auto=False)
388
+ converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib=100)
389
+ converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
390
+ converter.target_spec.supported_types = []
391
+ converter.inference_input_type = tf.uint8 # or tf.int8
392
+ converter.inference_output_type = tf.uint8 # or tf.int8
393
+ converter.experimental_new_quantizer = True
394
+ f = str(file).replace('.pt', '-int8.tflite')
395
+ if nms or agnostic_nms:
396
+ converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS)
397
+
398
+ tflite_model = converter.convert()
399
+ open(f, "wb").write(tflite_model)
400
+ return f, None
401
+
402
+
403
+ @try_export
404
+ def export_edgetpu(file, prefix=colorstr('Edge TPU:')):
405
+ # YOLOv5 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/
406
+ cmd = 'edgetpu_compiler --version'
407
+ help_url = 'https://coral.ai/docs/edgetpu/compiler/'
408
+ assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}'
409
+ if subprocess.run(f'{cmd} >/dev/null', shell=True).returncode != 0:
410
+ LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}')
411
+ sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 # sudo installed on system
412
+ for c in (
413
+ 'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -',
414
+ 'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
415
+ 'sudo apt-get update', 'sudo apt-get install edgetpu-compiler'):
416
+ subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True)
417
+ ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
418
+
419
+ LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...')
420
+ f = str(file).replace('.pt', '-int8_edgetpu.tflite') # Edge TPU model
421
+ f_tfl = str(file).replace('.pt', '-int8.tflite') # TFLite model
422
+
423
+ cmd = f"edgetpu_compiler -s -d -k 10 --out_dir {file.parent} {f_tfl}"
424
+ subprocess.run(cmd.split(), check=True)
425
+ return f, None
426
+
427
+
428
+ @try_export
429
+ def export_tfjs(file, prefix=colorstr('TensorFlow.js:')):
430
+ # YOLOv5 TensorFlow.js export
431
+ check_requirements('tensorflowjs')
432
+ import tensorflowjs as tfjs
433
+
434
+ LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
435
+ f = str(file).replace('.pt', '_web_model') # js dir
436
+ f_pb = file.with_suffix('.pb') # *.pb path
437
+ f_json = f'{f}/model.json' # *.json path
438
+
439
+ cmd = f'tensorflowjs_converter --input_format=tf_frozen_model ' \
440
+ f'--output_node_names=Identity,Identity_1,Identity_2,Identity_3 {f_pb} {f}'
441
+ subprocess.run(cmd.split())
442
+
443
+ json = Path(f_json).read_text()
444
+ with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order
445
+ subst = re.sub(
446
+ r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
447
+ r'"Identity.?.?": {"name": "Identity.?.?"}, '
448
+ r'"Identity.?.?": {"name": "Identity.?.?"}, '
449
+ r'"Identity.?.?": {"name": "Identity.?.?"}}}', r'{"outputs": {"Identity": {"name": "Identity"}, '
450
+ r'"Identity_1": {"name": "Identity_1"}, '
451
+ r'"Identity_2": {"name": "Identity_2"}, '
452
+ r'"Identity_3": {"name": "Identity_3"}}}', json)
453
+ j.write(subst)
454
+ return f, None
455
+
456
+
457
+ def add_tflite_metadata(file, metadata, num_outputs):
458
+ # Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata
459
+ with contextlib.suppress(ImportError):
460
+ # check_requirements('tflite_support')
461
+ from tflite_support import flatbuffers
462
+ from tflite_support import metadata as _metadata
463
+ from tflite_support import metadata_schema_py_generated as _metadata_fb
464
+
465
+ tmp_file = Path('/tmp/meta.txt')
466
+ with open(tmp_file, 'w') as meta_f:
467
+ meta_f.write(str(metadata))
468
+
469
+ model_meta = _metadata_fb.ModelMetadataT()
470
+ label_file = _metadata_fb.AssociatedFileT()
471
+ label_file.name = tmp_file.name
472
+ model_meta.associatedFiles = [label_file]
473
+
474
+ subgraph = _metadata_fb.SubGraphMetadataT()
475
+ subgraph.inputTensorMetadata = [_metadata_fb.TensorMetadataT()]
476
+ subgraph.outputTensorMetadata = [_metadata_fb.TensorMetadataT()] * num_outputs
477
+ model_meta.subgraphMetadata = [subgraph]
478
+
479
+ b = flatbuffers.Builder(0)
480
+ b.Finish(model_meta.Pack(b), _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)
481
+ metadata_buf = b.Output()
482
+
483
+ populator = _metadata.MetadataPopulator.with_model_file(file)
484
+ populator.load_metadata_buffer(metadata_buf)
485
+ populator.load_associated_files([str(tmp_file)])
486
+ populator.populate()
487
+ tmp_file.unlink()
488
+
489
+
490
+ @smart_inference_mode()
491
+ def run(
492
+ data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'
493
+ weights=ROOT / 'yolov5s.pt', # weights path
494
+ imgsz=(640, 640), # image (height, width)
495
+ batch_size=1, # batch size
496
+ device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
497
+ include=('torchscript', 'onnx'), # include formats
498
+ half=False, # FP16 half-precision export
499
+ inplace=False, # set YOLOv5 Detect() inplace=True
500
+ keras=False, # use Keras
501
+ optimize=False, # TorchScript: optimize for mobile
502
+ int8=False, # CoreML/TF INT8 quantization
503
+ dynamic=False, # ONNX/TF/TensorRT: dynamic axes
504
+ simplify=False, # ONNX: simplify model
505
+ opset=12, # ONNX: opset version
506
+ verbose=False, # TensorRT: verbose log
507
+ workspace=4, # TensorRT: workspace size (GB)
508
+ nms=False, # TF: add NMS to model
509
+ agnostic_nms=False, # TF: add agnostic NMS to model
510
+ topk_per_class=100, # TF.js NMS: topk per class to keep
511
+ topk_all=100, # TF.js NMS: topk for all classes to keep
512
+ iou_thres=0.45, # TF.js NMS: IoU threshold
513
+ conf_thres=0.25, # TF.js NMS: confidence threshold
514
+ ):
515
+ t = time.time()
516
+ include = [x.lower() for x in include] # to lowercase
517
+ fmts = tuple(export_formats()['Argument'][1:]) # --include arguments
518
+ flags = [x in include for x in fmts]
519
+ assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {fmts}'
520
+ jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = flags # export booleans
521
+ file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights) # PyTorch weights
522
+
523
+ # Load PyTorch model
524
+ device = select_device(device)
525
+ if half:
526
+ assert device.type != 'cpu' or coreml, '--half only compatible with GPU export, i.e. use --device 0'
527
+ assert not dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both'
528
+ model = attempt_load(weights, device=device, inplace=True, fuse=True) # load FP32 model
529
+
530
+ # Checks
531
+ imgsz *= 2 if len(imgsz) == 1 else 1 # expand
532
+ if optimize:
533
+ assert device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu'
534
+
535
+ # Input
536
+ gs = int(max(model.stride)) # grid size (max stride)
537
+ imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples
538
+ im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection
539
+
540
+ # Update model
541
+ model.eval()
542
+ for k, m in model.named_modules():
543
+ if isinstance(m, Detect):
544
+ m.inplace = inplace
545
+ m.dynamic = dynamic
546
+ m.export = True
547
+
548
+ for _ in range(2):
549
+ y = model(im) # dry runs
550
+ if half and not coreml:
551
+ im, model = im.half(), model.half() # to FP16
552
+ shape = tuple((y[0] if isinstance(y, tuple) else y).shape) # model output shape
553
+ metadata = {'stride': int(max(model.stride)), 'names': model.names} # model metadata
554
+ LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")
555
+
556
+ # Exports
557
+ f = [''] * len(fmts) # exported filenames
558
+ warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning) # suppress TracerWarning
559
+ if jit: # TorchScript
560
+ f[0], _ = export_torchscript(model, im, file, optimize)
561
+ if engine: # TensorRT required before ONNX
562
+ f[1], _ = export_engine(model, im, file, half, dynamic, simplify, workspace, verbose)
563
+ if onnx or xml: # OpenVINO requires ONNX
564
+ f[2], _ = export_onnx(model, im, file, opset, dynamic, simplify)
565
+ if xml: # OpenVINO
566
+ f[3], _ = export_openvino(file, metadata, half)
567
+ if coreml: # CoreML
568
+ f[4], _ = export_coreml(model, im, file, int8, half)
569
+ if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats
570
+ assert not tflite or not tfjs, 'TFLite and TF.js models must be exported separately, please pass only one type.'
571
+ assert not isinstance(model, ClassificationModel), 'ClassificationModel export to TF formats not yet supported.'
572
+ f[5], s_model = export_saved_model(model.cpu(),
573
+ im,
574
+ file,
575
+ dynamic,
576
+ tf_nms=nms or agnostic_nms or tfjs,
577
+ agnostic_nms=agnostic_nms or tfjs,
578
+ topk_per_class=topk_per_class,
579
+ topk_all=topk_all,
580
+ iou_thres=iou_thres,
581
+ conf_thres=conf_thres,
582
+ keras=keras)
583
+ if pb or tfjs: # pb prerequisite to tfjs
584
+ f[6], _ = export_pb(s_model, file)
585
+ if tflite or edgetpu:
586
+ f[7], _ = export_tflite(s_model, im, file, int8 or edgetpu, data=data, nms=nms, agnostic_nms=agnostic_nms)
587
+ if edgetpu:
588
+ f[8], _ = export_edgetpu(file)
589
+ add_tflite_metadata(f[8] or f[7], metadata, num_outputs=len(s_model.outputs))
590
+ if tfjs:
591
+ f[9], _ = export_tfjs(file)
592
+ if paddle: # PaddlePaddle
593
+ f[10], _ = export_paddle(model, im, file, metadata)
594
+
595
+ # Finish
596
+ f = [str(x) for x in f if x] # filter out '' and None
597
+ if any(f):
598
+ cls, det, seg = (isinstance(model, x) for x in (ClassificationModel, DetectionModel, SegmentationModel)) # type
599
+ det &= not seg # segmentation models inherit from SegmentationModel(DetectionModel)
600
+ dir = Path('segment' if seg else 'classify' if cls else '')
601
+ h = '--half' if half else '' # --half FP16 inference arg
602
+ s = "# WARNING ⚠️ ClassificationModel not yet supported for PyTorch Hub AutoShape inference" if cls else \
603
+ "# WARNING ⚠️ SegmentationModel not yet supported for PyTorch Hub AutoShape inference" if seg else ''
604
+ LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)'
605
+ f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
606
+ f"\nDetect: python {dir / ('detect.py' if det else 'predict.py')} --weights {f[-1]} {h}"
607
+ f"\nValidate: python {dir / 'val.py'} --weights {f[-1]} {h}"
608
+ f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}') {s}"
609
+ f"\nVisualize: https://netron.app")
610
+ return f # return list of exported files/dirs
611
+
612
+
613
+ def parse_opt():
614
+ parser = argparse.ArgumentParser()
615
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
616
+ parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)')
617
+ parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)')
618
+ parser.add_argument('--batch-size', type=int, default=1, help='batch size')
619
+ parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
620
+ parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
621
+ parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
622
+ parser.add_argument('--keras', action='store_true', help='TF: use Keras')
623
+ parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
624
+ parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization')
625
+ parser.add_argument('--dynamic', action='store_true', help='ONNX/TF/TensorRT: dynamic axes')
626
+ parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
627
+ parser.add_argument('--opset', type=int, default=17, help='ONNX: opset version')
628
+ parser.add_argument('--verbose', action='store_true', help='TensorRT: verbose log')
629
+ parser.add_argument('--workspace', type=int, default=4, help='TensorRT: workspace size (GB)')
630
+ parser.add_argument('--nms', action='store_true', help='TF: add NMS to model')
631
+ parser.add_argument('--agnostic-nms', action='store_true', help='TF: add agnostic NMS to model')
632
+ parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep')
633
+ parser.add_argument('--topk-all', type=int, default=100, help='TF.js NMS: topk for all classes to keep')
634
+ parser.add_argument('--iou-thres', type=float, default=0.45, help='TF.js NMS: IoU threshold')
635
+ parser.add_argument('--conf-thres', type=float, default=0.25, help='TF.js NMS: confidence threshold')
636
+ parser.add_argument(
637
+ '--include',
638
+ nargs='+',
639
+ default=['torchscript'],
640
+ help='torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle')
641
+ opt = parser.parse_args()
642
+ print_args(vars(opt))
643
+ return opt
644
+
645
+
646
+ def main(opt):
647
+ for opt.weights in (opt.weights if isinstance(opt.weights, list) else [opt.weights]):
648
+ run(**vars(opt))
649
+
650
+
651
+ if __name__ == "__main__":
652
+ opt = parse_opt()
653
+ main(opt)
hubconf.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ """
3
+ PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5
4
+
5
+ Usage:
6
+ import torch
7
+ model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # official model
8
+ model = torch.hub.load('ultralytics/yolov5:master', 'yolov5s') # from branch
9
+ model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.pt') # custom/local model
10
+ model = torch.hub.load('.', 'custom', 'yolov5s.pt', source='local') # local repo
11
+ """
12
+
13
+ import torch
14
+
15
+
16
+ def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
17
+ """Creates or loads a YOLOv5 model
18
+
19
+ Arguments:
20
+ name (str): model name 'yolov5s' or path 'path/to/best.pt'
21
+ pretrained (bool): load pretrained weights into the model
22
+ channels (int): number of input channels
23
+ classes (int): number of model classes
24
+ autoshape (bool): apply YOLOv5 .autoshape() wrapper to model
25
+ verbose (bool): print all information to screen
26
+ device (str, torch.device, None): device to use for model parameters
27
+
28
+ Returns:
29
+ YOLOv5 model
30
+ """
31
+ from pathlib import Path
32
+
33
+ from models.common import AutoShape, DetectMultiBackend
34
+ from models.experimental import attempt_load
35
+ from models.yolo import ClassificationModel, DetectionModel, SegmentationModel
36
+ from utils.downloads import attempt_download
37
+ from utils.general import LOGGER, check_requirements, intersect_dicts, logging
38
+ from utils.torch_utils import select_device
39
+
40
+ if not verbose:
41
+ LOGGER.setLevel(logging.WARNING)
42
+ check_requirements(exclude=('opencv-python', 'tensorboard', 'thop'))
43
+ name = Path(name)
44
+ path = name.with_suffix('.pt') if name.suffix == '' and not name.is_dir() else name # checkpoint path
45
+ try:
46
+ device = select_device(device)
47
+ if pretrained and channels == 3 and classes == 80:
48
+ try:
49
+ model = DetectMultiBackend(path, device=device, fuse=autoshape) # detection model
50
+ if autoshape:
51
+ if model.pt and isinstance(model.model, ClassificationModel):
52
+ LOGGER.warning('WARNING ⚠️ YOLOv5 ClassificationModel is not yet AutoShape compatible. '
53
+ 'You must pass torch tensors in BCHW to this model, i.e. shape(1,3,224,224).')
54
+ elif model.pt and isinstance(model.model, SegmentationModel):
55
+ LOGGER.warning('WARNING ⚠️ YOLOv5 SegmentationModel is not yet AutoShape compatible. '
56
+ 'You will not be able to run inference with this model.')
57
+ else:
58
+ model = AutoShape(model) # for file/URI/PIL/cv2/np inputs and NMS
59
+ except Exception:
60
+ model = attempt_load(path, device=device, fuse=False) # arbitrary model
61
+ else:
62
+ cfg = list((Path(__file__).parent / 'models').rglob(f'{path.stem}.yaml'))[0] # model.yaml path
63
+ model = DetectionModel(cfg, channels, classes) # create model
64
+ if pretrained:
65
+ ckpt = torch.load(attempt_download(path), map_location=device) # load
66
+ csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
67
+ csd = intersect_dicts(csd, model.state_dict(), exclude=['anchors']) # intersect
68
+ model.load_state_dict(csd, strict=False) # load
69
+ if len(ckpt['model'].names) == classes:
70
+ model.names = ckpt['model'].names # set class names attribute
71
+ if not verbose:
72
+ LOGGER.setLevel(logging.INFO) # reset to default
73
+ return model.to(device)
74
+
75
+ except Exception as e:
76
+ help_url = 'https://github.com/ultralytics/yolov5/issues/36'
77
+ s = f'{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help.'
78
+ raise Exception(s) from e
79
+
80
+
81
+ def custom(path='path/to/model.pt', autoshape=True, _verbose=True, device=None):
82
+ # YOLOv5 custom or local model
83
+ return _create(path, autoshape=autoshape, verbose=_verbose, device=device)
84
+
85
+
86
+ def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
87
+ # YOLOv5-nano model https://github.com/ultralytics/yolov5
88
+ return _create('yolov5n', pretrained, channels, classes, autoshape, _verbose, device)
89
+
90
+
91
+ def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
92
+ # YOLOv5-small model https://github.com/ultralytics/yolov5
93
+ return _create('yolov5s', pretrained, channels, classes, autoshape, _verbose, device)
94
+
95
+
96
+ def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
97
+ # YOLOv5-medium model https://github.com/ultralytics/yolov5
98
+ return _create('yolov5m', pretrained, channels, classes, autoshape, _verbose, device)
99
+
100
+
101
+ def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
102
+ # YOLOv5-large model https://github.com/ultralytics/yolov5
103
+ return _create('yolov5l', pretrained, channels, classes, autoshape, _verbose, device)
104
+
105
+
106
+ def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
107
+ # YOLOv5-xlarge model https://github.com/ultralytics/yolov5
108
+ return _create('yolov5x', pretrained, channels, classes, autoshape, _verbose, device)
109
+
110
+
111
+ def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
112
+ # YOLOv5-nano-P6 model https://github.com/ultralytics/yolov5
113
+ return _create('yolov5n6', pretrained, channels, classes, autoshape, _verbose, device)
114
+
115
+
116
+ def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
117
+ # YOLOv5-small-P6 model https://github.com/ultralytics/yolov5
118
+ return _create('yolov5s6', pretrained, channels, classes, autoshape, _verbose, device)
119
+
120
+
121
+ def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
122
+ # YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5
123
+ return _create('yolov5m6', pretrained, channels, classes, autoshape, _verbose, device)
124
+
125
+
126
+ def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
127
+ # YOLOv5-large-P6 model https://github.com/ultralytics/yolov5
128
+ return _create('yolov5l6', pretrained, channels, classes, autoshape, _verbose, device)
129
+
130
+
131
+ def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
132
+ # YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5
133
+ return _create('yolov5x6', pretrained, channels, classes, autoshape, _verbose, device)
134
+
135
+
136
+ if __name__ == '__main__':
137
+ import argparse
138
+ from pathlib import Path
139
+
140
+ import numpy as np
141
+ from PIL import Image
142
+
143
+ from utils.general import cv2, print_args
144
+
145
+ # Argparser
146
+ parser = argparse.ArgumentParser()
147
+ parser.add_argument('--model', type=str, default='yolov5s', help='model name')
148
+ opt = parser.parse_args()
149
+ print_args(vars(opt))
150
+
151
+ # Model
152
+ model = _create(name=opt.model, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True)
153
+ # model = custom(path='path/to/model.pt') # custom
154
+
155
+ # Images
156
+ imgs = [
157
+ 'data/images/zidane.jpg', # filename
158
+ Path('data/images/zidane.jpg'), # Path
159
+ 'https://ultralytics.com/images/zidane.jpg', # URI
160
+ cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV
161
+ Image.open('data/images/bus.jpg'), # PIL
162
+ np.zeros((320, 640, 3))] # numpy
163
+
164
+ # Inference
165
+ results = model(imgs, size=320) # batched inference
166
+
167
+ # Results
168
+ results.print()
169
+ results.save()
models/__init__.py ADDED
File without changes
models/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (136 Bytes). View file
 
models/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (134 Bytes). View file
 
models/__pycache__/common.cpython-310.pyc ADDED
Binary file (36.9 kB). View file
 
models/__pycache__/common.cpython-38.pyc ADDED
Binary file (37.5 kB). View file
 
models/__pycache__/experimental.cpython-310.pyc ADDED
Binary file (4.83 kB). View file
 
models/__pycache__/experimental.cpython-38.pyc ADDED
Binary file (4.85 kB). View file
 
models/__pycache__/yolo.cpython-310.pyc ADDED
Binary file (16 kB). View file
 
models/__pycache__/yolo.cpython-38.pyc ADDED
Binary file (16.1 kB). View file
 
models/common.py ADDED
@@ -0,0 +1,860 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ """
3
+ Common modules
4
+ """
5
+
6
+ import ast
7
+ import contextlib
8
+ import json
9
+ import math
10
+ import platform
11
+ import warnings
12
+ import zipfile
13
+ from collections import OrderedDict, namedtuple
14
+ from copy import copy
15
+ from pathlib import Path
16
+ from urllib.parse import urlparse
17
+
18
+ import cv2
19
+ import numpy as np
20
+ import pandas as pd
21
+ import requests
22
+ import torch
23
+ import torch.nn as nn
24
+ from IPython.display import display
25
+ from PIL import Image
26
+ from torch.cuda import amp
27
+
28
+ from utils import TryExcept
29
+ from utils.dataloaders import exif_transpose, letterbox
30
+ from utils.general import (LOGGER, ROOT, Profile, check_requirements, check_suffix, check_version, colorstr,
31
+ increment_path, is_notebook, make_divisible, non_max_suppression, scale_boxes, xywh2xyxy,
32
+ xyxy2xywh, yaml_load)
33
+ from utils.plots import Annotator, colors, save_one_box
34
+ from utils.torch_utils import copy_attr, smart_inference_mode
35
+
36
+
37
+ def autopad(k, p=None, d=1): # kernel, padding, dilation
38
+ # Pad to 'same' shape outputs
39
+ if d > 1:
40
+ k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
41
+ if p is None:
42
+ p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
43
+ return p
44
+
45
+
46
+ class Conv(nn.Module):
47
+ # Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)
48
+ default_act = nn.SiLU() # default activation
49
+
50
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
51
+ super().__init__()
52
+ self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
53
+ self.bn = nn.BatchNorm2d(c2)
54
+ self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
55
+
56
+ def forward(self, x):
57
+ return self.act(self.bn(self.conv(x)))
58
+
59
+ def forward_fuse(self, x):
60
+ return self.act(self.conv(x))
61
+
62
+
63
+ class DWConv(Conv):
64
+ # Depth-wise convolution
65
+ def __init__(self, c1, c2, k=1, s=1, d=1, act=True): # ch_in, ch_out, kernel, stride, dilation, activation
66
+ super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act)
67
+
68
+
69
+ class DWConvTranspose2d(nn.ConvTranspose2d):
70
+ # Depth-wise transpose convolution
71
+ def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0): # ch_in, ch_out, kernel, stride, padding, padding_out
72
+ super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))
73
+
74
+
75
+ class TransformerLayer(nn.Module):
76
+ # Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
77
+ def __init__(self, c, num_heads):
78
+ super().__init__()
79
+ self.q = nn.Linear(c, c, bias=False)
80
+ self.k = nn.Linear(c, c, bias=False)
81
+ self.v = nn.Linear(c, c, bias=False)
82
+ self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
83
+ self.fc1 = nn.Linear(c, c, bias=False)
84
+ self.fc2 = nn.Linear(c, c, bias=False)
85
+
86
+ def forward(self, x):
87
+ x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
88
+ x = self.fc2(self.fc1(x)) + x
89
+ return x
90
+
91
+
92
+ class TransformerBlock(nn.Module):
93
+ # Vision Transformer https://arxiv.org/abs/2010.11929
94
+ def __init__(self, c1, c2, num_heads, num_layers):
95
+ super().__init__()
96
+ self.conv = None
97
+ if c1 != c2:
98
+ self.conv = Conv(c1, c2)
99
+ self.linear = nn.Linear(c2, c2) # learnable position embedding
100
+ self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
101
+ self.c2 = c2
102
+
103
+ def forward(self, x):
104
+ if self.conv is not None:
105
+ x = self.conv(x)
106
+ b, _, w, h = x.shape
107
+ p = x.flatten(2).permute(2, 0, 1)
108
+ return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)
109
+
110
+
111
+ class Bottleneck(nn.Module):
112
+ # Standard bottleneck
113
+ def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
114
+ super().__init__()
115
+ c_ = int(c2 * e) # hidden channels
116
+ self.cv1 = Conv(c1, c_, 1, 1)
117
+ self.cv2 = Conv(c_, c2, 3, 1, g=g)
118
+ self.add = shortcut and c1 == c2
119
+
120
+ def forward(self, x):
121
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
122
+
123
+
124
+ class BottleneckCSP(nn.Module):
125
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
126
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
127
+ super().__init__()
128
+ c_ = int(c2 * e) # hidden channels
129
+ self.cv1 = Conv(c1, c_, 1, 1)
130
+ self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
131
+ self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
132
+ self.cv4 = Conv(2 * c_, c2, 1, 1)
133
+ self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
134
+ self.act = nn.SiLU()
135
+ self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
136
+
137
+ def forward(self, x):
138
+ y1 = self.cv3(self.m(self.cv1(x)))
139
+ y2 = self.cv2(x)
140
+ return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
141
+
142
+
143
+ class CrossConv(nn.Module):
144
+ # Cross Convolution Downsample
145
+ def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
146
+ # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
147
+ super().__init__()
148
+ c_ = int(c2 * e) # hidden channels
149
+ self.cv1 = Conv(c1, c_, (1, k), (1, s))
150
+ self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
151
+ self.add = shortcut and c1 == c2
152
+
153
+ def forward(self, x):
154
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
155
+
156
+
157
+ class C3(nn.Module):
158
+ # CSP Bottleneck with 3 convolutions
159
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
160
+ super().__init__()
161
+ c_ = int(c2 * e) # hidden channels
162
+ self.cv1 = Conv(c1, c_, 1, 1)
163
+ self.cv2 = Conv(c1, c_, 1, 1)
164
+ self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
165
+ self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
166
+
167
+ def forward(self, x):
168
+ return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
169
+
170
+
171
+ class C3x(C3):
172
+ # C3 module with cross-convolutions
173
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
174
+ super().__init__(c1, c2, n, shortcut, g, e)
175
+ c_ = int(c2 * e)
176
+ self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)))
177
+
178
+
179
+ class C3TR(C3):
180
+ # C3 module with TransformerBlock()
181
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
182
+ super().__init__(c1, c2, n, shortcut, g, e)
183
+ c_ = int(c2 * e)
184
+ self.m = TransformerBlock(c_, c_, 4, n)
185
+
186
+
187
+ class C3SPP(C3):
188
+ # C3 module with SPP()
189
+ def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5):
190
+ super().__init__(c1, c2, n, shortcut, g, e)
191
+ c_ = int(c2 * e)
192
+ self.m = SPP(c_, c_, k)
193
+
194
+
195
+ class C3Ghost(C3):
196
+ # C3 module with GhostBottleneck()
197
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
198
+ super().__init__(c1, c2, n, shortcut, g, e)
199
+ c_ = int(c2 * e) # hidden channels
200
+ self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))
201
+
202
+
203
+ class SPP(nn.Module):
204
+ # Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
205
+ def __init__(self, c1, c2, k=(5, 9, 13)):
206
+ super().__init__()
207
+ c_ = c1 // 2 # hidden channels
208
+ self.cv1 = Conv(c1, c_, 1, 1)
209
+ self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
210
+ self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
211
+
212
+ def forward(self, x):
213
+ x = self.cv1(x)
214
+ with warnings.catch_warnings():
215
+ warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
216
+ return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
217
+
218
+
219
+ class SPPF(nn.Module):
220
+ # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
221
+ def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
222
+ super().__init__()
223
+ c_ = c1 // 2 # hidden channels
224
+ self.cv1 = Conv(c1, c_, 1, 1)
225
+ self.cv2 = Conv(c_ * 4, c2, 1, 1)
226
+ self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
227
+
228
+ def forward(self, x):
229
+ x = self.cv1(x)
230
+ with warnings.catch_warnings():
231
+ warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
232
+ y1 = self.m(x)
233
+ y2 = self.m(y1)
234
+ return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
235
+
236
+
237
+ class Focus(nn.Module):
238
+ # Focus wh information into c-space
239
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
240
+ super().__init__()
241
+ self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act)
242
+ # self.contract = Contract(gain=2)
243
+
244
+ def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
245
+ return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))
246
+ # return self.conv(self.contract(x))
247
+
248
+
249
+ class GhostConv(nn.Module):
250
+ # Ghost Convolution https://github.com/huawei-noah/ghostnet
251
+ def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
252
+ super().__init__()
253
+ c_ = c2 // 2 # hidden channels
254
+ self.cv1 = Conv(c1, c_, k, s, None, g, act=act)
255
+ self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act)
256
+
257
+ def forward(self, x):
258
+ y = self.cv1(x)
259
+ return torch.cat((y, self.cv2(y)), 1)
260
+
261
+
262
+ class GhostBottleneck(nn.Module):
263
+ # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
264
+ def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
265
+ super().__init__()
266
+ c_ = c2 // 2
267
+ self.conv = nn.Sequential(
268
+ GhostConv(c1, c_, 1, 1), # pw
269
+ DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
270
+ GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
271
+ self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1,
272
+ act=False)) if s == 2 else nn.Identity()
273
+
274
+ def forward(self, x):
275
+ return self.conv(x) + self.shortcut(x)
276
+
277
+
278
+ class Contract(nn.Module):
279
+ # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
280
+ def __init__(self, gain=2):
281
+ super().__init__()
282
+ self.gain = gain
283
+
284
+ def forward(self, x):
285
+ b, c, h, w = x.size() # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
286
+ s = self.gain
287
+ x = x.view(b, c, h // s, s, w // s, s) # x(1,64,40,2,40,2)
288
+ x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
289
+ return x.view(b, c * s * s, h // s, w // s) # x(1,256,40,40)
290
+
291
+
292
+ class Expand(nn.Module):
293
+ # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
294
+ def __init__(self, gain=2):
295
+ super().__init__()
296
+ self.gain = gain
297
+
298
+ def forward(self, x):
299
+ b, c, h, w = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
300
+ s = self.gain
301
+ x = x.view(b, s, s, c // s ** 2, h, w) # x(1,2,2,16,80,80)
302
+ x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
303
+ return x.view(b, c // s ** 2, h * s, w * s) # x(1,16,160,160)
304
+
305
+
306
+ class Concat(nn.Module):
307
+ # Concatenate a list of tensors along dimension
308
+ def __init__(self, dimension=1):
309
+ super().__init__()
310
+ self.d = dimension
311
+
312
+ def forward(self, x):
313
+ return torch.cat(x, self.d)
314
+
315
+
316
+ class DetectMultiBackend(nn.Module):
317
+ # YOLOv5 MultiBackend class for python inference on various backends
318
+ def __init__(self, weights='yolov5s.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False, fuse=True):
319
+ # Usage:
320
+ # PyTorch: weights = *.pt
321
+ # TorchScript: *.torchscript
322
+ # ONNX Runtime: *.onnx
323
+ # ONNX OpenCV DNN: *.onnx --dnn
324
+ # OpenVINO: *_openvino_model
325
+ # CoreML: *.mlmodel
326
+ # TensorRT: *.engine
327
+ # TensorFlow SavedModel: *_saved_model
328
+ # TensorFlow GraphDef: *.pb
329
+ # TensorFlow Lite: *.tflite
330
+ # TensorFlow Edge TPU: *_edgetpu.tflite
331
+ # PaddlePaddle: *_paddle_model
332
+ from models.experimental import attempt_download, attempt_load # scoped to avoid circular import
333
+
334
+ super().__init__()
335
+ w = str(weights[0] if isinstance(weights, list) else weights)
336
+ pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, triton = self._model_type(w)
337
+ fp16 &= pt or jit or onnx or engine # FP16
338
+ nhwc = coreml or saved_model or pb or tflite or edgetpu # BHWC formats (vs torch BCWH)
339
+ stride = 32 # default stride
340
+ cuda = torch.cuda.is_available() and device.type != 'cpu' # use CUDA
341
+ if not (pt or triton):
342
+ w = attempt_download(w) # download if not local
343
+
344
+ if pt: # PyTorch
345
+ model = attempt_load(weights if isinstance(weights, list) else w, device=device, inplace=True, fuse=fuse)
346
+ stride = max(int(model.stride.max()), 32) # model stride
347
+ names = model.module.names if hasattr(model, 'module') else model.names # get class names
348
+ model.half() if fp16 else model.float()
349
+ self.model = model # explicitly assign for to(), cpu(), cuda(), half()
350
+ elif jit: # TorchScript
351
+ LOGGER.info(f'Loading {w} for TorchScript inference...')
352
+ extra_files = {'config.txt': ''} # model metadata
353
+ model = torch.jit.load(w, _extra_files=extra_files, map_location=device)
354
+ model.half() if fp16 else model.float()
355
+ if extra_files['config.txt']: # load metadata dict
356
+ d = json.loads(extra_files['config.txt'],
357
+ object_hook=lambda d: {int(k) if k.isdigit() else k: v
358
+ for k, v in d.items()})
359
+ stride, names = int(d['stride']), d['names']
360
+ elif dnn: # ONNX OpenCV DNN
361
+ LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...')
362
+ check_requirements('opencv-python>=4.5.4')
363
+ net = cv2.dnn.readNetFromONNX(w)
364
+ elif onnx: # ONNX Runtime
365
+ LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
366
+ check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
367
+ import onnxruntime
368
+ providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
369
+ session = onnxruntime.InferenceSession(w, providers=providers)
370
+ output_names = [x.name for x in session.get_outputs()]
371
+ meta = session.get_modelmeta().custom_metadata_map # metadata
372
+ if 'stride' in meta:
373
+ stride, names = int(meta['stride']), eval(meta['names'])
374
+ elif xml: # OpenVINO
375
+ LOGGER.info(f'Loading {w} for OpenVINO inference...')
376
+ check_requirements('openvino') # requires openvino-dev: https://pypi.org/project/openvino-dev/
377
+ from openvino.runtime import Core, Layout, get_batch
378
+ ie = Core()
379
+ if not Path(w).is_file(): # if not *.xml
380
+ w = next(Path(w).glob('*.xml')) # get *.xml file from *_openvino_model dir
381
+ network = ie.read_model(model=w, weights=Path(w).with_suffix('.bin'))
382
+ if network.get_parameters()[0].get_layout().empty:
383
+ network.get_parameters()[0].set_layout(Layout("NCHW"))
384
+ batch_dim = get_batch(network)
385
+ if batch_dim.is_static:
386
+ batch_size = batch_dim.get_length()
387
+ executable_network = ie.compile_model(network, device_name="CPU") # device_name="MYRIAD" for Intel NCS2
388
+ stride, names = self._load_metadata(Path(w).with_suffix('.yaml')) # load metadata
389
+ elif engine: # TensorRT
390
+ LOGGER.info(f'Loading {w} for TensorRT inference...')
391
+ import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download
392
+ check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0
393
+ if device.type == 'cpu':
394
+ device = torch.device('cuda:0')
395
+ Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
396
+ logger = trt.Logger(trt.Logger.INFO)
397
+ with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
398
+ model = runtime.deserialize_cuda_engine(f.read())
399
+ context = model.create_execution_context()
400
+ bindings = OrderedDict()
401
+ output_names = []
402
+ fp16 = False # default updated below
403
+ dynamic = False
404
+ for i in range(model.num_bindings):
405
+ name = model.get_binding_name(i)
406
+ dtype = trt.nptype(model.get_binding_dtype(i))
407
+ if model.binding_is_input(i):
408
+ if -1 in tuple(model.get_binding_shape(i)): # dynamic
409
+ dynamic = True
410
+ context.set_binding_shape(i, tuple(model.get_profile_shape(0, i)[2]))
411
+ if dtype == np.float16:
412
+ fp16 = True
413
+ else: # output
414
+ output_names.append(name)
415
+ shape = tuple(context.get_binding_shape(i))
416
+ im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device)
417
+ bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr()))
418
+ binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
419
+ batch_size = bindings['images'].shape[0] # if dynamic, this is instead max batch size
420
+ elif coreml: # CoreML
421
+ LOGGER.info(f'Loading {w} for CoreML inference...')
422
+ import coremltools as ct
423
+ model = ct.models.MLModel(w)
424
+ elif saved_model: # TF SavedModel
425
+ LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...')
426
+ import tensorflow as tf
427
+ keras = False # assume TF1 saved_model
428
+ model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
429
+ elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
430
+ LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...')
431
+ import tensorflow as tf
432
+
433
+ def wrap_frozen_graph(gd, inputs, outputs):
434
+ x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped
435
+ ge = x.graph.as_graph_element
436
+ return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
437
+
438
+ def gd_outputs(gd):
439
+ name_list, input_list = [], []
440
+ for node in gd.node: # tensorflow.core.framework.node_def_pb2.NodeDef
441
+ name_list.append(node.name)
442
+ input_list.extend(node.input)
443
+ return sorted(f'{x}:0' for x in list(set(name_list) - set(input_list)) if not x.startswith('NoOp'))
444
+
445
+ gd = tf.Graph().as_graph_def() # TF GraphDef
446
+ with open(w, 'rb') as f:
447
+ gd.ParseFromString(f.read())
448
+ frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs=gd_outputs(gd))
449
+ elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
450
+ try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
451
+ from tflite_runtime.interpreter import Interpreter, load_delegate
452
+ except ImportError:
453
+ import tensorflow as tf
454
+ Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate,
455
+ if edgetpu: # TF Edge TPU https://coral.ai/software/#edgetpu-runtime
456
+ LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...')
457
+ delegate = {
458
+ 'Linux': 'libedgetpu.so.1',
459
+ 'Darwin': 'libedgetpu.1.dylib',
460
+ 'Windows': 'edgetpu.dll'}[platform.system()]
461
+ interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
462
+ else: # TFLite
463
+ LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
464
+ interpreter = Interpreter(model_path=w) # load TFLite model
465
+ interpreter.allocate_tensors() # allocate
466
+ input_details = interpreter.get_input_details() # inputs
467
+ output_details = interpreter.get_output_details() # outputs
468
+ # load metadata
469
+ with contextlib.suppress(zipfile.BadZipFile):
470
+ with zipfile.ZipFile(w, "r") as model:
471
+ meta_file = model.namelist()[0]
472
+ meta = ast.literal_eval(model.read(meta_file).decode("utf-8"))
473
+ stride, names = int(meta['stride']), meta['names']
474
+ elif tfjs: # TF.js
475
+ raise NotImplementedError('ERROR: YOLOv5 TF.js inference is not supported')
476
+ elif paddle: # PaddlePaddle
477
+ LOGGER.info(f'Loading {w} for PaddlePaddle inference...')
478
+ check_requirements('paddlepaddle-gpu' if cuda else 'paddlepaddle')
479
+ import paddle.inference as pdi
480
+ if not Path(w).is_file(): # if not *.pdmodel
481
+ w = next(Path(w).rglob('*.pdmodel')) # get *.pdmodel file from *_paddle_model dir
482
+ weights = Path(w).with_suffix('.pdiparams')
483
+ config = pdi.Config(str(w), str(weights))
484
+ if cuda:
485
+ config.enable_use_gpu(memory_pool_init_size_mb=2048, device_id=0)
486
+ predictor = pdi.create_predictor(config)
487
+ input_handle = predictor.get_input_handle(predictor.get_input_names()[0])
488
+ output_names = predictor.get_output_names()
489
+ elif triton: # NVIDIA Triton Inference Server
490
+ LOGGER.info(f'Using {w} as Triton Inference Server...')
491
+ check_requirements('tritonclient[all]')
492
+ from utils.triton import TritonRemoteModel
493
+ model = TritonRemoteModel(url=w)
494
+ nhwc = model.runtime.startswith("tensorflow")
495
+ else:
496
+ raise NotImplementedError(f'ERROR: {w} is not a supported format')
497
+
498
+ # class names
499
+ if 'names' not in locals():
500
+ names = yaml_load(data)['names'] if data else {i: f'class{i}' for i in range(999)}
501
+ if names[0] == 'n01440764' and len(names) == 1000: # ImageNet
502
+ names = yaml_load(ROOT / 'data/ImageNet.yaml')['names'] # human-readable names
503
+
504
+ self.__dict__.update(locals()) # assign all variables to self
505
+
506
+ def forward(self, im, augment=False, visualize=False):
507
+ # YOLOv5 MultiBackend inference
508
+ b, ch, h, w = im.shape # batch, channel, height, width
509
+ if self.fp16 and im.dtype != torch.float16:
510
+ im = im.half() # to FP16
511
+ if self.nhwc:
512
+ im = im.permute(0, 2, 3, 1) # torch BCHW to numpy BHWC shape(1,320,192,3)
513
+
514
+ if self.pt: # PyTorch
515
+ y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im)
516
+ elif self.jit: # TorchScript
517
+ y = self.model(im)
518
+ elif self.dnn: # ONNX OpenCV DNN
519
+ im = im.cpu().numpy() # torch to numpy
520
+ self.net.setInput(im)
521
+ y = self.net.forward()
522
+ elif self.onnx: # ONNX Runtime
523
+ im = im.cpu().numpy() # torch to numpy
524
+ y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im})
525
+ elif self.xml: # OpenVINO
526
+ im = im.cpu().numpy() # FP32
527
+ y = list(self.executable_network([im]).values())
528
+ elif self.engine: # TensorRT
529
+ if self.dynamic and im.shape != self.bindings['images'].shape:
530
+ i = self.model.get_binding_index('images')
531
+ self.context.set_binding_shape(i, im.shape) # reshape if dynamic
532
+ self.bindings['images'] = self.bindings['images']._replace(shape=im.shape)
533
+ for name in self.output_names:
534
+ i = self.model.get_binding_index(name)
535
+ self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i)))
536
+ s = self.bindings['images'].shape
537
+ assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
538
+ self.binding_addrs['images'] = int(im.data_ptr())
539
+ self.context.execute_v2(list(self.binding_addrs.values()))
540
+ y = [self.bindings[x].data for x in sorted(self.output_names)]
541
+ elif self.coreml: # CoreML
542
+ im = im.cpu().numpy()
543
+ im = Image.fromarray((im[0] * 255).astype('uint8'))
544
+ # im = im.resize((192, 320), Image.ANTIALIAS)
545
+ y = self.model.predict({'image': im}) # coordinates are xywh normalized
546
+ if 'confidence' in y:
547
+ box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels
548
+ conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float)
549
+ y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
550
+ else:
551
+ y = list(reversed(y.values())) # reversed for segmentation models (pred, proto)
552
+ elif self.paddle: # PaddlePaddle
553
+ im = im.cpu().numpy().astype(np.float32)
554
+ self.input_handle.copy_from_cpu(im)
555
+ self.predictor.run()
556
+ y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names]
557
+ elif self.triton: # NVIDIA Triton Inference Server
558
+ y = self.model(im)
559
+ else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
560
+ im = im.cpu().numpy()
561
+ if self.saved_model: # SavedModel
562
+ y = self.model(im, training=False) if self.keras else self.model(im)
563
+ elif self.pb: # GraphDef
564
+ y = self.frozen_func(x=self.tf.constant(im))
565
+ else: # Lite or Edge TPU
566
+ input = self.input_details[0]
567
+ int8 = input['dtype'] == np.uint8 # is TFLite quantized uint8 model
568
+ if int8:
569
+ scale, zero_point = input['quantization']
570
+ im = (im / scale + zero_point).astype(np.uint8) # de-scale
571
+ self.interpreter.set_tensor(input['index'], im)
572
+ self.interpreter.invoke()
573
+ y = []
574
+ for output in self.output_details:
575
+ x = self.interpreter.get_tensor(output['index'])
576
+ if int8:
577
+ scale, zero_point = output['quantization']
578
+ x = (x.astype(np.float32) - zero_point) * scale # re-scale
579
+ y.append(x)
580
+ y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y]
581
+ y[0][..., :4] *= [w, h, w, h] # xywh normalized to pixels
582
+
583
+ if isinstance(y, (list, tuple)):
584
+ return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y]
585
+ else:
586
+ return self.from_numpy(y)
587
+
588
+ def from_numpy(self, x):
589
+ return torch.from_numpy(x).to(self.device) if isinstance(x, np.ndarray) else x
590
+
591
+ def warmup(self, imgsz=(1, 3, 640, 640)):
592
+ # Warmup model by running inference once
593
+ warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb, self.triton
594
+ if any(warmup_types) and (self.device.type != 'cpu' or self.triton):
595
+ im = torch.empty(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input
596
+ for _ in range(2 if self.jit else 1): #
597
+ self.forward(im) # warmup
598
+
599
+ @staticmethod
600
+ def _model_type(p='path/to/model.pt'):
601
+ # Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
602
+ # types = [pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle]
603
+ from export import export_formats
604
+ from utils.downloads import is_url
605
+ sf = list(export_formats().Suffix) # export suffixes
606
+ if not is_url(p, check=False):
607
+ check_suffix(p, sf) # checks
608
+ url = urlparse(p) # if url may be Triton inference server
609
+ types = [s in Path(p).name for s in sf]
610
+ types[8] &= not types[9] # tflite &= not edgetpu
611
+ triton = not any(types) and all([any(s in url.scheme for s in ["http", "grpc"]), url.netloc])
612
+ return types + [triton]
613
+
614
+ @staticmethod
615
+ def _load_metadata(f=Path('path/to/meta.yaml')):
616
+ # Load metadata from meta.yaml if it exists
617
+ if f.exists():
618
+ d = yaml_load(f)
619
+ return d['stride'], d['names'] # assign stride, names
620
+ return None, None
621
+
622
+
623
+ class AutoShape(nn.Module):
624
+ # YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
625
+ conf = 0.25 # NMS confidence threshold
626
+ iou = 0.45 # NMS IoU threshold
627
+ agnostic = False # NMS class-agnostic
628
+ multi_label = False # NMS multiple labels per box
629
+ classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
630
+ max_det = 1000 # maximum number of detections per image
631
+ amp = False # Automatic Mixed Precision (AMP) inference
632
+
633
+ def __init__(self, model, verbose=True):
634
+ super().__init__()
635
+ if verbose:
636
+ LOGGER.info('Adding AutoShape... ')
637
+ copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=()) # copy attributes
638
+ self.dmb = isinstance(model, DetectMultiBackend) # DetectMultiBackend() instance
639
+ self.pt = not self.dmb or model.pt # PyTorch model
640
+ self.model = model.eval()
641
+ if self.pt:
642
+ m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
643
+ m.inplace = False # Detect.inplace=False for safe multithread inference
644
+ m.export = True # do not output loss values
645
+
646
+ def _apply(self, fn):
647
+ # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
648
+ self = super()._apply(fn)
649
+ if self.pt:
650
+ m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
651
+ m.stride = fn(m.stride)
652
+ m.grid = list(map(fn, m.grid))
653
+ if isinstance(m.anchor_grid, list):
654
+ m.anchor_grid = list(map(fn, m.anchor_grid))
655
+ return self
656
+
657
+ @smart_inference_mode()
658
+ def forward(self, ims, size=640, augment=False, profile=False):
659
+ # Inference from various sources. For size(height=640, width=1280), RGB images example inputs are:
660
+ # file: ims = 'data/images/zidane.jpg' # str or PosixPath
661
+ # URI: = 'https://ultralytics.com/images/zidane.jpg'
662
+ # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
663
+ # PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3)
664
+ # numpy: = np.zeros((640,1280,3)) # HWC
665
+ # torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
666
+ # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
667
+
668
+ dt = (Profile(), Profile(), Profile())
669
+ with dt[0]:
670
+ if isinstance(size, int): # expand
671
+ size = (size, size)
672
+ p = next(self.model.parameters()) if self.pt else torch.empty(1, device=self.model.device) # param
673
+ autocast = self.amp and (p.device.type != 'cpu') # Automatic Mixed Precision (AMP) inference
674
+ if isinstance(ims, torch.Tensor): # torch
675
+ with amp.autocast(autocast):
676
+ return self.model(ims.to(p.device).type_as(p), augment=augment) # inference
677
+
678
+ # Pre-process
679
+ n, ims = (len(ims), list(ims)) if isinstance(ims, (list, tuple)) else (1, [ims]) # number, list of images
680
+ shape0, shape1, files = [], [], [] # image and inference shapes, filenames
681
+ for i, im in enumerate(ims):
682
+ f = f'image{i}' # filename
683
+ if isinstance(im, (str, Path)): # filename or uri
684
+ im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
685
+ im = np.asarray(exif_transpose(im))
686
+ elif isinstance(im, Image.Image): # PIL Image
687
+ im, f = np.asarray(exif_transpose(im)), getattr(im, 'filename', f) or f
688
+ files.append(Path(f).with_suffix('.jpg').name)
689
+ if im.shape[0] < 5: # image in CHW
690
+ im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
691
+ im = im[..., :3] if im.ndim == 3 else cv2.cvtColor(im, cv2.COLOR_GRAY2BGR) # enforce 3ch input
692
+ s = im.shape[:2] # HWC
693
+ shape0.append(s) # image shape
694
+ g = max(size) / max(s) # gain
695
+ shape1.append([int(y * g) for y in s])
696
+ ims[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update
697
+ shape1 = [make_divisible(x, self.stride) for x in np.array(shape1).max(0)] # inf shape
698
+ x = [letterbox(im, shape1, auto=False)[0] for im in ims] # pad
699
+ x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW
700
+ x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32
701
+
702
+ with amp.autocast(autocast):
703
+ # Inference
704
+ with dt[1]:
705
+ y = self.model(x, augment=augment) # forward
706
+
707
+ # Post-process
708
+ with dt[2]:
709
+ y = non_max_suppression(y if self.dmb else y[0],
710
+ self.conf,
711
+ self.iou,
712
+ self.classes,
713
+ self.agnostic,
714
+ self.multi_label,
715
+ max_det=self.max_det) # NMS
716
+ for i in range(n):
717
+ scale_boxes(shape1, y[i][:, :4], shape0[i])
718
+
719
+ return Detections(ims, y, files, dt, self.names, x.shape)
720
+
721
+
722
+ class Detections:
723
+ # YOLOv5 detections class for inference results
724
+ def __init__(self, ims, pred, files, times=(0, 0, 0), names=None, shape=None):
725
+ super().__init__()
726
+ d = pred[0].device # device
727
+ gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in ims] # normalizations
728
+ self.ims = ims # list of images as numpy arrays
729
+ self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
730
+ self.names = names # class names
731
+ self.files = files # image filenames
732
+ self.times = times # profiling times
733
+ self.xyxy = pred # xyxy pixels
734
+ self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
735
+ self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
736
+ self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
737
+ self.n = len(self.pred) # number of images (batch size)
738
+ self.t = tuple(x.t / self.n * 1E3 for x in times) # timestamps (ms)
739
+ self.s = tuple(shape) # inference BCHW shape
740
+
741
+ def _run(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path('')):
742
+ s, crops = '', []
743
+ for i, (im, pred) in enumerate(zip(self.ims, self.pred)):
744
+ s += f'\nimage {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string
745
+ if pred.shape[0]:
746
+ for c in pred[:, -1].unique():
747
+ n = (pred[:, -1] == c).sum() # detections per class
748
+ s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
749
+ s = s.rstrip(', ')
750
+ if show or save or render or crop:
751
+ annotator = Annotator(im, example=str(self.names))
752
+ for *box, conf, cls in reversed(pred): # xyxy, confidence, class
753
+ label = f'{self.names[int(cls)]} {conf:.2f}'
754
+ if crop:
755
+ file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None
756
+ crops.append({
757
+ 'box': box,
758
+ 'conf': conf,
759
+ 'cls': cls,
760
+ 'label': label,
761
+ 'im': save_one_box(box, im, file=file, save=save)})
762
+ else: # all others
763
+ annotator.box_label(box, label if labels else '', color=colors(cls))
764
+ im = annotator.im
765
+ else:
766
+ s += '(no detections)'
767
+
768
+ im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np
769
+ if show:
770
+ display(im) if is_notebook() else im.show(self.files[i])
771
+ if save:
772
+ f = self.files[i]
773
+ im.save(save_dir / f) # save
774
+ if i == self.n - 1:
775
+ LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
776
+ if render:
777
+ self.ims[i] = np.asarray(im)
778
+ if pprint:
779
+ s = s.lstrip('\n')
780
+ return f'{s}\nSpeed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {self.s}' % self.t
781
+ if crop:
782
+ if save:
783
+ LOGGER.info(f'Saved results to {save_dir}\n')
784
+ return crops
785
+
786
+ @TryExcept('Showing images is not supported in this environment')
787
+ def show(self, labels=True):
788
+ self._run(show=True, labels=labels) # show results
789
+
790
+ def save(self, labels=True, save_dir='runs/detect/exp', exist_ok=False):
791
+ save_dir = increment_path(save_dir, exist_ok, mkdir=True) # increment save_dir
792
+ self._run(save=True, labels=labels, save_dir=save_dir) # save results
793
+
794
+ def crop(self, save=True, save_dir='runs/detect/exp', exist_ok=False):
795
+ save_dir = increment_path(save_dir, exist_ok, mkdir=True) if save else None
796
+ return self._run(crop=True, save=save, save_dir=save_dir) # crop results
797
+
798
+ def render(self, labels=True):
799
+ self._run(render=True, labels=labels) # render results
800
+ return self.ims
801
+
802
+ def pandas(self):
803
+ # return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
804
+ new = copy(self) # return copy
805
+ ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
806
+ cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
807
+ for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
808
+ a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
809
+ setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
810
+ return new
811
+
812
+ def tolist(self):
813
+ # return a list of Detections objects, i.e. 'for result in results.tolist():'
814
+ r = range(self.n) # iterable
815
+ x = [Detections([self.ims[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r]
816
+ # for d in x:
817
+ # for k in ['ims', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
818
+ # setattr(d, k, getattr(d, k)[0]) # pop out of list
819
+ return x
820
+
821
+ def print(self):
822
+ LOGGER.info(self.__str__())
823
+
824
+ def __len__(self): # override len(results)
825
+ return self.n
826
+
827
+ def __str__(self): # override print(results)
828
+ return self._run(pprint=True) # print results
829
+
830
+ def __repr__(self):
831
+ return f'YOLOv5 {self.__class__} instance\n' + self.__str__()
832
+
833
+
834
+ class Proto(nn.Module):
835
+ # YOLOv5 mask Proto module for segmentation models
836
+ def __init__(self, c1, c_=256, c2=32): # ch_in, number of protos, number of masks
837
+ super().__init__()
838
+ self.cv1 = Conv(c1, c_, k=3)
839
+ self.upsample = nn.Upsample(scale_factor=2, mode='nearest')
840
+ self.cv2 = Conv(c_, c_, k=3)
841
+ self.cv3 = Conv(c_, c2)
842
+
843
+ def forward(self, x):
844
+ return self.cv3(self.cv2(self.upsample(self.cv1(x))))
845
+
846
+
847
+ class Classify(nn.Module):
848
+ # YOLOv5 classification head, i.e. x(b,c1,20,20) to x(b,c2)
849
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
850
+ super().__init__()
851
+ c_ = 1280 # efficientnet_b0 size
852
+ self.conv = Conv(c1, c_, k, s, autopad(k, p), g)
853
+ self.pool = nn.AdaptiveAvgPool2d(1) # to x(b,c_,1,1)
854
+ self.drop = nn.Dropout(p=0.0, inplace=True)
855
+ self.linear = nn.Linear(c_, c2) # to x(b,c2)
856
+
857
+ def forward(self, x):
858
+ if isinstance(x, list):
859
+ x = torch.cat(x, 1)
860
+ return self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
models/experimental.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ """
3
+ Experimental modules
4
+ """
5
+ import math
6
+
7
+ import numpy as np
8
+ import torch
9
+ import torch.nn as nn
10
+
11
+ from utils.downloads import attempt_download
12
+
13
+
14
+ class Sum(nn.Module):
15
+ # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
16
+ def __init__(self, n, weight=False): # n: number of inputs
17
+ super().__init__()
18
+ self.weight = weight # apply weights boolean
19
+ self.iter = range(n - 1) # iter object
20
+ if weight:
21
+ self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True) # layer weights
22
+
23
+ def forward(self, x):
24
+ y = x[0] # no weight
25
+ if self.weight:
26
+ w = torch.sigmoid(self.w) * 2
27
+ for i in self.iter:
28
+ y = y + x[i + 1] * w[i]
29
+ else:
30
+ for i in self.iter:
31
+ y = y + x[i + 1]
32
+ return y
33
+
34
+
35
+ class MixConv2d(nn.Module):
36
+ # Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595
37
+ def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): # ch_in, ch_out, kernel, stride, ch_strategy
38
+ super().__init__()
39
+ n = len(k) # number of convolutions
40
+ if equal_ch: # equal c_ per group
41
+ i = torch.linspace(0, n - 1E-6, c2).floor() # c2 indices
42
+ c_ = [(i == g).sum() for g in range(n)] # intermediate channels
43
+ else: # equal weight.numel() per group
44
+ b = [c2] + [0] * n
45
+ a = np.eye(n + 1, n, k=-1)
46
+ a -= np.roll(a, 1, axis=1)
47
+ a *= np.array(k) ** 2
48
+ a[0] = 1
49
+ c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
50
+
51
+ self.m = nn.ModuleList([
52
+ nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)])
53
+ self.bn = nn.BatchNorm2d(c2)
54
+ self.act = nn.SiLU()
55
+
56
+ def forward(self, x):
57
+ return self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
58
+
59
+
60
+ class Ensemble(nn.ModuleList):
61
+ # Ensemble of models
62
+ def __init__(self):
63
+ super().__init__()
64
+
65
+ def forward(self, x, augment=False, profile=False, visualize=False):
66
+ y = [module(x, augment, profile, visualize)[0] for module in self]
67
+ # y = torch.stack(y).max(0)[0] # max ensemble
68
+ # y = torch.stack(y).mean(0) # mean ensemble
69
+ y = torch.cat(y, 1) # nms ensemble
70
+ return y, None # inference, train output
71
+
72
+
73
+ def attempt_load(weights, device=None, inplace=True, fuse=True):
74
+ # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
75
+ from models.yolo import Detect, Model
76
+
77
+ model = Ensemble()
78
+ for w in weights if isinstance(weights, list) else [weights]:
79
+ ckpt = torch.load(attempt_download(w), map_location='cpu') # load
80
+ ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model
81
+
82
+ # Model compatibility updates
83
+ if not hasattr(ckpt, 'stride'):
84
+ ckpt.stride = torch.tensor([32.])
85
+ if hasattr(ckpt, 'names') and isinstance(ckpt.names, (list, tuple)):
86
+ ckpt.names = dict(enumerate(ckpt.names)) # convert to dict
87
+
88
+ model.append(ckpt.fuse().eval() if fuse and hasattr(ckpt, 'fuse') else ckpt.eval()) # model in eval mode
89
+
90
+ # Module compatibility updates
91
+ for m in model.modules():
92
+ t = type(m)
93
+ if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model):
94
+ m.inplace = inplace # torch 1.7.0 compatibility
95
+ if t is Detect and not isinstance(m.anchor_grid, list):
96
+ delattr(m, 'anchor_grid')
97
+ setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl)
98
+ elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
99
+ m.recompute_scale_factor = None # torch 1.11.0 compatibility
100
+
101
+ # Return model
102
+ if len(model) == 1:
103
+ return model[-1]
104
+
105
+ # Return detection ensemble
106
+ print(f'Ensemble created with {weights}\n')
107
+ for k in 'names', 'nc', 'yaml':
108
+ setattr(model, k, getattr(model[0], k))
109
+ model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
110
+ assert all(model[0].nc == m.nc for m in model), f'Models have different class counts: {[m.nc for m in model]}'
111
+ return model
models/hub/anchors.yaml ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ # Default anchors for COCO data
3
+
4
+
5
+ # P5 -------------------------------------------------------------------------------------------------------------------
6
+ # P5-640:
7
+ anchors_p5_640:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+
13
+ # P6 -------------------------------------------------------------------------------------------------------------------
14
+ # P6-640: thr=0.25: 0.9964 BPR, 5.54 anchors past thr, n=12, img_size=640, metric_all=0.281/0.716-mean/best, past_thr=0.469-mean: 9,11, 21,19, 17,41, 43,32, 39,70, 86,64, 65,131, 134,130, 120,265, 282,180, 247,354, 512,387
15
+ anchors_p6_640:
16
+ - [9,11, 21,19, 17,41] # P3/8
17
+ - [43,32, 39,70, 86,64] # P4/16
18
+ - [65,131, 134,130, 120,265] # P5/32
19
+ - [282,180, 247,354, 512,387] # P6/64
20
+
21
+ # P6-1280: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1280, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792
22
+ anchors_p6_1280:
23
+ - [19,27, 44,40, 38,94] # P3/8
24
+ - [96,68, 86,152, 180,137] # P4/16
25
+ - [140,301, 303,264, 238,542] # P5/32
26
+ - [436,615, 739,380, 925,792] # P6/64
27
+
28
+ # P6-1920: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1920, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 28,41, 67,59, 57,141, 144,103, 129,227, 270,205, 209,452, 455,396, 358,812, 653,922, 1109,570, 1387,1187
29
+ anchors_p6_1920:
30
+ - [28,41, 67,59, 57,141] # P3/8
31
+ - [144,103, 129,227, 270,205] # P4/16
32
+ - [209,452, 455,396, 358,812] # P5/32
33
+ - [653,922, 1109,570, 1387,1187] # P6/64
34
+
35
+
36
+ # P7 -------------------------------------------------------------------------------------------------------------------
37
+ # P7-640: thr=0.25: 0.9962 BPR, 6.76 anchors past thr, n=15, img_size=640, metric_all=0.275/0.733-mean/best, past_thr=0.466-mean: 11,11, 13,30, 29,20, 30,46, 61,38, 39,92, 78,80, 146,66, 79,163, 149,150, 321,143, 157,303, 257,402, 359,290, 524,372
38
+ anchors_p7_640:
39
+ - [11,11, 13,30, 29,20] # P3/8
40
+ - [30,46, 61,38, 39,92] # P4/16
41
+ - [78,80, 146,66, 79,163] # P5/32
42
+ - [149,150, 321,143, 157,303] # P6/64
43
+ - [257,402, 359,290, 524,372] # P7/128
44
+
45
+ # P7-1280: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1280, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 19,22, 54,36, 32,77, 70,83, 138,71, 75,173, 165,159, 148,334, 375,151, 334,317, 251,626, 499,474, 750,326, 534,814, 1079,818
46
+ anchors_p7_1280:
47
+ - [19,22, 54,36, 32,77] # P3/8
48
+ - [70,83, 138,71, 75,173] # P4/16
49
+ - [165,159, 148,334, 375,151] # P5/32
50
+ - [334,317, 251,626, 499,474] # P6/64
51
+ - [750,326, 534,814, 1079,818] # P7/128
52
+
53
+ # P7-1920: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1920, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 29,34, 81,55, 47,115, 105,124, 207,107, 113,259, 247,238, 222,500, 563,227, 501,476, 376,939, 749,711, 1126,489, 801,1222, 1618,1227
54
+ anchors_p7_1920:
55
+ - [29,34, 81,55, 47,115] # P3/8
56
+ - [105,124, 207,107, 113,259] # P4/16
57
+ - [247,238, 222,500, 563,227] # P5/32
58
+ - [501,476, 376,939, 749,711] # P6/64
59
+ - [1126,489, 801,1222, 1618,1227] # P7/128
models/hub/yolov3-spp.yaml ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # darknet53 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [32, 3, 1]], # 0
16
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17
+ [-1, 1, Bottleneck, [64]],
18
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19
+ [-1, 2, Bottleneck, [128]],
20
+ [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21
+ [-1, 8, Bottleneck, [256]],
22
+ [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23
+ [-1, 8, Bottleneck, [512]],
24
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25
+ [-1, 4, Bottleneck, [1024]], # 10
26
+ ]
27
+
28
+ # YOLOv3-SPP head
29
+ head:
30
+ [[-1, 1, Bottleneck, [1024, False]],
31
+ [-1, 1, SPP, [512, [5, 9, 13]]],
32
+ [-1, 1, Conv, [1024, 3, 1]],
33
+ [-1, 1, Conv, [512, 1, 1]],
34
+ [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
35
+
36
+ [-2, 1, Conv, [256, 1, 1]],
37
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38
+ [[-1, 8], 1, Concat, [1]], # cat backbone P4
39
+ [-1, 1, Bottleneck, [512, False]],
40
+ [-1, 1, Bottleneck, [512, False]],
41
+ [-1, 1, Conv, [256, 1, 1]],
42
+ [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
43
+
44
+ [-2, 1, Conv, [128, 1, 1]],
45
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
46
+ [[-1, 6], 1, Concat, [1]], # cat backbone P3
47
+ [-1, 1, Bottleneck, [256, False]],
48
+ [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
49
+
50
+ [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
51
+ ]
models/hub/yolov3-tiny.yaml ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors:
8
+ - [10,14, 23,27, 37,58] # P4/16
9
+ - [81,82, 135,169, 344,319] # P5/32
10
+
11
+ # YOLOv3-tiny backbone
12
+ backbone:
13
+ # [from, number, module, args]
14
+ [[-1, 1, Conv, [16, 3, 1]], # 0
15
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2
16
+ [-1, 1, Conv, [32, 3, 1]],
17
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4
18
+ [-1, 1, Conv, [64, 3, 1]],
19
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8
20
+ [-1, 1, Conv, [128, 3, 1]],
21
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16
22
+ [-1, 1, Conv, [256, 3, 1]],
23
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32
24
+ [-1, 1, Conv, [512, 3, 1]],
25
+ [-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]], # 11
26
+ [-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12
27
+ ]
28
+
29
+ # YOLOv3-tiny head
30
+ head:
31
+ [[-1, 1, Conv, [1024, 3, 1]],
32
+ [-1, 1, Conv, [256, 1, 1]],
33
+ [-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large)
34
+
35
+ [-2, 1, Conv, [128, 1, 1]],
36
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
37
+ [[-1, 8], 1, Concat, [1]], # cat backbone P4
38
+ [-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium)
39
+
40
+ [[19, 15], 1, Detect, [nc, anchors]], # Detect(P4, P5)
41
+ ]
models/hub/yolov3.yaml ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # darknet53 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [32, 3, 1]], # 0
16
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17
+ [-1, 1, Bottleneck, [64]],
18
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19
+ [-1, 2, Bottleneck, [128]],
20
+ [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21
+ [-1, 8, Bottleneck, [256]],
22
+ [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23
+ [-1, 8, Bottleneck, [512]],
24
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25
+ [-1, 4, Bottleneck, [1024]], # 10
26
+ ]
27
+
28
+ # YOLOv3 head
29
+ head:
30
+ [[-1, 1, Bottleneck, [1024, False]],
31
+ [-1, 1, Conv, [512, 1, 1]],
32
+ [-1, 1, Conv, [1024, 3, 1]],
33
+ [-1, 1, Conv, [512, 1, 1]],
34
+ [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
35
+
36
+ [-2, 1, Conv, [256, 1, 1]],
37
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38
+ [[-1, 8], 1, Concat, [1]], # cat backbone P4
39
+ [-1, 1, Bottleneck, [512, False]],
40
+ [-1, 1, Bottleneck, [512, False]],
41
+ [-1, 1, Conv, [256, 1, 1]],
42
+ [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
43
+
44
+ [-2, 1, Conv, [128, 1, 1]],
45
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
46
+ [[-1, 6], 1, Concat, [1]], # cat backbone P3
47
+ [-1, 1, Bottleneck, [256, False]],
48
+ [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
49
+
50
+ [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
51
+ ]