HakimAiV2 / datasets /visual_sampler /simpleclick_sampler.py
scdrand23's picture
not working version
814a594
import sys
import random
import cv2
import numpy as np
from scipy import ndimage
import torch
import torch.nn as nn
import torch.nn.functional as F
from kornia.contrib import distance_transform
from .point import Point
from .polygon import Polygon, get_bezier_curve
from .scribble import Scribble
from .circle import Circle
from modeling.utils import configurable
class SimpleClickSampler(nn.Module):
@configurable
def __init__(self, mask_mode='point', sample_negtive=False, is_train=True, dilation=None, dilation_kernel=None, max_points=None):
super().__init__()
self.mask_mode = mask_mode
self.sample_negtive = sample_negtive
self.is_train = is_train
self.dilation = dilation
self.register_buffer("dilation_kernel", dilation_kernel)
self.max_points = max_points
@classmethod
def from_config(cls, cfg, is_train=True, mode=None):
mask_mode = mode
sample_negtive = cfg['STROKE_SAMPLER']['EVAL']['NEGATIVE']
dilation = cfg['STROKE_SAMPLER']['DILATION']
dilation_kernel = torch.ones((1, 1, dilation, dilation), device=torch.cuda.current_device())
max_points = cfg['STROKE_SAMPLER']['POLYGON']['MAX_POINTS']
# Build augmentation
return {
"mask_mode": mask_mode,
"sample_negtive": sample_negtive,
"is_train": is_train,
"dilation": dilation,
"dilation_kernel": dilation_kernel,
"max_points": max_points,
}
def forward_point(self, instances, pred_masks=None, prev_masks=None):
gt_masks = instances.gt_masks.tensor
n,h,w = gt_masks.shape
# We only consider positive points
pred_masks = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool() if pred_masks is None else pred_masks[:,:h,:w]
prev_masks = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool() if prev_masks is None else prev_masks
if not gt_masks.is_cuda:
gt_masks = gt_masks.to(pred_masks.device)
fp = gt_masks & (~(gt_masks & pred_masks)) & (~prev_masks)
# conv implementation
mask_dt = (distance_transform((~F.pad(fp[None,], pad=(1, 1, 1, 1), mode='constant', value=0)).float())[0,:,1:-1,1:-1]).reshape(n,-1)
max_xy_idx = torch.stack([torch.arange(n), mask_dt.max(dim=-1)[1].cpu()]).tolist()
next_mask = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool()
next_mask = next_mask.view(n,-1)
next_mask[max_xy_idx] = True
next_mask = next_mask.reshape((n,h,w)).float()
next_mask = F.conv2d(next_mask[None,], self.dilation_kernel.repeat(len(next_mask),1,1,1), padding=self.dilation//2, groups=len(next_mask))[0] > 0
# end conv implementation
# disk implementation
# mask_dt = distance_transform((~fp)[None,].float())[0].view(n,-1)
# max_xy = mask_dt.max(dim=-1)[1]
# max_y, max_x = max_xy//w, max_xy%w
# max_xy_idx = torch.stack([max_y, max_x]).transpose(0,1)[:,:,None,None]
# y_idx = torch.arange(start=0, end=h, step=1, dtype=torch.float32, device=torch.cuda.current_device())
# x_idx = torch.arange(start=0, end=w, step=1, dtype=torch.float32, device=torch.cuda.current_device())
# coord_y, coord_x = torch.meshgrid(y_idx, x_idx)
# coords = torch.stack((coord_y, coord_x), dim=0).unsqueeze(0).repeat(len(max_xy_idx),1,1,1) # [bsx2,2,h,w], corresponding to 2d coordinate
# coords.add_(-max_xy_idx)
# coords.mul_(coords)
# next_mask = coords[:, 0] + coords[:, 1]
# next_mask = (next_mask <= 5**2)
# end disk implementation
rand_shapes = prev_masks | next_mask
types = ['point' for i in range(len(gt_masks))]
return {'gt_masks': instances.gt_masks.tensor, 'rand_shape': rand_shapes[:,None], 'types': types}
def forward_circle(self, instances, pred_masks=None, prev_masks=None):
gt_masks = instances.gt_masks.tensor
n,h,w = gt_masks.shape
# We only consider positive points
pred_masks = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool() if pred_masks is None else pred_masks[:,:h,:w]
prev_masks = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool() if prev_masks is None else prev_masks
if not gt_masks.is_cuda:
gt_masks = gt_masks.to(pred_masks.device)
fp = gt_masks & (~(gt_masks & pred_masks)) & (~prev_masks)
# conv implementation
mask_dt = (distance_transform((~F.pad(fp[None,], pad=(1, 1, 1, 1), mode='constant', value=0)).float())[0,:,1:-1,1:-1]).reshape(n,-1)
max_xy_idx = torch.stack([torch.arange(n), mask_dt.max(dim=-1)[1].cpu()]).tolist()
next_mask = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool()
next_mask = next_mask.view(n,-1)
next_mask[max_xy_idx] = True
next_mask = next_mask.reshape((n,h,w)).float()
_next_mask = []
for idx in range(len(next_mask)):
points = next_mask[idx].nonzero().flip(dims=[-1]).cpu().numpy()
_next_mask += [Circle.draw_by_points(points, gt_masks[idx:idx+1].cpu(), h, w)]
next_mask = torch.cat(_next_mask, dim=0).bool()
rand_shapes = prev_masks | next_mask
types = ['circle' for i in range(len(gt_masks))]
return {'gt_masks': instances.gt_masks.tensor, 'rand_shape': rand_shapes[:,None], 'types': types}
def forward_scribble(self, instances, pred_masks=None, prev_masks=None):
gt_masks = instances.gt_masks.tensor
n,h,w = gt_masks.shape
# We only consider positive points
pred_masks = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool() if pred_masks is None else pred_masks[:,:h,:w]
prev_masks = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool() if prev_masks is None else prev_masks
if not gt_masks.is_cuda:
gt_masks = gt_masks.to(pred_masks.device)
fp = gt_masks & (~(gt_masks & pred_masks)) & (~prev_masks)
# conv implementation
mask_dt = (distance_transform((~F.pad(fp[None,], pad=(1, 1, 1, 1), mode='constant', value=0)).float())[0,:,1:-1,1:-1]).reshape(n,-1)
max_xy_idx = torch.stack([torch.arange(n), mask_dt.max(dim=-1)[1].cpu()]).tolist()
next_mask = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool()
next_mask = next_mask.view(n,-1)
next_mask[max_xy_idx] = True
next_mask = next_mask.reshape((n,h,w)).float()
_next_mask = []
for idx in range(len(next_mask)):
points = next_mask[idx].nonzero().flip(dims=[-1]).cpu().numpy()
_next_mask += [Scribble.draw_by_points(points, gt_masks[idx:idx+1].cpu(), h, w)]
next_mask = torch.cat(_next_mask, dim=0).bool()
rand_shapes = prev_masks | next_mask
types = ['scribble' for i in range(len(gt_masks))]
return {'gt_masks': instances.gt_masks.tensor, 'rand_shape': rand_shapes[:,None], 'types': types}
def forward_polygon(self, instances, pred_masks=None, prev_masks=None):
gt_masks = instances.gt_masks.tensor
gt_boxes = instances.gt_boxes.tensor
n,h,w = gt_masks.shape
# We only consider positive points
pred_masks = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool() if pred_masks is None else pred_masks[:,:h,:w]
prev_masks = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool() if prev_masks is None else prev_masks
if not gt_masks.is_cuda:
gt_masks = gt_masks.to(pred_masks.device)
fp = gt_masks & (~(gt_masks & pred_masks)) & (~prev_masks)
next_mask = []
for i in range(len(fp)):
rad = 0.2
edgy = 0.05
num_points = random.randint(1, min(self.max_points, fp[i].sum()))
h,w = fp[i].shape
view_mask = fp[i].reshape(h*w)
non_zero_idx = view_mask.nonzero()[:,0]
selected_idx = torch.randperm(len(non_zero_idx))[:num_points]
non_zero_idx = non_zero_idx[selected_idx]
y = (non_zero_idx // w)*1.0/(h+1)
x = (non_zero_idx % w)*1.0/(w+1)
coords = torch.cat((x[:,None],y[:,None]), dim=1).cpu().numpy()
x1,y1,x2,y2 = gt_boxes[i].int().unbind()
x,y, _ = get_bezier_curve(coords, rad=rad, edgy=edgy)
x = x.clip(0.0, 1.0)
y = y.clip(0.0, 1.0)
points = torch.from_numpy(np.concatenate((y[None,]*(y2-y1-1).item(),x[None,]*(x2-x1-1).item()))).int()
canvas = torch.zeros((y2-y1, x2-x1))
canvas[points.long().tolist()] = 1
rand_mask = torch.zeros(fp[i].shape)
rand_mask[y1:y2,x1:x2] = canvas
next_mask += [rand_mask]
next_mask = torch.stack(next_mask).to(pred_masks.device).bool()
rand_shapes = prev_masks | next_mask
types = ['polygon' for i in range(len(gt_masks))]
return {'gt_masks': instances.gt_masks.tensor, 'rand_shape': rand_shapes[:,None], 'types': types}
def forward_box(self, instances, pred_masks=None, prev_masks=None):
gt_masks = instances.gt_masks.tensor
gt_boxes = instances.gt_boxes.tensor
n,h,w = gt_masks.shape
for i in range(len(gt_masks)):
x1,y1,x2,y2 = gt_boxes[i].int().unbind()
gt_masks[i,y1:y2,x1:x2] = 1
# We only consider positive points
pred_masks = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool() if pred_masks is None else pred_masks[:,:h,:w]
prev_masks = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool() if prev_masks is None else prev_masks
if not gt_masks.is_cuda:
gt_masks = gt_masks.to(pred_masks.device)
fp = gt_masks & (~(gt_masks & pred_masks)) & (~prev_masks)
# conv implementation
mask_dt = (distance_transform((~F.pad(fp[None,], pad=(1, 1, 1, 1), mode='constant', value=0)).float())[0,:,1:-1,1:-1]).reshape(n,-1)
max_xy_idx = torch.stack([torch.arange(n), mask_dt.max(dim=-1)[1].cpu()]).tolist()
next_mask = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool()
next_mask = next_mask.view(n,-1)
next_mask[max_xy_idx] = True
next_mask = next_mask.reshape((n,h,w)).float()
next_mask = F.conv2d(next_mask[None,], self.dilation_kernel.repeat(len(next_mask),1,1,1), padding=self.dilation//2, groups=len(next_mask))[0] > 0
# end conv implementation
rand_shapes = prev_masks | next_mask
types = ['box' for i in range(len(gt_masks))]
return {'gt_masks': instances.gt_masks.tensor, 'rand_shape': rand_shapes[:,None], 'types': types}
def forward(self, instances, *args, **kwargs):
if self.mask_mode == 'Point':
return self.forward_point(instances, *args, **kwargs)
elif self.mask_mode == 'Circle':
return self.forward_circle(instances, *args, **kwargs)
elif self.mask_mode == 'Scribble':
return self.forward_scribble(instances, *args, **kwargs)
elif self.mask_mode == 'Polygon':
return self.forward_polygon(instances, *args, **kwargs)
elif self.mask_mode == 'Box':
return self.forward_box(instances, *args, **kwargs)
def build_shape_sampler(cfg, **kwargs):
return ShapeSampler(cfg, **kwargs)