File size: 11,565 Bytes
814a594 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import sys
import random
import cv2
import numpy as np
from scipy import ndimage
import torch
import torch.nn as nn
import torch.nn.functional as F
from kornia.contrib import distance_transform
from .point import Point
from .polygon import Polygon, get_bezier_curve
from .scribble import Scribble
from .circle import Circle
from modeling.utils import configurable
class SimpleClickSampler(nn.Module):
@configurable
def __init__(self, mask_mode='point', sample_negtive=False, is_train=True, dilation=None, dilation_kernel=None, max_points=None):
super().__init__()
self.mask_mode = mask_mode
self.sample_negtive = sample_negtive
self.is_train = is_train
self.dilation = dilation
self.register_buffer("dilation_kernel", dilation_kernel)
self.max_points = max_points
@classmethod
def from_config(cls, cfg, is_train=True, mode=None):
mask_mode = mode
sample_negtive = cfg['STROKE_SAMPLER']['EVAL']['NEGATIVE']
dilation = cfg['STROKE_SAMPLER']['DILATION']
dilation_kernel = torch.ones((1, 1, dilation, dilation), device=torch.cuda.current_device())
max_points = cfg['STROKE_SAMPLER']['POLYGON']['MAX_POINTS']
# Build augmentation
return {
"mask_mode": mask_mode,
"sample_negtive": sample_negtive,
"is_train": is_train,
"dilation": dilation,
"dilation_kernel": dilation_kernel,
"max_points": max_points,
}
def forward_point(self, instances, pred_masks=None, prev_masks=None):
gt_masks = instances.gt_masks.tensor
n,h,w = gt_masks.shape
# We only consider positive points
pred_masks = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool() if pred_masks is None else pred_masks[:,:h,:w]
prev_masks = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool() if prev_masks is None else prev_masks
if not gt_masks.is_cuda:
gt_masks = gt_masks.to(pred_masks.device)
fp = gt_masks & (~(gt_masks & pred_masks)) & (~prev_masks)
# conv implementation
mask_dt = (distance_transform((~F.pad(fp[None,], pad=(1, 1, 1, 1), mode='constant', value=0)).float())[0,:,1:-1,1:-1]).reshape(n,-1)
max_xy_idx = torch.stack([torch.arange(n), mask_dt.max(dim=-1)[1].cpu()]).tolist()
next_mask = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool()
next_mask = next_mask.view(n,-1)
next_mask[max_xy_idx] = True
next_mask = next_mask.reshape((n,h,w)).float()
next_mask = F.conv2d(next_mask[None,], self.dilation_kernel.repeat(len(next_mask),1,1,1), padding=self.dilation//2, groups=len(next_mask))[0] > 0
# end conv implementation
# disk implementation
# mask_dt = distance_transform((~fp)[None,].float())[0].view(n,-1)
# max_xy = mask_dt.max(dim=-1)[1]
# max_y, max_x = max_xy//w, max_xy%w
# max_xy_idx = torch.stack([max_y, max_x]).transpose(0,1)[:,:,None,None]
# y_idx = torch.arange(start=0, end=h, step=1, dtype=torch.float32, device=torch.cuda.current_device())
# x_idx = torch.arange(start=0, end=w, step=1, dtype=torch.float32, device=torch.cuda.current_device())
# coord_y, coord_x = torch.meshgrid(y_idx, x_idx)
# coords = torch.stack((coord_y, coord_x), dim=0).unsqueeze(0).repeat(len(max_xy_idx),1,1,1) # [bsx2,2,h,w], corresponding to 2d coordinate
# coords.add_(-max_xy_idx)
# coords.mul_(coords)
# next_mask = coords[:, 0] + coords[:, 1]
# next_mask = (next_mask <= 5**2)
# end disk implementation
rand_shapes = prev_masks | next_mask
types = ['point' for i in range(len(gt_masks))]
return {'gt_masks': instances.gt_masks.tensor, 'rand_shape': rand_shapes[:,None], 'types': types}
def forward_circle(self, instances, pred_masks=None, prev_masks=None):
gt_masks = instances.gt_masks.tensor
n,h,w = gt_masks.shape
# We only consider positive points
pred_masks = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool() if pred_masks is None else pred_masks[:,:h,:w]
prev_masks = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool() if prev_masks is None else prev_masks
if not gt_masks.is_cuda:
gt_masks = gt_masks.to(pred_masks.device)
fp = gt_masks & (~(gt_masks & pred_masks)) & (~prev_masks)
# conv implementation
mask_dt = (distance_transform((~F.pad(fp[None,], pad=(1, 1, 1, 1), mode='constant', value=0)).float())[0,:,1:-1,1:-1]).reshape(n,-1)
max_xy_idx = torch.stack([torch.arange(n), mask_dt.max(dim=-1)[1].cpu()]).tolist()
next_mask = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool()
next_mask = next_mask.view(n,-1)
next_mask[max_xy_idx] = True
next_mask = next_mask.reshape((n,h,w)).float()
_next_mask = []
for idx in range(len(next_mask)):
points = next_mask[idx].nonzero().flip(dims=[-1]).cpu().numpy()
_next_mask += [Circle.draw_by_points(points, gt_masks[idx:idx+1].cpu(), h, w)]
next_mask = torch.cat(_next_mask, dim=0).bool()
rand_shapes = prev_masks | next_mask
types = ['circle' for i in range(len(gt_masks))]
return {'gt_masks': instances.gt_masks.tensor, 'rand_shape': rand_shapes[:,None], 'types': types}
def forward_scribble(self, instances, pred_masks=None, prev_masks=None):
gt_masks = instances.gt_masks.tensor
n,h,w = gt_masks.shape
# We only consider positive points
pred_masks = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool() if pred_masks is None else pred_masks[:,:h,:w]
prev_masks = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool() if prev_masks is None else prev_masks
if not gt_masks.is_cuda:
gt_masks = gt_masks.to(pred_masks.device)
fp = gt_masks & (~(gt_masks & pred_masks)) & (~prev_masks)
# conv implementation
mask_dt = (distance_transform((~F.pad(fp[None,], pad=(1, 1, 1, 1), mode='constant', value=0)).float())[0,:,1:-1,1:-1]).reshape(n,-1)
max_xy_idx = torch.stack([torch.arange(n), mask_dt.max(dim=-1)[1].cpu()]).tolist()
next_mask = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool()
next_mask = next_mask.view(n,-1)
next_mask[max_xy_idx] = True
next_mask = next_mask.reshape((n,h,w)).float()
_next_mask = []
for idx in range(len(next_mask)):
points = next_mask[idx].nonzero().flip(dims=[-1]).cpu().numpy()
_next_mask += [Scribble.draw_by_points(points, gt_masks[idx:idx+1].cpu(), h, w)]
next_mask = torch.cat(_next_mask, dim=0).bool()
rand_shapes = prev_masks | next_mask
types = ['scribble' for i in range(len(gt_masks))]
return {'gt_masks': instances.gt_masks.tensor, 'rand_shape': rand_shapes[:,None], 'types': types}
def forward_polygon(self, instances, pred_masks=None, prev_masks=None):
gt_masks = instances.gt_masks.tensor
gt_boxes = instances.gt_boxes.tensor
n,h,w = gt_masks.shape
# We only consider positive points
pred_masks = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool() if pred_masks is None else pred_masks[:,:h,:w]
prev_masks = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool() if prev_masks is None else prev_masks
if not gt_masks.is_cuda:
gt_masks = gt_masks.to(pred_masks.device)
fp = gt_masks & (~(gt_masks & pred_masks)) & (~prev_masks)
next_mask = []
for i in range(len(fp)):
rad = 0.2
edgy = 0.05
num_points = random.randint(1, min(self.max_points, fp[i].sum()))
h,w = fp[i].shape
view_mask = fp[i].reshape(h*w)
non_zero_idx = view_mask.nonzero()[:,0]
selected_idx = torch.randperm(len(non_zero_idx))[:num_points]
non_zero_idx = non_zero_idx[selected_idx]
y = (non_zero_idx // w)*1.0/(h+1)
x = (non_zero_idx % w)*1.0/(w+1)
coords = torch.cat((x[:,None],y[:,None]), dim=1).cpu().numpy()
x1,y1,x2,y2 = gt_boxes[i].int().unbind()
x,y, _ = get_bezier_curve(coords, rad=rad, edgy=edgy)
x = x.clip(0.0, 1.0)
y = y.clip(0.0, 1.0)
points = torch.from_numpy(np.concatenate((y[None,]*(y2-y1-1).item(),x[None,]*(x2-x1-1).item()))).int()
canvas = torch.zeros((y2-y1, x2-x1))
canvas[points.long().tolist()] = 1
rand_mask = torch.zeros(fp[i].shape)
rand_mask[y1:y2,x1:x2] = canvas
next_mask += [rand_mask]
next_mask = torch.stack(next_mask).to(pred_masks.device).bool()
rand_shapes = prev_masks | next_mask
types = ['polygon' for i in range(len(gt_masks))]
return {'gt_masks': instances.gt_masks.tensor, 'rand_shape': rand_shapes[:,None], 'types': types}
def forward_box(self, instances, pred_masks=None, prev_masks=None):
gt_masks = instances.gt_masks.tensor
gt_boxes = instances.gt_boxes.tensor
n,h,w = gt_masks.shape
for i in range(len(gt_masks)):
x1,y1,x2,y2 = gt_boxes[i].int().unbind()
gt_masks[i,y1:y2,x1:x2] = 1
# We only consider positive points
pred_masks = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool() if pred_masks is None else pred_masks[:,:h,:w]
prev_masks = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool() if prev_masks is None else prev_masks
if not gt_masks.is_cuda:
gt_masks = gt_masks.to(pred_masks.device)
fp = gt_masks & (~(gt_masks & pred_masks)) & (~prev_masks)
# conv implementation
mask_dt = (distance_transform((~F.pad(fp[None,], pad=(1, 1, 1, 1), mode='constant', value=0)).float())[0,:,1:-1,1:-1]).reshape(n,-1)
max_xy_idx = torch.stack([torch.arange(n), mask_dt.max(dim=-1)[1].cpu()]).tolist()
next_mask = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool()
next_mask = next_mask.view(n,-1)
next_mask[max_xy_idx] = True
next_mask = next_mask.reshape((n,h,w)).float()
next_mask = F.conv2d(next_mask[None,], self.dilation_kernel.repeat(len(next_mask),1,1,1), padding=self.dilation//2, groups=len(next_mask))[0] > 0
# end conv implementation
rand_shapes = prev_masks | next_mask
types = ['box' for i in range(len(gt_masks))]
return {'gt_masks': instances.gt_masks.tensor, 'rand_shape': rand_shapes[:,None], 'types': types}
def forward(self, instances, *args, **kwargs):
if self.mask_mode == 'Point':
return self.forward_point(instances, *args, **kwargs)
elif self.mask_mode == 'Circle':
return self.forward_circle(instances, *args, **kwargs)
elif self.mask_mode == 'Scribble':
return self.forward_scribble(instances, *args, **kwargs)
elif self.mask_mode == 'Polygon':
return self.forward_polygon(instances, *args, **kwargs)
elif self.mask_mode == 'Box':
return self.forward_box(instances, *args, **kwargs)
def build_shape_sampler(cfg, **kwargs):
return ShapeSampler(cfg, **kwargs) |