Spaces:
Runtime error
Runtime error
File size: 13,000 Bytes
602d649 cacb656 602d649 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
import os
from transformers import AutoTokenizer
# from optimum.intel import OVModelForCausalLM, OVWeightQuantizationConfig
# from optimum.intel.openvino import OVModelForCausalLM
from transformers import AutoConfig, AutoTokenizer
import gradio as gr
import time
from threading import Thread
from transformers import (
TextIteratorStreamer,
StoppingCriteria,
StoppingCriteriaList,
GenerationConfig,
)
# model_name = "openai-community/gpt2-large"
# model_dir = "F:\\phi3\\openvinomodel\\phi3\\int4"
# model_name = "savage1221/lora-fine"
# save_name = model_name.split("/")[-1] + "_openvino"
# precision = "f32"
# quantization_config = OVWeightQuantizationConfig(
# bits=4,
# sym=False,
# group_size=128,
# ratio=0.6,
# trust_remote_code=True,
# )
# ov_config = {"PERFORMANCE_HINT": "LATENCY", "NUM_STREAMS": "1", "CACHE_DIR": ""}
# device = "gpu"
# load_kwargs = {
# "device": device,
# "ov_config": {
# "PERFORMANCE_HINT": "LATENCY",
# # "INFERENCE_PRECISION_HINT": precision,
# "CACHE_DIR": os.path.join(save_name, "model_cache"), # OpenVINO will use this directory as cache
# },
# "compile": False,
# "quantization_config": quantization_config,
# "trust_remote_code": True,
# # ov_config = ov_config
# }
# # Check whether the model was already exported
# saved = os.path.exists(save_name)
# model = OVModelForCausalLM.from_pretrained(
# # model_name
# model_name if not saved else save_name,
# export=not saved,
# **load_kwargs,
# )
# model = OVModelForCausalLM.from_pretrained(
# model_name,
# device='GPU.0',
# ov_config=ov_config,
# config=AutoConfig.from_pretrained(model_name, trust_remote_code=True),
# trust_remote_code=True,
# )
# # Load tokenizer to be used with the model
# tokenizer = AutoTokenizer.from_pretrained(model_name if not saved else save_name)
# tokenizer = AutoTokenizer.from_pretrained(model_name )
# # Save the exported model locally
# if not saved:
# model.save_pretrained(save_name)
# tokenizer.save_pretrained(save_name)
# # TODO Optional: export to huggingface/hub
# model_size = os.stat(os.path.join(save_name, "openvino_model.bin")).st_size / 1024 ** 3
# print(f'Model size in FP32: ~5.4GB, current model size in 4bit: {model_size:.2f}GB')
#####################################################################
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("savage1221/lora-fine", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("savage1221/lora-fine", trust_remote_code=True)
# Copied and modified from https://github.com/bigcode-project/bigcode-evaluation-harness/blob/main/bigcode_eval/generation.py#L13
class SuffixCriteria(StoppingCriteria):
def __init__(self, start_length, eof_strings, tokenizer, check_fn=None):
self.start_length = start_length
self.eof_strings = eof_strings
self.tokenizer = tokenizer
if check_fn is None:
check_fn = lambda decoded_generation: any(
[decoded_generation.endswith(stop_string) for stop_string in self.eof_strings]
)
self.check_fn = check_fn
def __call__(self, input_ids, scores, **kwargs):
"""Returns True if generated sequence ends with any of the stop strings"""
decoded_generations = self.tokenizer.batch_decode(input_ids[:, self.start_length :])
return all([self.check_fn(decoded_generation) for decoded_generation in decoded_generations])
def is_partial_stop(output, stop_str):
"""Check whether the output contains a partial stop str."""
for i in range(0, min(len(output), len(stop_str))):
if stop_str.startswith(output[-i:]):
return True
return False
# Set the chat template to the tokenizer. The chat template implements the simple template of
# User: content
# Assistant: content
# ...
# Read more about chat templates here https://huggingface.co/docs/transformers/main/en/chat_templating
tokenizer.chat_template = "{% for message in messages %}{{message['role'] + ': ' + message['content'] + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ 'Assistant:' }}{% endif %}"
def prepare_history_for_model(history):
"""
Converts the history to a tokenized prompt in the format expected by the model.
Params:
history: dialogue history
Returns:
Tokenized prompt
"""
messages = []
for idx, (user_msg, model_msg) in enumerate(history):
# skip the last assistant message if its empty, the tokenizer will do the formating
if idx == len(history) - 1 and not model_msg:
messages.append({"role": "User", "content": user_msg})
break
if user_msg:
messages.append({"role": "User", "content": user_msg})
if model_msg:
messages.append({"role": "Assistant", "content": model_msg})
input_token = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_tensors="pt",
return_dict=True
)
return input_token
def generate(history, temperature, max_new_tokens, top_p, repetition_penalty, assisted):
"""
Generates the assistant's reponse given the chatbot history and generation parameters
Params:
history: conversation history formated in pairs of user and assistant messages `[user_message, assistant_message]`
temperature: parameter for control the level of creativity in AI-generated text.
By adjusting the `temperature`, you can influence the AI model's probability distribution, making the text more focused or diverse.
max_new_tokens: The maximum number of tokens we allow the model to generate as a response.
top_p: parameter for control the range of tokens considered by the AI model based on their cumulative probability.
repetition_penalty: parameter for penalizing tokens based on how frequently they occur in the text.
assisted: boolean parameter to enable/disable assisted generation with speculative decoding.
Yields:
Updated history and generation status.
"""
start = time.perf_counter()
# Construct the input message string for the model by concatenating the current system message and conversation history
# Tokenize the messages string
inputs = prepare_history_for_model(history)
input_length = inputs['input_ids'].shape[1]
# truncate input in case it is too long.
# TODO improve this
if input_length > 2000:
history = [history[-1]]
inputs = prepare_history_for_model(history)
input_length = inputs['input_ids'].shape[1]
prompt_char = "β"
history[-1][1] = prompt_char
yield history, "Status: Generating...", *([gr.update(interactive=False)] * 4)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
# Create a stopping criteria to prevent the model from playing the role of the user aswell.
stop_str = ["\nUser:", "\nAssistant:", "\nRules:", "\nQuestion:"]
stopping_criteria = StoppingCriteriaList([SuffixCriteria(input_length, stop_str, tokenizer)])
# Prepare input for generate
generation_config = GenerationConfig(
max_new_tokens=max_new_tokens,
do_sample=temperature > 0.0,
temperature=temperature if temperature > 0.0 else 1.0,
repetition_penalty=repetition_penalty,
top_p=top_p,
eos_token_id=[tokenizer.eos_token_id],
pad_token_id=tokenizer.eos_token_id,
)
generate_kwargs = dict(
streamer=streamer,
generation_config=generation_config,
stopping_criteria=stopping_criteria,
) | inputs
if assisted:
target_generate = stateless_model.generate
generate_kwargs["assistant_model"] = asst_model
else:
target_generate = model.generate
t1 = Thread(target=target_generate, kwargs=generate_kwargs)
t1.start()
# Initialize an empty string to store the generated text.
partial_text = ""
for new_text in streamer:
partial_text += new_text
history[-1][1] = partial_text + prompt_char
for s in stop_str:
if (pos := partial_text.rfind(s)) != -1:
break
if pos != -1:
partial_text = partial_text[:pos]
break
elif any([is_partial_stop(partial_text, s) for s in stop_str]):
continue
yield history, "Status: Generating...", *([gr.update(interactive=False)] * 4)
history[-1][1] = partial_text
generation_time = time.perf_counter() - start
yield history, f'Generation time: {generation_time:.2f} sec', *([gr.update(interactive=True)] * 4)
#############################################################
# model.compile()
try:
demo.close()
except:
pass
EXAMPLES = [
["What is OpenVINO?"],
["Can you explain to me briefly what is Python programming language?"],
["Explain the plot of Cinderella in a sentence."],
["Write a Python function to perform binary search over a sorted list. Use markdown to write code"],
["Lily has a rubber ball that she drops from the top of a wall. The wall is 2 meters tall. How long will it take for the ball to reach the ground?"],
]
def add_user_text(message, history):
"""
Add user's message to chatbot history
Params:
message: current user message
history: conversation history
Returns:
Updated history, clears user message and status
"""
# Append current user message to history with a blank assistant message which will be generated by the model
history.append([message, None])
return ('', history)
def prepare_for_regenerate(history):
"""
Delete last assistant message to prepare for regeneration
Params:
history: conversation history
Returns:
updated history
"""
history[-1][1] = None
return history
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown('<h1 style="text-align: center;">Chat with Phi-3 on Meteor Lake iGPU</h1>')
chatbot = gr.Chatbot()
with gr.Row():
assisted = gr.Checkbox(value=False, label="Assisted Generation", scale=10)
msg = gr.Textbox(placeholder="Enter message here...", show_label=False, autofocus=True, scale=75)
status = gr.Textbox("Status: Idle", show_label=False, max_lines=1, scale=15)
with gr.Row():
submit = gr.Button("Submit", variant='primary')
regenerate = gr.Button("Regenerate")
clear = gr.Button("Clear")
with gr.Accordion("Advanced Options:", open=False):
with gr.Row():
with gr.Column():
temperature = gr.Slider(
label="Temperature",
value=0.0,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
)
max_new_tokens = gr.Slider(
label="Max new tokens",
value=512,
minimum=0,
maximum=1024,
step=32,
interactive=True,
)
with gr.Column():
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
value=1.0,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
)
repetition_penalty = gr.Slider(
label="Repetition penalty",
value=1.0,
minimum=1.0,
maximum=2.0,
step=0.1,
interactive=True,
)
gr.Examples(
EXAMPLES, inputs=msg, label="Click on any example and press the 'Submit' button"
)
# Sets generate function to be triggered when the user submit a new message
gr.on(
triggers=[submit.click, msg.submit],
fn=add_user_text,
inputs=[msg, chatbot],
outputs=[msg, chatbot],
queue=False,
).then(
fn=generate,
inputs=[chatbot, temperature, max_new_tokens, top_p, repetition_penalty, assisted],
outputs=[chatbot, status, msg, submit, regenerate, clear],
concurrency_limit=1,
queue=True
)
regenerate.click(
fn=prepare_for_regenerate,
inputs=chatbot,
outputs=chatbot,
queue=True,
concurrency_limit=1
).then(
fn=generate,
inputs=[chatbot, temperature, max_new_tokens, top_p, repetition_penalty, assisted],
outputs=[chatbot, status, msg, submit, regenerate, clear],
concurrency_limit=1,
queue=True
)
clear.click(fn=lambda: (None, "Status: Idle"), inputs=None, outputs=[chatbot, status], queue=False)
demo.launch() |