Spaces:
Runtime error
Runtime error
savage1221
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
from optimum.intel import OVModelForCausalLM, OVWeightQuantizationConfig
|
5 |
+
from optimum.intel.openvino import OVModelForCausalLM
|
6 |
+
from transformers import AutoConfig, AutoTokenizer
|
7 |
+
import gradio as gr
|
8 |
+
import time
|
9 |
+
from threading import Thread
|
10 |
+
|
11 |
+
from transformers import (
|
12 |
+
TextIteratorStreamer,
|
13 |
+
StoppingCriteria,
|
14 |
+
StoppingCriteriaList,
|
15 |
+
GenerationConfig,
|
16 |
+
)
|
17 |
+
# model_name = "openai-community/gpt2-large"
|
18 |
+
# model_dir = "F:\\phi3\\openvinomodel\\phi3\\int4"
|
19 |
+
# model_name = "savage1221/lora-fine"
|
20 |
+
# save_name = model_name.split("/")[-1] + "_openvino"
|
21 |
+
# precision = "f32"
|
22 |
+
|
23 |
+
|
24 |
+
# quantization_config = OVWeightQuantizationConfig(
|
25 |
+
# bits=4,
|
26 |
+
# sym=False,
|
27 |
+
# group_size=128,
|
28 |
+
# ratio=0.6,
|
29 |
+
# trust_remote_code=True,
|
30 |
+
# )
|
31 |
+
|
32 |
+
# ov_config = {"PERFORMANCE_HINT": "LATENCY", "NUM_STREAMS": "1", "CACHE_DIR": ""}
|
33 |
+
|
34 |
+
# device = "gpu"
|
35 |
+
|
36 |
+
|
37 |
+
# load_kwargs = {
|
38 |
+
# "device": device,
|
39 |
+
# "ov_config": {
|
40 |
+
# "PERFORMANCE_HINT": "LATENCY",
|
41 |
+
# # "INFERENCE_PRECISION_HINT": precision,
|
42 |
+
# "CACHE_DIR": os.path.join(save_name, "model_cache"), # OpenVINO will use this directory as cache
|
43 |
+
# },
|
44 |
+
# "compile": False,
|
45 |
+
# "quantization_config": quantization_config,
|
46 |
+
# "trust_remote_code": True,
|
47 |
+
# # ov_config = ov_config
|
48 |
+
# }
|
49 |
+
|
50 |
+
# # Check whether the model was already exported
|
51 |
+
# saved = os.path.exists(save_name)
|
52 |
+
|
53 |
+
# model = OVModelForCausalLM.from_pretrained(
|
54 |
+
# # model_name
|
55 |
+
# model_name if not saved else save_name,
|
56 |
+
# export=not saved,
|
57 |
+
# **load_kwargs,
|
58 |
+
# )
|
59 |
+
# model = OVModelForCausalLM.from_pretrained(
|
60 |
+
# model_name,
|
61 |
+
# device='GPU.0',
|
62 |
+
# ov_config=ov_config,
|
63 |
+
# config=AutoConfig.from_pretrained(model_name, trust_remote_code=True),
|
64 |
+
# trust_remote_code=True,
|
65 |
+
# )
|
66 |
+
|
67 |
+
# # Load tokenizer to be used with the model
|
68 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_name if not saved else save_name)
|
69 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_name )
|
70 |
+
|
71 |
+
# # Save the exported model locally
|
72 |
+
# if not saved:
|
73 |
+
# model.save_pretrained(save_name)
|
74 |
+
# tokenizer.save_pretrained(save_name)
|
75 |
+
|
76 |
+
# # TODO Optional: export to huggingface/hub
|
77 |
+
|
78 |
+
# model_size = os.stat(os.path.join(save_name, "openvino_model.bin")).st_size / 1024 ** 3
|
79 |
+
# print(f'Model size in FP32: ~5.4GB, current model size in 4bit: {model_size:.2f}GB')
|
80 |
+
|
81 |
+
#####################################################################
|
82 |
+
|
83 |
+
# Load model directly
|
84 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
85 |
+
|
86 |
+
tokenizer = AutoTokenizer.from_pretrained("savage1221/lora-fine", trust_remote_code=True)
|
87 |
+
model = AutoModelForCausalLM.from_pretrained("savage1221/lora-fine", trust_remote_code=True)
|
88 |
+
|
89 |
+
|
90 |
+
# Copied and modified from https://github.com/bigcode-project/bigcode-evaluation-harness/blob/main/bigcode_eval/generation.py#L13
|
91 |
+
class SuffixCriteria(StoppingCriteria):
|
92 |
+
def __init__(self, start_length, eof_strings, tokenizer, check_fn=None):
|
93 |
+
self.start_length = start_length
|
94 |
+
self.eof_strings = eof_strings
|
95 |
+
self.tokenizer = tokenizer
|
96 |
+
if check_fn is None:
|
97 |
+
check_fn = lambda decoded_generation: any(
|
98 |
+
[decoded_generation.endswith(stop_string) for stop_string in self.eof_strings]
|
99 |
+
)
|
100 |
+
self.check_fn = check_fn
|
101 |
+
|
102 |
+
def __call__(self, input_ids, scores, **kwargs):
|
103 |
+
"""Returns True if generated sequence ends with any of the stop strings"""
|
104 |
+
decoded_generations = self.tokenizer.batch_decode(input_ids[:, self.start_length :])
|
105 |
+
return all([self.check_fn(decoded_generation) for decoded_generation in decoded_generations])
|
106 |
+
|
107 |
+
|
108 |
+
def is_partial_stop(output, stop_str):
|
109 |
+
"""Check whether the output contains a partial stop str."""
|
110 |
+
for i in range(0, min(len(output), len(stop_str))):
|
111 |
+
if stop_str.startswith(output[-i:]):
|
112 |
+
return True
|
113 |
+
return False
|
114 |
+
|
115 |
+
|
116 |
+
|
117 |
+
# Set the chat template to the tokenizer. The chat template implements the simple template of
|
118 |
+
# User: content
|
119 |
+
# Assistant: content
|
120 |
+
# ...
|
121 |
+
# Read more about chat templates here https://huggingface.co/docs/transformers/main/en/chat_templating
|
122 |
+
tokenizer.chat_template = "{% for message in messages %}{{message['role'] + ': ' + message['content'] + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ 'Assistant:' }}{% endif %}"
|
123 |
+
|
124 |
+
|
125 |
+
def prepare_history_for_model(history):
|
126 |
+
"""
|
127 |
+
Converts the history to a tokenized prompt in the format expected by the model.
|
128 |
+
Params:
|
129 |
+
history: dialogue history
|
130 |
+
Returns:
|
131 |
+
Tokenized prompt
|
132 |
+
"""
|
133 |
+
messages = []
|
134 |
+
for idx, (user_msg, model_msg) in enumerate(history):
|
135 |
+
# skip the last assistant message if its empty, the tokenizer will do the formating
|
136 |
+
if idx == len(history) - 1 and not model_msg:
|
137 |
+
messages.append({"role": "User", "content": user_msg})
|
138 |
+
break
|
139 |
+
if user_msg:
|
140 |
+
messages.append({"role": "User", "content": user_msg})
|
141 |
+
if model_msg:
|
142 |
+
messages.append({"role": "Assistant", "content": model_msg})
|
143 |
+
input_token = tokenizer.apply_chat_template(
|
144 |
+
messages,
|
145 |
+
add_generation_prompt=True,
|
146 |
+
tokenize=True,
|
147 |
+
return_tensors="pt",
|
148 |
+
return_dict=True
|
149 |
+
)
|
150 |
+
return input_token
|
151 |
+
|
152 |
+
|
153 |
+
def generate(history, temperature, max_new_tokens, top_p, repetition_penalty, assisted):
|
154 |
+
"""
|
155 |
+
Generates the assistant's reponse given the chatbot history and generation parameters
|
156 |
+
|
157 |
+
Params:
|
158 |
+
history: conversation history formated in pairs of user and assistant messages `[user_message, assistant_message]`
|
159 |
+
temperature: parameter for control the level of creativity in AI-generated text.
|
160 |
+
By adjusting the `temperature`, you can influence the AI model's probability distribution, making the text more focused or diverse.
|
161 |
+
max_new_tokens: The maximum number of tokens we allow the model to generate as a response.
|
162 |
+
top_p: parameter for control the range of tokens considered by the AI model based on their cumulative probability.
|
163 |
+
repetition_penalty: parameter for penalizing tokens based on how frequently they occur in the text.
|
164 |
+
assisted: boolean parameter to enable/disable assisted generation with speculative decoding.
|
165 |
+
Yields:
|
166 |
+
Updated history and generation status.
|
167 |
+
"""
|
168 |
+
start = time.perf_counter()
|
169 |
+
# Construct the input message string for the model by concatenating the current system message and conversation history
|
170 |
+
# Tokenize the messages string
|
171 |
+
inputs = prepare_history_for_model(history)
|
172 |
+
input_length = inputs['input_ids'].shape[1]
|
173 |
+
# truncate input in case it is too long.
|
174 |
+
# TODO improve this
|
175 |
+
if input_length > 2000:
|
176 |
+
history = [history[-1]]
|
177 |
+
inputs = prepare_history_for_model(history)
|
178 |
+
input_length = inputs['input_ids'].shape[1]
|
179 |
+
|
180 |
+
prompt_char = "β"
|
181 |
+
history[-1][1] = prompt_char
|
182 |
+
yield history, "Status: Generating...", *([gr.update(interactive=False)] * 4)
|
183 |
+
|
184 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
185 |
+
|
186 |
+
# Create a stopping criteria to prevent the model from playing the role of the user aswell.
|
187 |
+
stop_str = ["\nUser:", "\nAssistant:", "\nRules:", "\nQuestion:"]
|
188 |
+
stopping_criteria = StoppingCriteriaList([SuffixCriteria(input_length, stop_str, tokenizer)])
|
189 |
+
# Prepare input for generate
|
190 |
+
generation_config = GenerationConfig(
|
191 |
+
max_new_tokens=max_new_tokens,
|
192 |
+
do_sample=temperature > 0.0,
|
193 |
+
temperature=temperature if temperature > 0.0 else 1.0,
|
194 |
+
repetition_penalty=repetition_penalty,
|
195 |
+
top_p=top_p,
|
196 |
+
eos_token_id=[tokenizer.eos_token_id],
|
197 |
+
pad_token_id=tokenizer.eos_token_id,
|
198 |
+
)
|
199 |
+
generate_kwargs = dict(
|
200 |
+
streamer=streamer,
|
201 |
+
generation_config=generation_config,
|
202 |
+
stopping_criteria=stopping_criteria,
|
203 |
+
) | inputs
|
204 |
+
|
205 |
+
if assisted:
|
206 |
+
target_generate = stateless_model.generate
|
207 |
+
generate_kwargs["assistant_model"] = asst_model
|
208 |
+
else:
|
209 |
+
target_generate = model.generate
|
210 |
+
|
211 |
+
t1 = Thread(target=target_generate, kwargs=generate_kwargs)
|
212 |
+
t1.start()
|
213 |
+
|
214 |
+
# Initialize an empty string to store the generated text.
|
215 |
+
partial_text = ""
|
216 |
+
for new_text in streamer:
|
217 |
+
partial_text += new_text
|
218 |
+
history[-1][1] = partial_text + prompt_char
|
219 |
+
for s in stop_str:
|
220 |
+
if (pos := partial_text.rfind(s)) != -1:
|
221 |
+
break
|
222 |
+
if pos != -1:
|
223 |
+
partial_text = partial_text[:pos]
|
224 |
+
break
|
225 |
+
elif any([is_partial_stop(partial_text, s) for s in stop_str]):
|
226 |
+
continue
|
227 |
+
yield history, "Status: Generating...", *([gr.update(interactive=False)] * 4)
|
228 |
+
history[-1][1] = partial_text
|
229 |
+
generation_time = time.perf_counter() - start
|
230 |
+
yield history, f'Generation time: {generation_time:.2f} sec', *([gr.update(interactive=True)] * 4)
|
231 |
+
|
232 |
+
|
233 |
+
#############################################################
|
234 |
+
|
235 |
+
|
236 |
+
# model.compile()
|
237 |
+
|
238 |
+
|
239 |
+
try:
|
240 |
+
demo.close()
|
241 |
+
except:
|
242 |
+
pass
|
243 |
+
|
244 |
+
|
245 |
+
EXAMPLES = [
|
246 |
+
["What is OpenVINO?"],
|
247 |
+
["Can you explain to me briefly what is Python programming language?"],
|
248 |
+
["Explain the plot of Cinderella in a sentence."],
|
249 |
+
["Write a Python function to perform binary search over a sorted list. Use markdown to write code"],
|
250 |
+
["Lily has a rubber ball that she drops from the top of a wall. The wall is 2 meters tall. How long will it take for the ball to reach the ground?"],
|
251 |
+
]
|
252 |
+
|
253 |
+
|
254 |
+
def add_user_text(message, history):
|
255 |
+
"""
|
256 |
+
Add user's message to chatbot history
|
257 |
+
|
258 |
+
Params:
|
259 |
+
message: current user message
|
260 |
+
history: conversation history
|
261 |
+
Returns:
|
262 |
+
Updated history, clears user message and status
|
263 |
+
"""
|
264 |
+
# Append current user message to history with a blank assistant message which will be generated by the model
|
265 |
+
history.append([message, None])
|
266 |
+
return ('', history)
|
267 |
+
|
268 |
+
|
269 |
+
def prepare_for_regenerate(history):
|
270 |
+
"""
|
271 |
+
Delete last assistant message to prepare for regeneration
|
272 |
+
|
273 |
+
Params:
|
274 |
+
history: conversation history
|
275 |
+
Returns:
|
276 |
+
updated history
|
277 |
+
"""
|
278 |
+
history[-1][1] = None
|
279 |
+
return history
|
280 |
+
|
281 |
+
|
282 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
283 |
+
gr.Markdown('<h1 style="text-align: center;">Chat with Phi-3 on Meteor Lake iGPU</h1>')
|
284 |
+
chatbot = gr.Chatbot()
|
285 |
+
with gr.Row():
|
286 |
+
assisted = gr.Checkbox(value=False, label="Assisted Generation", scale=10)
|
287 |
+
msg = gr.Textbox(placeholder="Enter message here...", show_label=False, autofocus=True, scale=75)
|
288 |
+
status = gr.Textbox("Status: Idle", show_label=False, max_lines=1, scale=15)
|
289 |
+
with gr.Row():
|
290 |
+
submit = gr.Button("Submit", variant='primary')
|
291 |
+
regenerate = gr.Button("Regenerate")
|
292 |
+
clear = gr.Button("Clear")
|
293 |
+
with gr.Accordion("Advanced Options:", open=False):
|
294 |
+
with gr.Row():
|
295 |
+
with gr.Column():
|
296 |
+
temperature = gr.Slider(
|
297 |
+
label="Temperature",
|
298 |
+
value=0.0,
|
299 |
+
minimum=0.0,
|
300 |
+
maximum=1.0,
|
301 |
+
step=0.05,
|
302 |
+
interactive=True,
|
303 |
+
)
|
304 |
+
max_new_tokens = gr.Slider(
|
305 |
+
label="Max new tokens",
|
306 |
+
value=512,
|
307 |
+
minimum=0,
|
308 |
+
maximum=1024,
|
309 |
+
step=32,
|
310 |
+
interactive=True,
|
311 |
+
)
|
312 |
+
with gr.Column():
|
313 |
+
top_p = gr.Slider(
|
314 |
+
label="Top-p (nucleus sampling)",
|
315 |
+
value=1.0,
|
316 |
+
minimum=0.0,
|
317 |
+
maximum=1.0,
|
318 |
+
step=0.05,
|
319 |
+
interactive=True,
|
320 |
+
)
|
321 |
+
repetition_penalty = gr.Slider(
|
322 |
+
label="Repetition penalty",
|
323 |
+
value=1.0,
|
324 |
+
minimum=1.0,
|
325 |
+
maximum=2.0,
|
326 |
+
step=0.1,
|
327 |
+
interactive=True,
|
328 |
+
)
|
329 |
+
gr.Examples(
|
330 |
+
EXAMPLES, inputs=msg, label="Click on any example and press the 'Submit' button"
|
331 |
+
)
|
332 |
+
|
333 |
+
# Sets generate function to be triggered when the user submit a new message
|
334 |
+
gr.on(
|
335 |
+
triggers=[submit.click, msg.submit],
|
336 |
+
fn=add_user_text,
|
337 |
+
inputs=[msg, chatbot],
|
338 |
+
outputs=[msg, chatbot],
|
339 |
+
queue=False,
|
340 |
+
).then(
|
341 |
+
fn=generate,
|
342 |
+
inputs=[chatbot, temperature, max_new_tokens, top_p, repetition_penalty, assisted],
|
343 |
+
outputs=[chatbot, status, msg, submit, regenerate, clear],
|
344 |
+
concurrency_limit=1,
|
345 |
+
queue=True
|
346 |
+
)
|
347 |
+
regenerate.click(
|
348 |
+
fn=prepare_for_regenerate,
|
349 |
+
inputs=chatbot,
|
350 |
+
outputs=chatbot,
|
351 |
+
queue=True,
|
352 |
+
concurrency_limit=1
|
353 |
+
).then(
|
354 |
+
fn=generate,
|
355 |
+
inputs=[chatbot, temperature, max_new_tokens, top_p, repetition_penalty, assisted],
|
356 |
+
outputs=[chatbot, status, msg, submit, regenerate, clear],
|
357 |
+
concurrency_limit=1,
|
358 |
+
queue=True
|
359 |
+
)
|
360 |
+
clear.click(fn=lambda: (None, "Status: Idle"), inputs=None, outputs=[chatbot, status], queue=False)
|
361 |
+
|
362 |
+
|
363 |
+
demo.launch()
|