Spaces:
Runtime error
Runtime error
File size: 1,173 Bytes
e21b443 602d649 19a6bcf e21b443 19a6bcf e21b443 c206cc0 e21b443 602d649 e21b443 602d649 e21b443 602d649 e21b443 602d649 e21b443 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import gradio as gr
torch.random.manual_seed(0)
model = AutoModelForCausalLM.from_pretrained(
"savage1221/lora-fine",
# device_map="cuda",
# torch_dtype="auto",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained("savage1221/lora-fine",trust_remote_code=True)
instruction = "Generate quotes for AWS RDS services"
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
)
generation_args = {
"max_new_tokens": 500,
"return_full_text": False,
"temperature": 0.9,
"do_sample": True,
"top_k": 50,
"top_p": 0.95,
"num_return_sequences": 1,
}
def predict_price(input_data):
prompt = f"{instruction}\nInput: {input_data}\nOutput:"
output = pipe(prompt, **generation_args)
return output[0]['generated_text']
interface = gr.Interface(
fn=predict_price,
inputs=gr.inputs.Textbox(lines=7, label="θΎε
₯εεδΏ‘ζ―"),
outputs=gr.outputs.Textbox(label="ι’ζ΅δ»·ζ Ό"),
title="εεδ»·ζ Όι’ζ΅",
description="θΎε
₯εεδΏ‘ζ―,ι’ζ΅εεδ»·ζ Ό",
)
interface.launch()
|