Spaces:
Runtime error
Runtime error
savage1221
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,401 +1,46 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
from transformers import AutoTokenizer
|
4 |
-
# from optimum.intel import OVModelForCausalLM, OVWeightQuantizationConfig
|
5 |
-
# from optimum.intel.openvino import OVModelForCausalLM
|
6 |
-
from transformers import AutoConfig, AutoTokenizer
|
7 |
import gradio as gr
|
8 |
-
import time
|
9 |
-
from threading import Thread
|
10 |
-
|
11 |
-
from transformers import (
|
12 |
-
TextIteratorStreamer,
|
13 |
-
StoppingCriteria,
|
14 |
-
StoppingCriteriaList,
|
15 |
-
GenerationConfig,
|
16 |
-
)
|
17 |
-
# model_name = "openai-community/gpt2-large"
|
18 |
-
# model_dir = "F:\\phi3\\openvinomodel\\phi3\\int4"
|
19 |
-
# model_name = "savage1221/lora-fine"
|
20 |
-
# save_name = model_name.split("/")[-1] + "_openvino"
|
21 |
-
# precision = "f32"
|
22 |
-
|
23 |
-
|
24 |
-
# quantization_config = OVWeightQuantizationConfig(
|
25 |
-
# bits=4,
|
26 |
-
# sym=False,
|
27 |
-
# group_size=128,
|
28 |
-
# ratio=0.6,
|
29 |
-
# trust_remote_code=True,
|
30 |
-
# )
|
31 |
-
|
32 |
-
# ov_config = {"PERFORMANCE_HINT": "LATENCY", "NUM_STREAMS": "1", "CACHE_DIR": ""}
|
33 |
-
|
34 |
-
# device = "gpu"
|
35 |
-
|
36 |
-
|
37 |
-
# load_kwargs = {
|
38 |
-
# "device": device,
|
39 |
-
# "ov_config": {
|
40 |
-
# "PERFORMANCE_HINT": "LATENCY",
|
41 |
-
# # "INFERENCE_PRECISION_HINT": precision,
|
42 |
-
# "CACHE_DIR": os.path.join(save_name, "model_cache"), # OpenVINO will use this directory as cache
|
43 |
-
# },
|
44 |
-
# "compile": False,
|
45 |
-
# "quantization_config": quantization_config,
|
46 |
-
# "trust_remote_code": True,
|
47 |
-
# # ov_config = ov_config
|
48 |
-
# }
|
49 |
-
|
50 |
-
# # Check whether the model was already exported
|
51 |
-
# saved = os.path.exists(save_name)
|
52 |
-
|
53 |
-
# model = OVModelForCausalLM.from_pretrained(
|
54 |
-
# # model_name
|
55 |
-
# model_name if not saved else save_name,
|
56 |
-
# export=not saved,
|
57 |
-
# **load_kwargs,
|
58 |
-
# )
|
59 |
-
# model = OVModelForCausalLM.from_pretrained(
|
60 |
-
# model_name,
|
61 |
-
# device='GPU.0',
|
62 |
-
# ov_config=ov_config,
|
63 |
-
# config=AutoConfig.from_pretrained(model_name, trust_remote_code=True),
|
64 |
-
# trust_remote_code=True,
|
65 |
-
# )
|
66 |
-
|
67 |
-
# # Load tokenizer to be used with the model
|
68 |
-
# tokenizer = AutoTokenizer.from_pretrained(model_name if not saved else save_name)
|
69 |
-
# tokenizer = AutoTokenizer.from_pretrained(model_name )
|
70 |
-
|
71 |
-
# # Save the exported model locally
|
72 |
-
# if not saved:
|
73 |
-
# model.save_pretrained(save_name)
|
74 |
-
# tokenizer.save_pretrained(save_name)
|
75 |
-
|
76 |
-
# # TODO Optional: export to huggingface/hub
|
77 |
-
|
78 |
-
# model_size = os.stat(os.path.join(save_name, "openvino_model.bin")).st_size / 1024 ** 3
|
79 |
-
# print(f'Model size in FP32: ~5.4GB, current model size in 4bit: {model_size:.2f}GB')
|
80 |
-
|
81 |
-
#####################################################################
|
82 |
-
|
83 |
-
# Load model directly
|
84 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
85 |
-
|
86 |
-
tokenizer = AutoTokenizer.from_pretrained("savage1221/lora-fine", trust_remote_code=True)
|
87 |
-
model = AutoModelForCausalLM.from_pretrained("savage1221/lora-fine", trust_remote_code=True)
|
88 |
-
|
89 |
-
|
90 |
-
# Copied and modified from https://github.com/bigcode-project/bigcode-evaluation-harness/blob/main/bigcode_eval/generation.py#L13
|
91 |
-
class SuffixCriteria(StoppingCriteria):
|
92 |
-
def __init__(self, start_length, eof_strings, tokenizer, check_fn=None):
|
93 |
-
self.start_length = start_length
|
94 |
-
self.eof_strings = eof_strings
|
95 |
-
self.tokenizer = tokenizer
|
96 |
-
if check_fn is None:
|
97 |
-
check_fn = lambda decoded_generation: any(
|
98 |
-
[decoded_generation.endswith(stop_string) for stop_string in self.eof_strings]
|
99 |
-
)
|
100 |
-
self.check_fn = check_fn
|
101 |
-
|
102 |
-
def __call__(self, input_ids, scores, **kwargs):
|
103 |
-
"""Returns True if generated sequence ends with any of the stop strings"""
|
104 |
-
decoded_generations = self.tokenizer.batch_decode(input_ids[:, self.start_length :])
|
105 |
-
return all([self.check_fn(decoded_generation) for decoded_generation in decoded_generations])
|
106 |
-
|
107 |
-
|
108 |
-
def is_partial_stop(output, stop_str):
|
109 |
-
"""Check whether the output contains a partial stop str."""
|
110 |
-
for i in range(0, min(len(output), len(stop_str))):
|
111 |
-
if stop_str.startswith(output[-i:]):
|
112 |
-
return True
|
113 |
-
return False
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
# Set the chat template to the tokenizer. The chat template implements the simple template of
|
118 |
-
# User: content
|
119 |
-
# Assistant: content
|
120 |
-
# ...
|
121 |
-
# Read more about chat templates here https://huggingface.co/docs/transformers/main/en/chat_templating
|
122 |
-
tokenizer.chat_template = "{% for message in messages %}{{message['role'] + ': ' + message['content'] + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ 'Assistant:' }}{% endif %}"
|
123 |
-
|
124 |
-
|
125 |
-
# def prepare_history_for_model(history):
|
126 |
-
# """
|
127 |
-
# Converts the history to a tokenized prompt in the format expected by the model.
|
128 |
-
# Params:
|
129 |
-
# history: dialogue history
|
130 |
-
# Returns:
|
131 |
-
# Tokenized prompt
|
132 |
-
# """
|
133 |
-
# messages = []
|
134 |
-
# for idx, (user_msg, model_msg) in enumerate(history):
|
135 |
-
# # skip the last assistant message if its empty, the tokenizer will do the formating
|
136 |
-
# if idx == len(history) - 1 and not model_msg:
|
137 |
-
# messages.append({"role": "User", "content": user_msg})
|
138 |
-
# break
|
139 |
-
# if user_msg:
|
140 |
-
# messages.append({"role": "User", "content": user_msg})
|
141 |
-
# if model_msg:
|
142 |
-
# messages.append({"role": "Assistant", "content": model_msg})
|
143 |
-
# input_token = tokenizer.apply_chat_template(
|
144 |
-
# messages,
|
145 |
-
# add_generation_prompt=True,
|
146 |
-
# tokenize=True,
|
147 |
-
# return_tensors="pt",
|
148 |
-
# return_dict=True
|
149 |
-
# )
|
150 |
-
# return input_token
|
151 |
-
|
152 |
|
|
|
153 |
|
154 |
-
|
155 |
-
""
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
"""
|
162 |
-
messages = []
|
163 |
-
|
164 |
-
# Add instruction
|
165 |
-
instruction = "Generate quotes for AWS RDS services"
|
166 |
-
messages.append({"role": "Instruction", "content": instruction})
|
167 |
-
|
168 |
-
for idx, (user_msg, model_msg) in enumerate(history):
|
169 |
-
# Assuming the user message contains the product information
|
170 |
-
if user_msg:
|
171 |
-
messages.append({"role": "Input", "content": user_msg})
|
172 |
-
|
173 |
-
# Skip the last assistant message if it's empty
|
174 |
-
if idx == len(history) - 1 and not model_msg:
|
175 |
-
break
|
176 |
-
|
177 |
-
if model_msg:
|
178 |
-
messages.append({"role": "Output", "content": model_msg})
|
179 |
-
|
180 |
-
input_token = tokenizer.apply_chat_template(
|
181 |
-
messages,
|
182 |
-
add_generation_prompt=True,
|
183 |
-
tokenize=True,
|
184 |
-
return_tensors="pt",
|
185 |
-
return_dict=True
|
186 |
-
)
|
187 |
-
return input_token
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
def generate(history, temperature, max_new_tokens, top_p, repetition_penalty, assisted):
|
192 |
-
"""
|
193 |
-
Generates the assistant's reponse given the chatbot history and generation parameters
|
194 |
-
|
195 |
-
Params:
|
196 |
-
history: conversation history formated in pairs of user and assistant messages `[user_message, assistant_message]`
|
197 |
-
temperature: parameter for control the level of creativity in AI-generated text.
|
198 |
-
By adjusting the `temperature`, you can influence the AI model's probability distribution, making the text more focused or diverse.
|
199 |
-
max_new_tokens: The maximum number of tokens we allow the model to generate as a response.
|
200 |
-
top_p: parameter for control the range of tokens considered by the AI model based on their cumulative probability.
|
201 |
-
repetition_penalty: parameter for penalizing tokens based on how frequently they occur in the text.
|
202 |
-
assisted: boolean parameter to enable/disable assisted generation with speculative decoding.
|
203 |
-
Yields:
|
204 |
-
Updated history and generation status.
|
205 |
-
"""
|
206 |
-
start = time.perf_counter()
|
207 |
-
# Construct the input message string for the model by concatenating the current system message and conversation history
|
208 |
-
# Tokenize the messages string
|
209 |
-
inputs = prepare_history_for_model(history)
|
210 |
-
input_length = inputs['input_ids'].shape[1]
|
211 |
-
# truncate input in case it is too long.
|
212 |
-
# TODO improve this
|
213 |
-
if input_length > 2000:
|
214 |
-
history = [history[-1]]
|
215 |
-
inputs = prepare_history_for_model(history)
|
216 |
-
input_length = inputs['input_ids'].shape[1]
|
217 |
-
|
218 |
-
prompt_char = "β"
|
219 |
-
history[-1][1] = prompt_char
|
220 |
-
yield history, "Status: Generating...", *([gr.update(interactive=False)] * 4)
|
221 |
-
|
222 |
-
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
223 |
-
|
224 |
-
# Create a stopping criteria to prevent the model from playing the role of the user aswell.
|
225 |
-
stop_str = ["\nUser:", "\nAssistant:", "\nRules:", "\nQuestion:"]
|
226 |
-
stopping_criteria = StoppingCriteriaList([SuffixCriteria(input_length, stop_str, tokenizer)])
|
227 |
-
# Prepare input for generate
|
228 |
-
generation_config = GenerationConfig(
|
229 |
-
max_new_tokens=max_new_tokens,
|
230 |
-
do_sample=temperature > 0.0,
|
231 |
-
temperature=temperature if temperature > 0.0 else 1.0,
|
232 |
-
repetition_penalty=repetition_penalty,
|
233 |
-
top_p=top_p,
|
234 |
-
eos_token_id=[tokenizer.eos_token_id],
|
235 |
-
pad_token_id=tokenizer.eos_token_id,
|
236 |
-
)
|
237 |
-
generate_kwargs = dict(
|
238 |
-
streamer=streamer,
|
239 |
-
generation_config=generation_config,
|
240 |
-
stopping_criteria=stopping_criteria,
|
241 |
-
) | inputs
|
242 |
-
|
243 |
-
if assisted:
|
244 |
-
target_generate = stateless_model.generate
|
245 |
-
generate_kwargs["assistant_model"] = asst_model
|
246 |
-
else:
|
247 |
-
target_generate = model.generate
|
248 |
-
|
249 |
-
t1 = Thread(target=target_generate, kwargs=generate_kwargs)
|
250 |
-
t1.start()
|
251 |
-
|
252 |
-
# Initialize an empty string to store the generated text.
|
253 |
-
partial_text = ""
|
254 |
-
for new_text in streamer:
|
255 |
-
partial_text += new_text
|
256 |
-
history[-1][1] = partial_text + prompt_char
|
257 |
-
for s in stop_str:
|
258 |
-
if (pos := partial_text.rfind(s)) != -1:
|
259 |
-
break
|
260 |
-
if pos != -1:
|
261 |
-
partial_text = partial_text[:pos]
|
262 |
-
break
|
263 |
-
elif any([is_partial_stop(partial_text, s) for s in stop_str]):
|
264 |
-
continue
|
265 |
-
yield history, "Status: Generating...", *([gr.update(interactive=False)] * 4)
|
266 |
-
history[-1][1] = partial_text
|
267 |
-
generation_time = time.perf_counter() - start
|
268 |
-
yield history, f'Generation time: {generation_time:.2f} sec', *([gr.update(interactive=True)] * 4)
|
269 |
-
|
270 |
-
|
271 |
-
#############################################################
|
272 |
-
|
273 |
-
|
274 |
-
# model.compile()
|
275 |
-
|
276 |
-
|
277 |
-
try:
|
278 |
-
demo.close()
|
279 |
-
except:
|
280 |
-
pass
|
281 |
-
|
282 |
-
|
283 |
-
EXAMPLES = [
|
284 |
-
["What is OpenVINO?"],
|
285 |
-
["Can you explain to me briefly what is Python programming language?"],
|
286 |
-
["Explain the plot of Cinderella in a sentence."],
|
287 |
-
["Write a Python function to perform binary search over a sorted list. Use markdown to write code"],
|
288 |
-
["Lily has a rubber ball that she drops from the top of a wall. The wall is 2 meters tall. How long will it take for the ball to reach the ground?"],
|
289 |
-
]
|
290 |
-
|
291 |
-
|
292 |
-
def add_user_text(message, history):
|
293 |
-
"""
|
294 |
-
Add user's message to chatbot history
|
295 |
-
|
296 |
-
Params:
|
297 |
-
message: current user message
|
298 |
-
history: conversation history
|
299 |
-
Returns:
|
300 |
-
Updated history, clears user message and status
|
301 |
-
"""
|
302 |
-
# Append current user message to history with a blank assistant message which will be generated by the model
|
303 |
-
history.append([message, None])
|
304 |
-
return ('', history)
|
305 |
-
|
306 |
-
|
307 |
-
def prepare_for_regenerate(history):
|
308 |
-
"""
|
309 |
-
Delete last assistant message to prepare for regeneration
|
310 |
-
|
311 |
-
Params:
|
312 |
-
history: conversation history
|
313 |
-
Returns:
|
314 |
-
updated history
|
315 |
-
"""
|
316 |
-
history[-1][1] = None
|
317 |
-
return history
|
318 |
-
|
319 |
|
320 |
-
|
321 |
-
gr.Markdown('<h1 style="text-align: center;">Chat with Phi-3 on Meteor Lake iGPU</h1>')
|
322 |
-
chatbot = gr.Chatbot()
|
323 |
-
with gr.Row():
|
324 |
-
assisted = gr.Checkbox(value=False, label="Assisted Generation", scale=10)
|
325 |
-
msg = gr.Textbox(placeholder="Enter message here...", show_label=False, autofocus=True, scale=75)
|
326 |
-
status = gr.Textbox("Status: Idle", show_label=False, max_lines=1, scale=15)
|
327 |
-
with gr.Row():
|
328 |
-
submit = gr.Button("Submit", variant='primary')
|
329 |
-
regenerate = gr.Button("Regenerate")
|
330 |
-
clear = gr.Button("Clear")
|
331 |
-
with gr.Accordion("Advanced Options:", open=False):
|
332 |
-
with gr.Row():
|
333 |
-
with gr.Column():
|
334 |
-
temperature = gr.Slider(
|
335 |
-
label="Temperature",
|
336 |
-
value=0.0,
|
337 |
-
minimum=0.0,
|
338 |
-
maximum=1.0,
|
339 |
-
step=0.05,
|
340 |
-
interactive=True,
|
341 |
-
)
|
342 |
-
max_new_tokens = gr.Slider(
|
343 |
-
label="Max new tokens",
|
344 |
-
value=512,
|
345 |
-
minimum=0,
|
346 |
-
maximum=1024,
|
347 |
-
step=32,
|
348 |
-
interactive=True,
|
349 |
-
)
|
350 |
-
with gr.Column():
|
351 |
-
top_p = gr.Slider(
|
352 |
-
label="Top-p (nucleus sampling)",
|
353 |
-
value=1.0,
|
354 |
-
minimum=0.0,
|
355 |
-
maximum=1.0,
|
356 |
-
step=0.05,
|
357 |
-
interactive=True,
|
358 |
-
)
|
359 |
-
repetition_penalty = gr.Slider(
|
360 |
-
label="Repetition penalty",
|
361 |
-
value=1.0,
|
362 |
-
minimum=1.0,
|
363 |
-
maximum=2.0,
|
364 |
-
step=0.1,
|
365 |
-
interactive=True,
|
366 |
-
)
|
367 |
-
gr.Examples(
|
368 |
-
EXAMPLES, inputs=msg, label="Click on any example and press the 'Submit' button"
|
369 |
-
)
|
370 |
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
outputs=[msg, chatbot],
|
377 |
-
queue=False,
|
378 |
-
).then(
|
379 |
-
fn=generate,
|
380 |
-
inputs=[chatbot, temperature, max_new_tokens, top_p, repetition_penalty, assisted],
|
381 |
-
outputs=[chatbot, status, msg, submit, regenerate, clear],
|
382 |
-
concurrency_limit=1,
|
383 |
-
queue=True
|
384 |
-
)
|
385 |
-
regenerate.click(
|
386 |
-
fn=prepare_for_regenerate,
|
387 |
-
inputs=chatbot,
|
388 |
-
outputs=chatbot,
|
389 |
-
queue=True,
|
390 |
-
concurrency_limit=1
|
391 |
-
).then(
|
392 |
-
fn=generate,
|
393 |
-
inputs=[chatbot, temperature, max_new_tokens, top_p, repetition_penalty, assisted],
|
394 |
-
outputs=[chatbot, status, msg, submit, regenerate, clear],
|
395 |
-
concurrency_limit=1,
|
396 |
-
queue=True
|
397 |
-
)
|
398 |
-
clear.click(fn=lambda: (None, "Status: Idle"), inputs=None, outputs=[chatbot, status], queue=False)
|
399 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
400 |
|
401 |
-
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
|
|
|
|
|
|
|
3 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
torch.random.manual_seed(0)
|
6 |
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(
|
8 |
+
"savage1221/lora-fine",
|
9 |
+
device_map="cuda",
|
10 |
+
torch_dtype="auto",
|
11 |
+
trust_remote_code=True,
|
12 |
+
)
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained("savage1221/lora-fine",trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
instruction = "Generate quotes for AWS RDS services"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
pipe = pipeline(
|
18 |
+
"text-generation",
|
19 |
+
model=model,
|
20 |
+
tokenizer=tokenizer,
|
21 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
generation_args = {
|
24 |
+
"max_new_tokens": 500,
|
25 |
+
"return_full_text": False,
|
26 |
+
"temperature": 0.9,
|
27 |
+
"do_sample": True,
|
28 |
+
"top_k": 50,
|
29 |
+
"top_p": 0.95,
|
30 |
+
"num_return_sequences": 1,
|
31 |
+
}
|
32 |
+
|
33 |
+
def predict_price(input_data):
|
34 |
+
prompt = f"{instruction}\nInput: {input_data}\nOutput:"
|
35 |
+
output = pipe(prompt, **generation_args)
|
36 |
+
return output[0]['generated_text']
|
37 |
+
|
38 |
+
interface = gr.Interface(
|
39 |
+
fn=predict_price,
|
40 |
+
inputs=gr.inputs.Textbox(lines=7, label="θΎε
₯εεδΏ‘ζ―"),
|
41 |
+
outputs=gr.outputs.Textbox(label="ι’ζ΅δ»·ζ Ό"),
|
42 |
+
title="εεδ»·ζ Όι’ζ΅",
|
43 |
+
description="θΎε
₯εεδΏ‘ζ―,ι’ζ΅εεδ»·ζ Ό",
|
44 |
+
)
|
45 |
|
46 |
+
interface.launch()
|