File size: 8,733 Bytes
cfaf614
2fc5fd9
cfaf614
 
 
 
fdbab88
 
 
cfaf614
fa189aa
dd84c16
94cbde8
fdbab88
cfaf614
fdbab88
 
 
 
 
 
 
6481f14
2bc5696
fdbab88
 
 
 
af4412c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f294823
fdbab88
 
 
 
f294823
fdbab88
 
051de31
 
 
 
 
fdbab88
c7c1d09
fdbab88
 
f294823
fdbab88
 
 
 
 
 
 
 
 
 
 
 
 
f294823
fdbab88
 
 
f294823
fdbab88
 
051de31
fdbab88
051de31
f294823
fdbab88
 
 
051de31
f294823
cfaf614
 
 
 
 
 
f294823
cfaf614
d89cee9
 
 
 
 
 
a69899f
d89cee9
a69899f
d89cee9
 
f294823
 
dd84c16
 
fdbab88
 
cfaf614
f294823
cfaf614
 
 
 
 
 
 
a69899f
cfaf614
a69899f
cfaf614
 
 
 
 
 
 
f294823
dd84c16
a69899f
9b2901c
f294823
9b2901c
92857f5
 
 
 
 
f294823
92857f5
cfaf614
f294823
cfaf614
 
 
 
f294823
 
 
 
 
 
 
 
 
 
 
cfaf614
 
 
 
f294823
cfaf614
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f294823
cfaf614
 
 
 
 
a69899f
cfaf614
a69899f
cfaf614
 
 
 
f294823
cfaf614
 
 
 
 
fdbab88
 
 
 
cfaf614
 
f294823
fa189aa
 
 
 
 
 
 
cfaf614
c7c1d09
 
 
 
 
 
 
 
 
 
 
 
ffbdb95
 
c7c1d09
fa189aa
 
 
 
c7c1d09
 
 
fdbab88
f294823
fdbab88
cfaf614
 
fdbab88
 
 
 
 
 
 
 
 
 
 
 
 
 
c7c1d09
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import os
import gradio as gr
from transformers import pipeline
import spacy
import subprocess
import nltk
from nltk.corpus import wordnet
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from spellchecker import SpellChecker
from textblob import TextBlob  # Importing TextBlob
import re
import string
import random

# Download necessary NLTK data
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('averaged_perceptron_tagger')
nltk.download('averaged_perceptron_tagger_eng')
nltk.download('wordnet')
nltk.download('omw-1.4')
nltk.download('punkt_tab')

# Initialize stopwords
stop_words = set(stopwords.words("english"))

# Words we don't want to replace
exclude_tags = {'PRP', 'PRP$', 'MD', 'VBZ', 'VBP', 'VBD', 'VBG', 'VBN', 'TO', 'IN', 'DT', 'CC'}
exclude_words = {'is', 'am', 'are', 'was', 'were', 'have', 'has', 'do', 'does', 'did', 'will', 'shall', 'should', 'would', 'could', 'can', 'may', 'might'}

# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")

# Initialize the spell checker
spell = SpellChecker()

# Ensure the SpaCy model is installed
try:
    nlp = spacy.load("en_core_web_sm")
except OSError:
    subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
    nlp = spacy.load("en_core_web_sm")


def plagiarism_removal(text):
    def plagiarism_remover(word):
        if word.lower() in stop_words or word.lower() in exclude_words or word in string.punctuation:
            return word

        # Find synonyms
        synonyms = set()
        for syn in wordnet.synsets(word):
            for lemma in syn.lemmas():
                if "_" not in lemma.name() and lemma.name().isalpha() and lemma.name().lower() != word.lower():
                    synonyms.add(lemma.name())

        pos_tag_word = nltk.pos_tag([word])[0]

        if pos_tag_word[1] in exclude_tags:
            return word

        filtered_synonyms = [syn for syn in synonyms if nltk.pos_tag([syn])[0][1] == pos_tag_word[1]]

        if not filtered_synonyms:
            return word

        synonym_choice = random.choice(filtered_synonyms)

        if word.istitle():
            return synonym_choice.title()
        return synonym_choice

    para_split = word_tokenize(text)
    final_text = [plagiarism_remover(word) for word in para_split]

    corrected_text = []
    for i in range(len(final_text)):
        if final_text[i] in string.punctuation and i > 0:
            corrected_text[-1] += final_text[i]
        else:
            corrected_text.append(final_text[i])

    return " ".join(corrected_text)


def predict_en(text):
    res = pipeline_en(text)[0]
    return res['label'], res['score']


def remove_redundant_words(text):
    doc = nlp(text)
    meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
    filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
    return ' '.join(filtered_text)


def fix_punctuation_spacing(text):
    words = text.split(' ')
    cleaned_words = []
    punctuation_marks = {',', '.', "'", '!', '?', ':'}

    for word in words:
        if cleaned_words and word and word[0] in punctuation_marks:
            cleaned_words[-1] += word
        else:
            cleaned_words.append(word)

    return ' '.join(cleaned_words).replace(' ,', ',').replace(' .', '.').replace(" '", "'") \
        .replace(' !', '!').replace(' ?', '?').replace(' :', ':')


def fix_possessives(text):
    text = re.sub(r'(\w)\s\'\s?s', r"\1's", text)
    return text


def capitalize_sentences_and_nouns(text):
    doc = nlp(text)
    corrected_text = []

    for sent in doc.sents:
        sentence = []
        for token in sent:
            if token.i == sent.start:
                sentence.append(token.text.capitalize())
            elif token.pos_ == "PROPN":
                sentence.append(token.text.capitalize())
            else:
                sentence.append(token.text)
        corrected_text.append(' '.join(sentence))

    return ' '.join(corrected_text)


def force_first_letter_capital(text):
    sentences = re.split(r'(?<=\w[.!?])\s+', text)
    capitalized_sentences = []

    for sentence in sentences:
        if sentence:
            capitalized_sentence = sentence[0].capitalize() + sentence[1:]
            if not re.search(r'[.!?]$', capitalized_sentence):
                capitalized_sentence += '.'
            capitalized_sentences.append(capitalized_sentence)

    return " ".join(capitalized_sentences)


def correct_tense_errors(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.pos_ == "VERB":
            tense = token.morph.get("Tense")
            if tense:
                if 'Past' in tense:
                    corrected_text.append(token.lemma_ + "ed")
                elif 'Present' in tense and token.tag_ == 'VBZ':
                    corrected_text.append(token.lemma_ + "s")
                else:
                    corrected_text.append(token.lemma_)
            else:
                corrected_text.append(token.text)
        else:
            corrected_text.append(token.text)
    return ' '.join(corrected_text)


def correct_article_errors(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.text in ['a', 'an']:
            next_token = token.nbor(1)
            if token.text == "a" and next_token.text[0].lower() in "aeiou":
                corrected_text.append("an")
            elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
                corrected_text.append("a")
            else:
                corrected_text.append(token.text)
        else:
            corrected_text.append(token.text)
    return ' '.join(corrected_text)


def ensure_subject_verb_agreement(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.dep_ == "nsubj" and token.head.pos_ == "VERB":
            if token.tag_ == "NN" and token.head.tag_ != "VBZ":
                corrected_text.append(token.head.lemma_ + "s")
            elif token.tag_ == "NNS" and token.head.tag_ == "VBZ":
                corrected_text.append(token.head.lemma_)
        corrected_text.append(token.text)
    return ' '.join(corrected_text)


def correct_spelling(text):
    words = text.split()
    corrected_words = []
    for word in words:
        corrected_word = spell.correction(word)
        if corrected_word is not None:
            corrected_words.append(corrected_word)
        else:
            corrected_words.append(word)
    return ' '.join(corrected_words)


# Function to correct grammar using TextBlob
def textblob_grammar_correction(text):
    blob = TextBlob(text)
    corrected_text = str(blob.correct())
    return corrected_text


def paraphrase_and_correct(text):
    paragraphs = text.split("\n\n")  # Split by paragraphs

    # Process each paragraph separately
    processed_paragraphs = []
    for paragraph in paragraphs:
        cleaned_text = remove_redundant_words(paragraph)
        plag_removed = plagiarism_removal(cleaned_text)
        paraphrased_text = capitalize_sentences_and_nouns(plag_removed)
        paraphrased_text = force_first_letter_capital(paraphrased_text)
        paraphrased_text = correct_article_errors(paraphrased_text)
        paraphrased_text = fix_possessives(paraphrased_text)
        paraphrased_text = correct_spelling(paraphrased_text)
        paraphrased_text = correct_tense_errors(paraphrased_text)
        paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
        paraphrased_text = fix_punctuation_spacing(paraphrased_text)

        # Apply TextBlob grammar correction
        paraphrased_text = textblob_grammar_correction(paraphrased_text)
        
        processed_paragraphs.append(paraphrased_text)

    return "\n\n".join(processed_paragraphs)  # Reassemble the text with paragraphs


# Gradio app setup
with gr.Blocks() as demo:
    with gr.Tab("AI Detection"):
        t1 = gr.Textbox(lines=5, label='Text')
        button1 = gr.Button("πŸ€– Predict!")
        label1 = gr.Textbox(lines=1, label='Predicted Label πŸŽƒ')
        score1 = gr.Textbox(lines=1, label='Prob')

        button1.click(fn=predict_en, inputs=t1, outputs=[label1, score1])

    with gr.Tab("Paraphrasing & Grammar Correction"):
        t2 = gr.Textbox(lines=5, label='Enter text for paraphrasing and grammar correction')
        button2 = gr.Button("πŸ”„ Paraphrase and Correct")
        result2 = gr.Textbox(lines=5, label='Corrected Text')

        button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=result2)

demo.launch(share=True)