Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,7 @@ import subprocess
|
|
6 |
import nltk
|
7 |
from nltk.corpus import wordnet
|
8 |
from spellchecker import SpellChecker
|
|
|
9 |
|
10 |
# Initialize the English text classification pipeline for AI detection
|
11 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
@@ -29,14 +30,6 @@ def predict_en(text):
|
|
29 |
res = pipeline_en(text)[0]
|
30 |
return res['label'], res['score']
|
31 |
|
32 |
-
# Function to get synonyms using NLTK WordNet
|
33 |
-
def get_synonyms_nltk(word, pos):
|
34 |
-
synsets = wordnet.synsets(word, pos=pos)
|
35 |
-
if synsets:
|
36 |
-
lemmas = synsets[0].lemmas()
|
37 |
-
return [lemma.name() for lemma in lemmas]
|
38 |
-
return []
|
39 |
-
|
40 |
# Function to remove redundant and meaningless words
|
41 |
def remove_redundant_words(text):
|
42 |
doc = nlp(text)
|
@@ -44,15 +37,20 @@ def remove_redundant_words(text):
|
|
44 |
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
|
45 |
return ' '.join(filtered_text)
|
46 |
|
47 |
-
# Function to fix spacing
|
48 |
def fix_punctuation_spacing(text):
|
49 |
-
|
50 |
-
text =
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
return text
|
52 |
|
53 |
-
#
|
54 |
def capitalize_sentences_and_nouns(text):
|
55 |
-
text = fix_punctuation_spacing(text)
|
56 |
doc = nlp(text)
|
57 |
corrected_text = []
|
58 |
|
@@ -69,18 +67,11 @@ def capitalize_sentences_and_nouns(text):
|
|
69 |
|
70 |
return ' '.join(corrected_text)
|
71 |
|
72 |
-
# Function to
|
73 |
-
def
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
for token in doc:
|
78 |
-
if token.dep_ == 'poss' and token.head.pos_ == 'NOUN':
|
79 |
-
corrected_text.append(f"{token.text}'s")
|
80 |
-
else:
|
81 |
-
corrected_text.append(token.text)
|
82 |
-
|
83 |
-
return ' '.join(corrected_text)
|
84 |
|
85 |
# Function to correct tense errors in a sentence
|
86 |
def correct_tense_errors(text):
|
@@ -94,28 +85,6 @@ def correct_tense_errors(text):
|
|
94 |
corrected_text.append(token.text)
|
95 |
return ' '.join(corrected_text)
|
96 |
|
97 |
-
# Function to correct singular/plural errors
|
98 |
-
def correct_singular_plural_errors(text):
|
99 |
-
doc = nlp(text)
|
100 |
-
corrected_text = []
|
101 |
-
|
102 |
-
for token in doc:
|
103 |
-
if token.pos_ == "NOUN":
|
104 |
-
if token.tag_ == "NN": # Singular noun
|
105 |
-
if any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children):
|
106 |
-
corrected_text.append(token.lemma_ + 's')
|
107 |
-
else:
|
108 |
-
corrected_text.append(token.text)
|
109 |
-
elif token.tag_ == "NNS": # Plural noun
|
110 |
-
if any(child.text.lower() in ['a', 'one'] for child in token.head.children):
|
111 |
-
corrected_text.append(token.lemma_)
|
112 |
-
else:
|
113 |
-
corrected_text.append(token.text)
|
114 |
-
else:
|
115 |
-
corrected_text.append(token.text)
|
116 |
-
|
117 |
-
return ' '.join(corrected_text)
|
118 |
-
|
119 |
# Function to check and correct article errors
|
120 |
def correct_article_errors(text):
|
121 |
doc = nlp(text)
|
@@ -133,42 +102,6 @@ def correct_article_errors(text):
|
|
133 |
corrected_text.append(token.text)
|
134 |
return ' '.join(corrected_text)
|
135 |
|
136 |
-
# Function to get the correct synonym while maintaining verb form
|
137 |
-
def replace_with_synonym(token):
|
138 |
-
pos = None
|
139 |
-
if token.pos_ == "VERB":
|
140 |
-
pos = wordnet.VERB
|
141 |
-
elif token.pos_ == "NOUN":
|
142 |
-
pos = wordnet.NOUN
|
143 |
-
elif token.pos_ == "ADJ":
|
144 |
-
pos = wordnet.ADJ
|
145 |
-
elif token.pos_ == "ADV":
|
146 |
-
pos = wordnet.ADV
|
147 |
-
|
148 |
-
synonyms = get_synonyms_nltk(token.lemma_, pos)
|
149 |
-
|
150 |
-
if synonyms:
|
151 |
-
synonym = synonyms[0]
|
152 |
-
if token.tag_ == "VBG": # Present participle (e.g., running)
|
153 |
-
synonym += 'ing'
|
154 |
-
elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle
|
155 |
-
synonym += 'ed'
|
156 |
-
elif token.tag_ == "VBZ": # Third-person singular present
|
157 |
-
synonym += 's'
|
158 |
-
return synonym
|
159 |
-
return token.text
|
160 |
-
|
161 |
-
# Function to check for and avoid double negatives
|
162 |
-
def correct_double_negatives(text):
|
163 |
-
doc = nlp(text)
|
164 |
-
corrected_text = []
|
165 |
-
for token in doc:
|
166 |
-
if token.text.lower() == "not" and any(child.text.lower() == "never" for child in token.head.children):
|
167 |
-
corrected_text.append("always")
|
168 |
-
else:
|
169 |
-
corrected_text.append(token.text)
|
170 |
-
return ' '.join(corrected_text)
|
171 |
-
|
172 |
# Function to ensure subject-verb agreement
|
173 |
def ensure_subject_verb_agreement(text):
|
174 |
doc = nlp(text)
|
@@ -194,44 +127,7 @@ def correct_spelling(text):
|
|
194 |
corrected_words.append(word) # Keep the original word if correction is None
|
195 |
return ' '.join(corrected_words)
|
196 |
|
197 |
-
#
|
198 |
-
def rephrase_with_synonyms(text):
|
199 |
-
doc = nlp(text)
|
200 |
-
rephrased_text = []
|
201 |
-
|
202 |
-
for token in doc:
|
203 |
-
pos_tag = None
|
204 |
-
if token.pos_ == "NOUN":
|
205 |
-
pos_tag = wordnet.NOUN
|
206 |
-
elif token.pos_ == "VERB":
|
207 |
-
pos_tag = wordnet.VERB
|
208 |
-
elif token.pos_ == "ADJ":
|
209 |
-
pos_tag = wordnet.ADJ
|
210 |
-
elif token.pos_ == "ADV":
|
211 |
-
pos_tag = wordnet.ADV
|
212 |
-
|
213 |
-
if pos_tag:
|
214 |
-
synonyms = get_synonyms_nltk(token.text, pos_tag)
|
215 |
-
if synonyms:
|
216 |
-
synonym = synonyms[0] # Just using the first synonym for simplicity
|
217 |
-
if token.pos_ == "VERB":
|
218 |
-
if token.tag_ == "VBG": # Present participle (e.g., running)
|
219 |
-
synonym += 'ing'
|
220 |
-
elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle
|
221 |
-
synonym += 'ed'
|
222 |
-
elif token.tag_ == "VBZ": # Third-person singular present
|
223 |
-
synonym += 's'
|
224 |
-
elif token.pos_ == "NOUN" and token.tag_ == "NNS": # Plural nouns
|
225 |
-
synonym += 's' if not synonym.endswith('s') else ""
|
226 |
-
rephrased_text.append(synonym)
|
227 |
-
else:
|
228 |
-
rephrased_text.append(token.text)
|
229 |
-
else:
|
230 |
-
rephrased_text.append(token.text)
|
231 |
-
|
232 |
-
return ' '.join(rephrased_text)
|
233 |
-
|
234 |
-
# Function to paraphrase and correct grammar with enhanced accuracy
|
235 |
def paraphrase_and_correct(text):
|
236 |
# Remove meaningless or redundant words first
|
237 |
cleaned_text = remove_redundant_words(text)
|
@@ -239,25 +135,24 @@ def paraphrase_and_correct(text):
|
|
239 |
# Capitalize sentences and nouns
|
240 |
paraphrased_text = capitalize_sentences_and_nouns(cleaned_text)
|
241 |
|
242 |
-
# Ensure first letter of each sentence is capitalized
|
243 |
-
paraphrased_text =
|
244 |
|
245 |
# Apply grammatical corrections
|
246 |
paraphrased_text = correct_article_errors(paraphrased_text)
|
247 |
-
paraphrased_text = correct_singular_plural_errors(paraphrased_text)
|
248 |
paraphrased_text = correct_tense_errors(paraphrased_text)
|
249 |
-
paraphrased_text = correct_double_negatives(paraphrased_text)
|
250 |
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
|
251 |
|
252 |
-
#
|
253 |
-
paraphrased_text =
|
|
|
254 |
|
255 |
# Correct spelling errors
|
256 |
paraphrased_text = correct_spelling(paraphrased_text)
|
257 |
|
258 |
return paraphrased_text
|
259 |
|
260 |
-
# Gradio app setup
|
261 |
with gr.Blocks() as demo:
|
262 |
with gr.Tab("AI Detection"):
|
263 |
t1 = gr.Textbox(lines=5, label='Text')
|
@@ -265,7 +160,6 @@ with gr.Blocks() as demo:
|
|
265 |
label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
|
266 |
score1 = gr.Textbox(lines=1, label='Prob')
|
267 |
|
268 |
-
# Connect the prediction function to the button
|
269 |
button1.click(fn=predict_en, inputs=t1, outputs=[label1, score1])
|
270 |
|
271 |
with gr.Tab("Paraphrasing & Grammar Correction"):
|
@@ -273,7 +167,6 @@ with gr.Blocks() as demo:
|
|
273 |
button2 = gr.Button("🔄 Paraphrase and Correct")
|
274 |
result2 = gr.Textbox(lines=5, label='Corrected Text')
|
275 |
|
276 |
-
# Connect the paraphrasing and correction function to the button
|
277 |
button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=result2)
|
278 |
|
279 |
-
demo.launch(share=True)
|
|
|
6 |
import nltk
|
7 |
from nltk.corpus import wordnet
|
8 |
from spellchecker import SpellChecker
|
9 |
+
import re
|
10 |
|
11 |
# Initialize the English text classification pipeline for AI detection
|
12 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
|
|
30 |
res = pipeline_en(text)[0]
|
31 |
return res['label'], res['score']
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
# Function to remove redundant and meaningless words
|
34 |
def remove_redundant_words(text):
|
35 |
doc = nlp(text)
|
|
|
37 |
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
|
38 |
return ' '.join(filtered_text)
|
39 |
|
40 |
+
# Function to fix spacing before punctuation
|
41 |
def fix_punctuation_spacing(text):
|
42 |
+
# Remove spaces before commas, periods, question marks, etc.
|
43 |
+
text = re.sub(r'\s+([,.\'!?:])', r'\1', text)
|
44 |
+
return text
|
45 |
+
|
46 |
+
# Function to fix possessives like "Earth's"
|
47 |
+
def fix_possessives(text):
|
48 |
+
# Simple rule to catch possessives and correct spacing
|
49 |
+
text = re.sub(r'(\w)\s\'\s?s', r"\1's", text)
|
50 |
return text
|
51 |
|
52 |
+
# Function to capitalize the first letter of sentences and proper nouns
|
53 |
def capitalize_sentences_and_nouns(text):
|
|
|
54 |
doc = nlp(text)
|
55 |
corrected_text = []
|
56 |
|
|
|
67 |
|
68 |
return ' '.join(corrected_text)
|
69 |
|
70 |
+
# Function to force capitalization of the first letter of every sentence
|
71 |
+
def force_first_letter_capital(text):
|
72 |
+
sentences = text.split(". ")
|
73 |
+
capitalized_sentences = [sentence[0].capitalize() + sentence[1:] if sentence else "" for sentence in sentences]
|
74 |
+
return ". ".join(capitalized_sentences)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
# Function to correct tense errors in a sentence
|
77 |
def correct_tense_errors(text):
|
|
|
85 |
corrected_text.append(token.text)
|
86 |
return ' '.join(corrected_text)
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
# Function to check and correct article errors
|
89 |
def correct_article_errors(text):
|
90 |
doc = nlp(text)
|
|
|
102 |
corrected_text.append(token.text)
|
103 |
return ' '.join(corrected_text)
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
# Function to ensure subject-verb agreement
|
106 |
def ensure_subject_verb_agreement(text):
|
107 |
doc = nlp(text)
|
|
|
127 |
corrected_words.append(word) # Keep the original word if correction is None
|
128 |
return ' '.join(corrected_words)
|
129 |
|
130 |
+
# Main function for paraphrasing and grammar correction
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
def paraphrase_and_correct(text):
|
132 |
# Remove meaningless or redundant words first
|
133 |
cleaned_text = remove_redundant_words(text)
|
|
|
135 |
# Capitalize sentences and nouns
|
136 |
paraphrased_text = capitalize_sentences_and_nouns(cleaned_text)
|
137 |
|
138 |
+
# Ensure first letter of each sentence is capitalized
|
139 |
+
paraphrased_text = force_first_letter_capital(paraphrased_text)
|
140 |
|
141 |
# Apply grammatical corrections
|
142 |
paraphrased_text = correct_article_errors(paraphrased_text)
|
|
|
143 |
paraphrased_text = correct_tense_errors(paraphrased_text)
|
|
|
144 |
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
|
145 |
|
146 |
+
# Fix punctuation spacing and possessives
|
147 |
+
paraphrased_text = fix_punctuation_spacing(paraphrased_text)
|
148 |
+
paraphrased_text = fix_possessives(paraphrased_text)
|
149 |
|
150 |
# Correct spelling errors
|
151 |
paraphrased_text = correct_spelling(paraphrased_text)
|
152 |
|
153 |
return paraphrased_text
|
154 |
|
155 |
+
# Gradio app setup
|
156 |
with gr.Blocks() as demo:
|
157 |
with gr.Tab("AI Detection"):
|
158 |
t1 = gr.Textbox(lines=5, label='Text')
|
|
|
160 |
label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
|
161 |
score1 = gr.Textbox(lines=1, label='Prob')
|
162 |
|
|
|
163 |
button1.click(fn=predict_en, inputs=t1, outputs=[label1, score1])
|
164 |
|
165 |
with gr.Tab("Paraphrasing & Grammar Correction"):
|
|
|
167 |
button2 = gr.Button("🔄 Paraphrase and Correct")
|
168 |
result2 = gr.Textbox(lines=5, label='Corrected Text')
|
169 |
|
|
|
170 |
button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=result2)
|
171 |
|
172 |
+
demo.launch(share=True)
|