oraculo / evaluation /real_videos_inference.py
salomonsky's picture
Upload 44 files
fa81432
raw
history blame
9.17 kB
from os import listdir, path
import numpy as np
import scipy, cv2, os, sys, argparse
import dlib, json, subprocess
from tqdm import tqdm
from glob import glob
import torch
sys.path.append('../')
import audio
import face_detection
from models import Wav2Lip
parser = argparse.ArgumentParser(description='Code to generate results on ReSyncED evaluation set')
parser.add_argument('--mode', type=str,
help='random | dubbed | tts', required=True)
parser.add_argument('--filelist', type=str,
help='Filepath of filelist file to read', default=None)
parser.add_argument('--results_dir', type=str, help='Folder to save all results into',
required=True)
parser.add_argument('--data_root', type=str, required=True)
parser.add_argument('--checkpoint_path', type=str,
help='Name of saved checkpoint to load weights from', required=True)
parser.add_argument('--pads', nargs='+', type=int, default=[0, 10, 0, 0],
help='Padding (top, bottom, left, right)')
parser.add_argument('--face_det_batch_size', type=int,
help='Single GPU batch size for face detection', default=16)
parser.add_argument('--wav2lip_batch_size', type=int, help='Batch size for Wav2Lip', default=128)
parser.add_argument('--face_res', help='Approximate resolution of the face at which to test', default=180)
parser.add_argument('--min_frame_res', help='Do not downsample further below this frame resolution', default=480)
parser.add_argument('--max_frame_res', help='Downsample to at least this frame resolution', default=720)
# parser.add_argument('--resize_factor', default=1, type=int)
args = parser.parse_args()
args.img_size = 96
def get_smoothened_boxes(boxes, T):
for i in range(len(boxes)):
if i + T > len(boxes):
window = boxes[len(boxes) - T:]
else:
window = boxes[i : i + T]
boxes[i] = np.mean(window, axis=0)
return boxes
def rescale_frames(images):
rect = detector.get_detections_for_batch(np.array([images[0]]))[0]
if rect is None:
raise ValueError('Face not detected!')
h, w = images[0].shape[:-1]
x1, y1, x2, y2 = rect
face_size = max(np.abs(y1 - y2), np.abs(x1 - x2))
diff = np.abs(face_size - args.face_res)
for factor in range(2, 16):
downsampled_res = face_size // factor
if min(h//factor, w//factor) < args.min_frame_res: break
if np.abs(downsampled_res - args.face_res) >= diff: break
factor -= 1
if factor == 1: return images
return [cv2.resize(im, (im.shape[1]//(factor), im.shape[0]//(factor))) for im in images]
def face_detect(images):
batch_size = args.face_det_batch_size
images = rescale_frames(images)
while 1:
predictions = []
try:
for i in range(0, len(images), batch_size):
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
except RuntimeError:
if batch_size == 1:
raise RuntimeError('Image too big to run face detection on GPU')
batch_size //= 2
print('Recovering from OOM error; New batch size: {}'.format(batch_size))
continue
break
results = []
pady1, pady2, padx1, padx2 = args.pads
for rect, image in zip(predictions, images):
if rect is None:
raise ValueError('Face not detected!')
y1 = max(0, rect[1] - pady1)
y2 = min(image.shape[0], rect[3] + pady2)
x1 = max(0, rect[0] - padx1)
x2 = min(image.shape[1], rect[2] + padx2)
results.append([x1, y1, x2, y2])
boxes = get_smoothened_boxes(np.array(results), T=5)
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2), True] for image, (x1, y1, x2, y2) in zip(images, boxes)]
return results, images
def datagen(frames, face_det_results, mels):
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
for i, m in enumerate(mels):
if i >= len(frames): raise ValueError('Equal or less lengths only')
frame_to_save = frames[i].copy()
face, coords, valid_frame = face_det_results[i].copy()
if not valid_frame:
continue
face = cv2.resize(face, (args.img_size, args.img_size))
img_batch.append(face)
mel_batch.append(m)
frame_batch.append(frame_to_save)
coords_batch.append(coords)
if len(img_batch) >= args.wav2lip_batch_size:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, args.img_size//2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
yield img_batch, mel_batch, frame_batch, coords_batch
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
if len(img_batch) > 0:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, args.img_size//2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
yield img_batch, mel_batch, frame_batch, coords_batch
def increase_frames(frames, l):
## evenly duplicating frames to increase length of video
while len(frames) < l:
dup_every = float(l) / len(frames)
final_frames = []
next_duplicate = 0.
for i, f in enumerate(frames):
final_frames.append(f)
if int(np.ceil(next_duplicate)) == i:
final_frames.append(f)
next_duplicate += dup_every
frames = final_frames
return frames[:l]
mel_step_size = 16
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('Using {} for inference.'.format(device))
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D,
flip_input=False, device=device)
def _load(checkpoint_path):
if device == 'cuda':
checkpoint = torch.load(checkpoint_path)
else:
checkpoint = torch.load(checkpoint_path,
map_location=lambda storage, loc: storage)
return checkpoint
def load_model(path):
model = Wav2Lip()
print("Load checkpoint from: {}".format(path))
checkpoint = _load(path)
s = checkpoint["state_dict"]
new_s = {}
for k, v in s.items():
new_s[k.replace('module.', '')] = v
model.load_state_dict(new_s)
model = model.to(device)
return model.eval()
model = load_model(args.checkpoint_path)
def main():
if not os.path.isdir(args.results_dir): os.makedirs(args.results_dir)
if args.mode == 'dubbed':
files = listdir(args.data_root)
lines = ['{} {}'.format(f, f) for f in files]
else:
assert args.filelist is not None
with open(args.filelist, 'r') as filelist:
lines = filelist.readlines()
for idx, line in enumerate(tqdm(lines)):
video, audio_src = line.strip().split()
audio_src = os.path.join(args.data_root, audio_src)
video = os.path.join(args.data_root, video)
command = 'ffmpeg -loglevel panic -y -i {} -strict -2 {}'.format(audio_src, '../temp/temp.wav')
subprocess.call(command, shell=True)
temp_audio = '../temp/temp.wav'
wav = audio.load_wav(temp_audio, 16000)
mel = audio.melspectrogram(wav)
if np.isnan(mel.reshape(-1)).sum() > 0:
raise ValueError('Mel contains nan!')
video_stream = cv2.VideoCapture(video)
fps = video_stream.get(cv2.CAP_PROP_FPS)
mel_idx_multiplier = 80./fps
full_frames = []
while 1:
still_reading, frame = video_stream.read()
if not still_reading:
video_stream.release()
break
if min(frame.shape[:-1]) > args.max_frame_res:
h, w = frame.shape[:-1]
scale_factor = min(h, w) / float(args.max_frame_res)
h = int(h/scale_factor)
w = int(w/scale_factor)
frame = cv2.resize(frame, (w, h))
full_frames.append(frame)
mel_chunks = []
i = 0
while 1:
start_idx = int(i * mel_idx_multiplier)
if start_idx + mel_step_size > len(mel[0]):
break
mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size])
i += 1
if len(full_frames) < len(mel_chunks):
if args.mode == 'tts':
full_frames = increase_frames(full_frames, len(mel_chunks))
else:
raise ValueError('#Frames, audio length mismatch')
else:
full_frames = full_frames[:len(mel_chunks)]
try:
face_det_results, full_frames = face_detect(full_frames.copy())
except ValueError as e:
continue
batch_size = args.wav2lip_batch_size
gen = datagen(full_frames.copy(), face_det_results, mel_chunks)
for i, (img_batch, mel_batch, frames, coords) in enumerate(gen):
if i == 0:
frame_h, frame_w = full_frames[0].shape[:-1]
out = cv2.VideoWriter('../temp/result.avi',
cv2.VideoWriter_fourcc(*'DIVX'), fps, (frame_w, frame_h))
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
with torch.no_grad():
pred = model(mel_batch, img_batch)
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
for pl, f, c in zip(pred, frames, coords):
y1, y2, x1, x2 = c
pl = cv2.resize(pl.astype(np.uint8), (x2 - x1, y2 - y1))
f[y1:y2, x1:x2] = pl
out.write(f)
out.release()
vid = os.path.join(args.results_dir, '{}.mp4'.format(idx))
command = 'ffmpeg -loglevel panic -y -i {} -i {} -strict -2 -q:v 1 {}'.format('../temp/temp.wav',
'../temp/result.avi', vid)
subprocess.call(command, shell=True)
if __name__ == '__main__':
main()