File size: 9,173 Bytes
fa81432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
from os import listdir, path
import numpy as np
import scipy, cv2, os, sys, argparse
import dlib, json, subprocess
from tqdm import tqdm
from glob import glob
import torch

sys.path.append('../')
import audio
import face_detection
from models import Wav2Lip

parser = argparse.ArgumentParser(description='Code to generate results on ReSyncED evaluation set')

parser.add_argument('--mode', type=str, 
					help='random | dubbed | tts', required=True)

parser.add_argument('--filelist', type=str, 
					help='Filepath of filelist file to read', default=None)

parser.add_argument('--results_dir', type=str, help='Folder to save all results into', 
									required=True)
parser.add_argument('--data_root', type=str, required=True)
parser.add_argument('--checkpoint_path', type=str, 
					help='Name of saved checkpoint to load weights from', required=True)
parser.add_argument('--pads', nargs='+', type=int, default=[0, 10, 0, 0], 
					help='Padding (top, bottom, left, right)')

parser.add_argument('--face_det_batch_size', type=int, 
					help='Single GPU batch size for face detection', default=16)

parser.add_argument('--wav2lip_batch_size', type=int, help='Batch size for Wav2Lip', default=128)
parser.add_argument('--face_res', help='Approximate resolution of the face at which to test', default=180)
parser.add_argument('--min_frame_res', help='Do not downsample further below this frame resolution', default=480)
parser.add_argument('--max_frame_res', help='Downsample to at least this frame resolution', default=720)
# parser.add_argument('--resize_factor', default=1, type=int)

args = parser.parse_args()
args.img_size = 96

def get_smoothened_boxes(boxes, T):
	for i in range(len(boxes)):
		if i + T > len(boxes):
			window = boxes[len(boxes) - T:]
		else:
			window = boxes[i : i + T]
		boxes[i] = np.mean(window, axis=0)
	return boxes

def rescale_frames(images):
	rect = detector.get_detections_for_batch(np.array([images[0]]))[0]
	if rect is None:
		raise ValueError('Face not detected!')
	h, w = images[0].shape[:-1]

	x1, y1, x2, y2 = rect

	face_size = max(np.abs(y1 - y2), np.abs(x1 - x2))

	diff = np.abs(face_size - args.face_res)
	for factor in range(2, 16):
		downsampled_res = face_size // factor
		if min(h//factor, w//factor) < args.min_frame_res: break 
		if np.abs(downsampled_res - args.face_res) >= diff: break

	factor -= 1
	if factor == 1: return images

	return [cv2.resize(im, (im.shape[1]//(factor), im.shape[0]//(factor))) for im in images]


def face_detect(images):
	batch_size = args.face_det_batch_size
	images = rescale_frames(images)

	while 1:
		predictions = []
		try:
			for i in range(0, len(images), batch_size):
				predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
		except RuntimeError:
			if batch_size == 1:
				raise RuntimeError('Image too big to run face detection on GPU')
			batch_size //= 2
			print('Recovering from OOM error; New batch size: {}'.format(batch_size))
			continue
		break

	results = []
	pady1, pady2, padx1, padx2 = args.pads
	for rect, image in zip(predictions, images):
		if rect is None:
			raise ValueError('Face not detected!')

		y1 = max(0, rect[1] - pady1)
		y2 = min(image.shape[0], rect[3] + pady2)
		x1 = max(0, rect[0] - padx1)
		x2 = min(image.shape[1], rect[2] + padx2)
		
		results.append([x1, y1, x2, y2])

	boxes = get_smoothened_boxes(np.array(results), T=5)
	results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2), True] for image, (x1, y1, x2, y2) in zip(images, boxes)]

	return results, images 

def datagen(frames, face_det_results, mels):
	img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []

	for i, m in enumerate(mels):
		if i >= len(frames): raise ValueError('Equal or less lengths only')

		frame_to_save = frames[i].copy()
		face, coords, valid_frame = face_det_results[i].copy()
		if not valid_frame:
			continue

		face = cv2.resize(face, (args.img_size, args.img_size))
			
		img_batch.append(face)
		mel_batch.append(m)
		frame_batch.append(frame_to_save)
		coords_batch.append(coords)

		if len(img_batch) >= args.wav2lip_batch_size:
			img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)

			img_masked = img_batch.copy()
			img_masked[:, args.img_size//2:] = 0

			img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
			mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])

			yield img_batch, mel_batch, frame_batch, coords_batch
			img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []

	if len(img_batch) > 0:
		img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)

		img_masked = img_batch.copy()
		img_masked[:, args.img_size//2:] = 0

		img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
		mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])

		yield img_batch, mel_batch, frame_batch, coords_batch

def increase_frames(frames, l):
	## evenly duplicating frames to increase length of video
	while len(frames) < l:
		dup_every = float(l) / len(frames)

		final_frames = []
		next_duplicate = 0.

		for i, f in enumerate(frames):
			final_frames.append(f)

			if int(np.ceil(next_duplicate)) == i:
				final_frames.append(f)

			next_duplicate += dup_every

		frames = final_frames

	return frames[:l]

mel_step_size = 16
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('Using {} for inference.'.format(device))

detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D, 
											flip_input=False, device=device)

def _load(checkpoint_path):
	if device == 'cuda':
		checkpoint = torch.load(checkpoint_path)
	else:
		checkpoint = torch.load(checkpoint_path,
								map_location=lambda storage, loc: storage)
	return checkpoint

def load_model(path):
	model = Wav2Lip()
	print("Load checkpoint from: {}".format(path))
	checkpoint = _load(path)
	s = checkpoint["state_dict"]
	new_s = {}
	for k, v in s.items():
		new_s[k.replace('module.', '')] = v
	model.load_state_dict(new_s)

	model = model.to(device)
	return model.eval()

model = load_model(args.checkpoint_path)

def main():
	if not os.path.isdir(args.results_dir): os.makedirs(args.results_dir)

	if args.mode == 'dubbed':
		files = listdir(args.data_root)
		lines = ['{} {}'.format(f, f) for f in files]

	else:
		assert args.filelist is not None
		with open(args.filelist, 'r') as filelist:
			lines = filelist.readlines()

	for idx, line in enumerate(tqdm(lines)):
		video, audio_src = line.strip().split()

		audio_src = os.path.join(args.data_root, audio_src)
		video = os.path.join(args.data_root, video)

		command = 'ffmpeg -loglevel panic -y -i {} -strict -2 {}'.format(audio_src, '../temp/temp.wav')
		subprocess.call(command, shell=True)
		temp_audio = '../temp/temp.wav'

		wav = audio.load_wav(temp_audio, 16000)
		mel = audio.melspectrogram(wav)

		if np.isnan(mel.reshape(-1)).sum() > 0:
			raise ValueError('Mel contains nan!')

		video_stream = cv2.VideoCapture(video)

		fps = video_stream.get(cv2.CAP_PROP_FPS)
		mel_idx_multiplier = 80./fps

		full_frames = []
		while 1:
			still_reading, frame = video_stream.read()
			if not still_reading:
				video_stream.release()
				break

			if min(frame.shape[:-1]) > args.max_frame_res:
				h, w = frame.shape[:-1]
				scale_factor = min(h, w) / float(args.max_frame_res)
				h = int(h/scale_factor)
				w = int(w/scale_factor)

				frame = cv2.resize(frame, (w, h))
			full_frames.append(frame)

		mel_chunks = []
		i = 0
		while 1:
			start_idx = int(i * mel_idx_multiplier)
			if start_idx + mel_step_size > len(mel[0]):
				break
			mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size])
			i += 1

		if len(full_frames) < len(mel_chunks):
			if args.mode == 'tts':
				full_frames = increase_frames(full_frames, len(mel_chunks))
			else:
				raise ValueError('#Frames, audio length mismatch')

		else:
			full_frames = full_frames[:len(mel_chunks)]

		try:
			face_det_results, full_frames = face_detect(full_frames.copy())
		except ValueError as e:
			continue

		batch_size = args.wav2lip_batch_size
		gen = datagen(full_frames.copy(), face_det_results, mel_chunks)

		for i, (img_batch, mel_batch, frames, coords) in enumerate(gen):
			if i == 0:
				frame_h, frame_w = full_frames[0].shape[:-1]

				out = cv2.VideoWriter('../temp/result.avi', 
								cv2.VideoWriter_fourcc(*'DIVX'), fps, (frame_w, frame_h))

			img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
			mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)

			with torch.no_grad():
				pred = model(mel_batch, img_batch)
					

			pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
			
			for pl, f, c in zip(pred, frames, coords):
				y1, y2, x1, x2 = c
				pl = cv2.resize(pl.astype(np.uint8), (x2 - x1, y2 - y1))
				f[y1:y2, x1:x2] = pl
				out.write(f)

		out.release()

		vid = os.path.join(args.results_dir, '{}.mp4'.format(idx))
		command = 'ffmpeg -loglevel panic -y -i {} -i {} -strict -2 -q:v 1 {}'.format('../temp/temp.wav', 
								'../temp/result.avi', vid)
		subprocess.call(command, shell=True)


if __name__ == '__main__':
	main()