cv_job / app.py
saifeddinemk's picture
Fixed app v2
7fb1b05
raw
history blame
3.48 kB
from transformers import AutoTokenizer
from optimum.intel import INCModelForSeq2SeqLM
from optimum.intel.openvino import OVModelForCausalLM
import gradio as gr
import json
# Load OpenVINO GPT-J model for causal language modeling
causal_model_id = "OpenVINO/gpt-j-6b-int4-ov"
tokenizer = AutoTokenizer.from_pretrained(causal_model_id)
causal_model = OVModelForCausalLM.from_pretrained(causal_model_id)
# Load the Intel quantized summarization model
summarizer_model_id = "Intel/distilbart-cnn-12-6-int8-dynamic"
tokenizer_summarizer = AutoTokenizer.from_pretrained(summarizer_model_id)
int8_model = INCModelForSeq2SeqLM.from_pretrained(summarizer_model_id)
def summarize_text(text, max_length=100):
inputs = tokenizer_summarizer(text, return_tensors="pt", max_length=512, truncation=True)
summary_ids = int8_model.generate(inputs.input_ids, max_length=max_length, min_length=25, do_sample=False)
summary = tokenizer_summarizer.decode(summary_ids[0], skip_special_tokens=True)
return summary
def match_cv_to_jobs(cv_text, job_descriptions_text):
debug_info = "Debug Info:\n"
results = []
# Summarize the CV text
summarized_cv = summarize_text(cv_text, max_length=400)
debug_info += f"Summarized CV Text: {summarized_cv}\n"
# Summarize all job descriptions at once
summarized_descriptions = summarize_text(job_descriptions_text, max_length=400)
debug_info += f"Summarized Job Descriptions: {summarized_descriptions}\n"
# Create a prompt to compare the summarized CV with the summarized job descriptions
prompt = (
f"Compare the following job descriptions with this resume. Job Descriptions: {summarized_descriptions}. "
f"Resume: {summarized_cv}. Provide a match score and a brief analysis."
)
debug_info += f"\nGenerated Prompt: {prompt}\n"
# Generate response from the causal model
inputs = tokenizer(prompt, return_tensors="pt")
try:
outputs = causal_model.generate(**inputs, max_length=200)
response_content = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
debug_info += f"Model Response: {response_content}\n"
try:
response_data = json.loads(response_content)
results.append(response_data)
except json.JSONDecodeError:
results.append({
"Job Descriptions": job_descriptions_text,
"Analysis": response_content
})
except Exception as e:
debug_info += f"Error: {str(e)}\n"
results.append({"Job Descriptions": job_descriptions_text, "Error": str(e)})
return results, debug_info
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# CV and Job Description Matcher with Summarization and Debugging")
# Input fields for CV and job descriptions
cv_text = gr.Textbox(label="CV Text", placeholder="Enter the CV text here", lines=10)
job_descriptions_text = gr.Textbox(label="Job Descriptions", placeholder="Enter the job descriptions text here", lines=10)
# Button and output area
match_button = gr.Button("Match CV to Job Descriptions")
output = gr.JSON(label="Match Results")
debug_output = gr.Textbox(label="Debug Info", lines=10) # Add a debug box to display debug info
# Set button click to run the function
match_button.click(fn=match_cv_to_jobs, inputs=[cv_text, job_descriptions_text], outputs=[output, debug_output])
demo.launch()