from transformers import AutoTokenizer from optimum.intel import INCModelForSeq2SeqLM from optimum.intel.openvino import OVModelForCausalLM import gradio as gr import json # Load OpenVINO GPT-J model for causal language modeling causal_model_id = "OpenVINO/gpt-j-6b-int4-ov" tokenizer = AutoTokenizer.from_pretrained(causal_model_id) causal_model = OVModelForCausalLM.from_pretrained(causal_model_id) # Load the Intel quantized summarization model summarizer_model_id = "Intel/distilbart-cnn-12-6-int8-dynamic" tokenizer_summarizer = AutoTokenizer.from_pretrained(summarizer_model_id) int8_model = INCModelForSeq2SeqLM.from_pretrained(summarizer_model_id) def summarize_text(text, max_length=100): inputs = tokenizer_summarizer(text, return_tensors="pt", max_length=512, truncation=True) summary_ids = int8_model.generate(inputs.input_ids, max_length=max_length, min_length=25, do_sample=False) summary = tokenizer_summarizer.decode(summary_ids[0], skip_special_tokens=True) return summary def match_cv_to_jobs(cv_text, job_descriptions_text): debug_info = "Debug Info:\n" results = [] # Summarize the CV text summarized_cv = summarize_text(cv_text, max_length=400) debug_info += f"Summarized CV Text: {summarized_cv}\n" # Summarize all job descriptions at once summarized_descriptions = summarize_text(job_descriptions_text, max_length=400) debug_info += f"Summarized Job Descriptions: {summarized_descriptions}\n" # Create a prompt to compare the summarized CV with the summarized job descriptions prompt = ( f"Compare the following job descriptions with this resume. Job Descriptions: {summarized_descriptions}. " f"Resume: {summarized_cv}. Provide a match score and a brief analysis." ) debug_info += f"\nGenerated Prompt: {prompt}\n" # Generate response from the causal model inputs = tokenizer(prompt, return_tensors="pt") try: outputs = causal_model.generate(**inputs, max_length=200) response_content = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] debug_info += f"Model Response: {response_content}\n" try: response_data = json.loads(response_content) results.append(response_data) except json.JSONDecodeError: results.append({ "Job Descriptions": job_descriptions_text, "Analysis": response_content }) except Exception as e: debug_info += f"Error: {str(e)}\n" results.append({"Job Descriptions": job_descriptions_text, "Error": str(e)}) return results, debug_info # Gradio interface with gr.Blocks() as demo: gr.Markdown("# CV and Job Description Matcher with Summarization and Debugging") # Input fields for CV and job descriptions cv_text = gr.Textbox(label="CV Text", placeholder="Enter the CV text here", lines=10) job_descriptions_text = gr.Textbox(label="Job Descriptions", placeholder="Enter the job descriptions text here", lines=10) # Button and output area match_button = gr.Button("Match CV to Job Descriptions") output = gr.JSON(label="Match Results") debug_output = gr.Textbox(label="Debug Info", lines=10) # Add a debug box to display debug info # Set button click to run the function match_button.click(fn=match_cv_to_jobs, inputs=[cv_text, job_descriptions_text], outputs=[output, debug_output]) demo.launch()