Spaces:
Sleeping
Sleeping
import streamlit as st | |
import whisper | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.metrics.pairwise import cosine_similarity | |
import base64 | |
from pydub import AudioSegment | |
from hezar.models import Model | |
st.set_page_config( | |
page_title="Sing It Forward App", | |
page_icon="🎵") | |
st.markdown( | |
""" | |
<style> | |
body { | |
background: linear-gradient(to bottom, #0E5AAB, #00ffff); | |
padding: 20px; | |
border-radius: 10px; | |
} | |
a { | |
color: #EDA67C !important | |
} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
def load_image(image_file): | |
with open(image_file, "rb") as f: | |
return f.read() | |
image_data = load_image("bcg.jpg") | |
image_base64 = base64.b64encode(image_data).decode() | |
st.markdown( | |
f""" | |
<style> | |
.stApp {{ | |
background-image: url(data:image/jpeg;base64,{image_base64}); | |
background-size: cover; | |
background-position: center; | |
background-repeat: no-repeat; | |
}} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
st.markdown("<h1 style='text-align: center; margin-bottom: 5px;'>Sing It Forward App🎵</h1>", unsafe_allow_html=True) | |
description = """ | |
<h5>Welcome to Sing It Forward App!</h5> | |
<p style="text-align: justify;"> | |
Get ready to test your singing skills and memory! First, listen carefully to the first part of the song, then it’s your turn to shine. | |
Record yourself singing the next 15 seconds on your own, matching the lyrics and rhythm perfectly. Think you’ve got what it takes to keep the music going? | |
Let’s see if you can hit the right notes and showcase your talent! Unleash your inner star and take the challenge! | |
</p> | |
📌For any questions or contact: | |
**Name:** <span style="color: #EDA67C;">Sahand Khorsandi</span> | |
**Email:** <a href="mailto:[email protected]" style="color: #EDA67C;">[email protected]</a>""" | |
st.markdown(description, unsafe_allow_html=True) | |
st.write('------') | |
def cosine_sim(text1, text2): | |
vectorizer = TfidfVectorizer().fit_transform([text1, text2]) | |
vectors = vectorizer.toarray() | |
return cosine_similarity(vectors)[0, 1] | |
tab1, tab2 = st.tabs(["Take Challenge", "Make Challenge"]) | |
with tab1: | |
st.write("Listen to music since you have to record 15seconds after that") | |
st.audio("titanic.mp3") | |
audio_value = st.experimental_audio_input("Sing Rest of music:🎙️") | |
lyrics = "Far across the distance And spaces between us You have come to show you go on" | |
if audio_value: | |
with open("user_sing.mp3", "wb") as f: | |
f.write(audio_value.getbuffer()) | |
model = whisper.load_model("base.en") | |
user_lyrics = model.transcribe("user_sing.mp3", language="en")["text"] | |
st.write(user_lyrics) | |
similarity_score = cosine_sim(lyrics, user_lyrics) | |
if similarity_score > 0.85: | |
st.success('Awsome! You are doing great', icon="✅") | |
st.markdown('<style>div.stAlert { background-color: rgba(3, 67, 24, 0.9); }</style>', unsafe_allow_html=True) | |
else: | |
st.error('Awful! Try harder next time', icon="🚨") | |
st.markdown('<style>div.stAlert { background-color: rgba(241, 36, 36, 0.9); }</style>', unsafe_allow_html=True) | |
def take_challenge(music_file, typed_lyrics, key, language): | |
st.write('------') | |
st.write("Listen to music since you have to record 15seconds after that") | |
st.audio(music_file) | |
audio_value = st.experimental_audio_input("Sing Rest of music:🎙️", key=key) | |
if audio_value: | |
with open("user_sing.mp3", "wb") as f: | |
f.write(audio_value.getbuffer()) | |
if language == "en": | |
model = whisper.load_model("base.en") | |
user_lyrics = model.transcribe("user_sing.mp3", language=language)["text"] | |
else: | |
model = Model.load("hezarai/whisper-small-fa") | |
user_lyrics = model.predict("user_sing.mp3")[0]["text"] | |
st.write(user_lyrics) | |
similarity_score = cosine_sim(typed_lyrics, user_lyrics) | |
if similarity_score > 0.85: | |
st.success('Awsome! You are doing great', icon="✅") | |
st.markdown('<style>div.stAlert { background-color: rgba(3, 67, 24, 0.9); }</style>', unsafe_allow_html=True) | |
else: | |
st.error('Awful! Try harder next time', icon="🚨") | |
st.markdown('<style>div.stAlert { background-color: rgba(241, 36, 36, 0.9); }</style>', unsafe_allow_html=True) | |
with tab2: | |
st.write("Upload music to make challenge:") | |
uploaded_file = st.file_uploader("Choose a music file", type=["mp3", "wav"]) | |
language_mapping = {"English": "en", "Persian": "fa"} | |
selected_language = st.radio("Select Language", language_mapping.keys(), horizontal=True) | |
language = language_mapping[selected_language] | |
if uploaded_file is not None: | |
with open("raw_music.mp3", "wb") as f: | |
f.write(uploaded_file.getbuffer()) | |
st.audio("raw_music.mp3") | |
trimm_check = st.checkbox("Trim?") | |
if trimm_check: | |
st.write("Specify start and end times for trimming:") | |
audio = AudioSegment.from_file("raw_music.mp3") | |
duration = len(audio) // 1000 | |
start_time = st.number_input("Start Time (seconds)", min_value=0, max_value=duration, value=0) | |
end_time = st.number_input("End Time (seconds)", min_value=0, max_value=duration, value=duration) | |
if start_time < end_time: | |
trimmed_audio = audio[start_time * 1000:end_time * 1000] | |
trimmed_audio.export("trimmed_music.mp3", format="mp3") | |
st.write("Now type what user should sing:") | |
typed_lyrics = st.text_area("Lyrics to be singed:") | |
take_challenge("trimmed_music.mp3", typed_lyrics, "unique_key_1", language) | |
else: | |
st.error('Start Time should be smaller than End Time!', icon="❌") | |
st.markdown('<style>div.stAlert { background-color: rgba(241, 36, 36, 0.9); }</style>', unsafe_allow_html=True) | |
else: | |
st.write("Now type what user should sing:") | |
typed_lyrics = st.text_area("Lyrics to be singed:") | |
take_challenge("raw_music.mp3", typed_lyrics, "unique_key_2", language) |