Spaces:
Sleeping
Sleeping
sahandkh1419
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ from sklearn.feature_extraction.text import TfidfVectorizer
|
|
4 |
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
import base64
|
6 |
from pydub import AudioSegment
|
|
|
7 |
|
8 |
st.set_page_config(
|
9 |
page_title="Sing It Forward App",
|
@@ -72,7 +73,6 @@ def cosine_sim(text1, text2):
|
|
72 |
return cosine_similarity(vectors)[0, 1]
|
73 |
|
74 |
|
75 |
-
model = whisper.load_model("small")
|
76 |
|
77 |
|
78 |
tab1, tab2 = st.tabs(["Take Challenge", "Make Challenge"])
|
@@ -88,7 +88,8 @@ with tab1:
|
|
88 |
if audio_value:
|
89 |
with open("user_sing.mp3", "wb") as f:
|
90 |
f.write(audio_value.getbuffer())
|
91 |
-
|
|
|
92 |
user_lyrics = model.transcribe("user_sing.mp3", language="en")["text"]
|
93 |
st.write(user_lyrics)
|
94 |
similarity_score = cosine_sim(lyrics, user_lyrics)
|
@@ -108,7 +109,14 @@ def take_challenge(music_file, typed_lyrics, key, language):
|
|
108 |
if audio_value:
|
109 |
with open("user_sing.mp3", "wb") as f:
|
110 |
f.write(audio_value.getbuffer())
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
st.write(user_lyrics)
|
113 |
similarity_score = cosine_sim(typed_lyrics, user_lyrics)
|
114 |
if similarity_score > 0.85:
|
|
|
4 |
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
import base64
|
6 |
from pydub import AudioSegment
|
7 |
+
from hezar.models import Model
|
8 |
|
9 |
st.set_page_config(
|
10 |
page_title="Sing It Forward App",
|
|
|
73 |
return cosine_similarity(vectors)[0, 1]
|
74 |
|
75 |
|
|
|
76 |
|
77 |
|
78 |
tab1, tab2 = st.tabs(["Take Challenge", "Make Challenge"])
|
|
|
88 |
if audio_value:
|
89 |
with open("user_sing.mp3", "wb") as f:
|
90 |
f.write(audio_value.getbuffer())
|
91 |
+
|
92 |
+
model = whisper.load_model("base.en")
|
93 |
user_lyrics = model.transcribe("user_sing.mp3", language="en")["text"]
|
94 |
st.write(user_lyrics)
|
95 |
similarity_score = cosine_sim(lyrics, user_lyrics)
|
|
|
109 |
if audio_value:
|
110 |
with open("user_sing.mp3", "wb") as f:
|
111 |
f.write(audio_value.getbuffer())
|
112 |
+
|
113 |
+
if language == "en":
|
114 |
+
model = whisper.load_model("base.en")
|
115 |
+
user_lyrics = model.transcribe("user_sing.mp3", language=language)["text"]
|
116 |
+
else:
|
117 |
+
model = Model.load("hezarai/whisper-small-fa")
|
118 |
+
user_lyrics = model.predict("user_sing.mp3")[0]["text"]
|
119 |
+
|
120 |
st.write(user_lyrics)
|
121 |
similarity_score = cosine_sim(typed_lyrics, user_lyrics)
|
122 |
if similarity_score > 0.85:
|