Files changed (2) hide show
  1. README.md +0 -13
  2. app.py +36 -53
README.md CHANGED
@@ -1,16 +1,3 @@
1
- ---
2
- title: PowerPaint
3
- emoji: ⚡
4
- colorFrom: yellow
5
- colorTo: indigo
6
- sdk: gradio
7
- sdk_version: 3.50.2
8
- python_version: 3.9
9
- app_file: app.py
10
- pinned: false
11
- license: mit
12
- ---
13
-
14
  # A Task is Worth One Word: Learning with Task Prompts for High-Quality Versatile Image Inpainting
15
 
16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # A Task is Worth One Word: Learning with Task Prompts for High-Quality Versatile Image Inpainting
2
 
3
 
app.py CHANGED
@@ -115,10 +115,8 @@ def predict(
115
  seed,
116
  negative_prompt,
117
  task,
118
- left_expansion_ratio,
119
- right_expansion_ratio,
120
- top_expansion_ratio,
121
- bottom_expansion_ratio,
122
  ):
123
  size1, size2 = input_image["image"].convert("RGB").size
124
 
@@ -138,30 +136,40 @@ def predict(
138
  if task == "object-removal":
139
  prompt = prompt + " empty scene blur"
140
 
141
- if (
142
- left_expansion_ratio is not None and right_expansion_ratio is not None
143
- and top_expansion_ratio is not None and bottom_expansion_ratio is not None
144
- ):
145
  o_W, o_H = input_image["image"].convert("RGB").size
146
- c_W = int((1 + left_expansion_ratio + right_expansion_ratio) * o_W)
147
- c_H = int((1 + top_expansion_ratio + bottom_expansion_ratio) * o_H)
148
 
149
  expand_img = np.ones((c_H, c_W, 3), dtype=np.uint8) * 127
150
  original_img = np.array(input_image["image"])
151
  expand_img[
152
- int(top_expansion_ratio * o_H):int(top_expansion_ratio * o_H) + o_H,
153
- int(left_expansion_ratio * o_W):int(left_expansion_ratio * o_W) + o_W,
154
- :
155
  ] = original_img
156
 
157
  blurry_gap = 10
158
 
159
  expand_mask = np.ones((c_H, c_W, 3), dtype=np.uint8) * 255
160
- expand_mask[
161
- int(top_expansion_ratio * o_H) + blurry_gap:int(top_expansion_ratio * o_H) + o_H - blurry_gap,
162
- int(left_expansion_ratio * o_W) + blurry_gap:int(left_expansion_ratio * o_W) + o_W - blurry_gap,
163
- :
164
- ] = 0
 
 
 
 
 
 
 
 
 
 
 
 
 
165
 
166
  input_image["image"] = Image.fromarray(expand_img)
167
  input_image["mask"] = Image.fromarray(expand_mask)
@@ -176,16 +184,11 @@ def predict(
176
 
177
  np_inpimg = np.array(input_image["image"])
178
  np_inmask = np.array(input_image["mask"]) / 255.0
179
- if len(np_inmask.shape)==2:
180
- np_inmask = np.expand_dims(np_inmask, axis=-1)
181
- # return np_inpimg, np_inmask
182
 
183
  np_inpimg = np_inpimg * (1 - np_inmask)
184
 
185
  input_image["image"] = Image.fromarray(np_inpimg.astype(np.uint8)).convert("RGB")
186
 
187
-
188
- # return input_image
189
  set_seed(seed)
190
  global pipe
191
  result = pipe(
@@ -242,10 +245,8 @@ def infer(
242
  scale,
243
  seed,
244
  task,
245
- left_expansion_ratio,
246
- right_expansion_ratio,
247
- top_expansion_ratio,
248
- bottom_expansion_ratio,
249
  outpaint_prompt,
250
  outpaint_negative_prompt,
251
  removal_prompt,
@@ -277,10 +278,8 @@ def infer(
277
  seed,
278
  negative_prompt,
279
  task,
280
- left_expansion_ratio,
281
- right_expansion_ratio,
282
- top_expansion_ratio,
283
- bottom_expansion_ratio
284
  )
285
  else:
286
  task = "text-guided"
@@ -372,29 +371,15 @@ with gr.Blocks(css="style.css") as demo:
372
  )
373
  outpaint_prompt = gr.Textbox(label="Outpainting_prompt")
374
  outpaint_negative_prompt = gr.Textbox(label="Outpainting_negative_prompt")
375
- left_expansion_ratio = gr.Slider(
376
- label="left expansion ratio",
377
- minimum=1,
378
- maximum=4,
379
- step=0.05,
380
- value=1,
381
- )
382
- right_expansion_ratio = gr.Slider(
383
- label="right expansion ratio",
384
- minimum=1,
385
- maximum=4,
386
- step=0.05,
387
- value=1,
388
- )
389
- top_expansion_ratio = gr.Slider(
390
- label="top expansion ratio",
391
  minimum=1,
392
  maximum=4,
393
  step=0.05,
394
  value=1,
395
  )
396
- bottom_expansion_ratio = gr.Slider(
397
- label="bottom expansion ratio",
398
  minimum=1,
399
  maximum=4,
400
  step=0.05,
@@ -448,10 +433,8 @@ with gr.Blocks(css="style.css") as demo:
448
  scale,
449
  seed,
450
  task,
451
- left_expansion_ratio,
452
- right_expansion_ratio,
453
- top_expansion_ratio,
454
- bottom_expansion_ratio,
455
  outpaint_prompt,
456
  outpaint_negative_prompt,
457
  removal_prompt,
 
115
  seed,
116
  negative_prompt,
117
  task,
118
+ vertical_expansion_ratio,
119
+ horizontal_expansion_ratio,
 
 
120
  ):
121
  size1, size2 = input_image["image"].convert("RGB").size
122
 
 
136
  if task == "object-removal":
137
  prompt = prompt + " empty scene blur"
138
 
139
+ if vertical_expansion_ratio != None and horizontal_expansion_ratio != None:
 
 
 
140
  o_W, o_H = input_image["image"].convert("RGB").size
141
+ c_W = int(horizontal_expansion_ratio * o_W)
142
+ c_H = int(vertical_expansion_ratio * o_H)
143
 
144
  expand_img = np.ones((c_H, c_W, 3), dtype=np.uint8) * 127
145
  original_img = np.array(input_image["image"])
146
  expand_img[
147
+ int((c_H - o_H) / 2.0) : int((c_H - o_H) / 2.0) + o_H,
148
+ int((c_W - o_W) / 2.0) : int((c_W - o_W) / 2.0) + o_W,
149
+ :,
150
  ] = original_img
151
 
152
  blurry_gap = 10
153
 
154
  expand_mask = np.ones((c_H, c_W, 3), dtype=np.uint8) * 255
155
+ if vertical_expansion_ratio == 1 and horizontal_expansion_ratio != 1:
156
+ expand_mask[
157
+ int((c_H - o_H) / 2.0) : int((c_H - o_H) / 2.0) + o_H,
158
+ int((c_W - o_W) / 2.0) + blurry_gap : int((c_W - o_W) / 2.0) + o_W - blurry_gap,
159
+ :,
160
+ ] = 0
161
+ elif vertical_expansion_ratio != 1 and horizontal_expansion_ratio != 1:
162
+ expand_mask[
163
+ int((c_H - o_H) / 2.0) + blurry_gap : int((c_H - o_H) / 2.0) + o_H - blurry_gap,
164
+ int((c_W - o_W) / 2.0) + blurry_gap : int((c_W - o_W) / 2.0) + o_W - blurry_gap,
165
+ :,
166
+ ] = 0
167
+ elif vertical_expansion_ratio != 1 and horizontal_expansion_ratio == 1:
168
+ expand_mask[
169
+ int((c_H - o_H) / 2.0) + blurry_gap : int((c_H - o_H) / 2.0) + o_H - blurry_gap,
170
+ int((c_W - o_W) / 2.0) : int((c_W - o_W) / 2.0) + o_W,
171
+ :,
172
+ ] = 0
173
 
174
  input_image["image"] = Image.fromarray(expand_img)
175
  input_image["mask"] = Image.fromarray(expand_mask)
 
184
 
185
  np_inpimg = np.array(input_image["image"])
186
  np_inmask = np.array(input_image["mask"]) / 255.0
 
 
 
187
 
188
  np_inpimg = np_inpimg * (1 - np_inmask)
189
 
190
  input_image["image"] = Image.fromarray(np_inpimg.astype(np.uint8)).convert("RGB")
191
 
 
 
192
  set_seed(seed)
193
  global pipe
194
  result = pipe(
 
245
  scale,
246
  seed,
247
  task,
248
+ vertical_expansion_ratio,
249
+ horizontal_expansion_ratio,
 
 
250
  outpaint_prompt,
251
  outpaint_negative_prompt,
252
  removal_prompt,
 
278
  seed,
279
  negative_prompt,
280
  task,
281
+ vertical_expansion_ratio,
282
+ horizontal_expansion_ratio,
 
 
283
  )
284
  else:
285
  task = "text-guided"
 
371
  )
372
  outpaint_prompt = gr.Textbox(label="Outpainting_prompt")
373
  outpaint_negative_prompt = gr.Textbox(label="Outpainting_negative_prompt")
374
+ horizontal_expansion_ratio = gr.Slider(
375
+ label="horizontal expansion ratio",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
376
  minimum=1,
377
  maximum=4,
378
  step=0.05,
379
  value=1,
380
  )
381
+ vertical_expansion_ratio = gr.Slider(
382
+ label="vertical expansion ratio",
383
  minimum=1,
384
  maximum=4,
385
  step=0.05,
 
433
  scale,
434
  seed,
435
  task,
436
+ vertical_expansion_ratio,
437
+ horizontal_expansion_ratio,
 
 
438
  outpaint_prompt,
439
  outpaint_negative_prompt,
440
  removal_prompt,