Spaces:
Sleeping
Sleeping
import torch | |
# lol | |
sidel = 512 | |
DEVICE = 'cuda' | |
STEPS = 4 | |
output_hidden_state = False | |
device = "cuda" | |
dtype = torch.float16 | |
import matplotlib.pyplot as plt | |
import matplotlib | |
matplotlib.use('TkAgg') | |
from sklearn.linear_model import LinearRegression | |
from sfast.compilers.diffusion_pipeline_compiler import (compile, compile_unet, | |
CompilationConfig) | |
config = CompilationConfig.Default() | |
try: | |
import triton | |
config.enable_triton = True | |
except ImportError: | |
print('Triton not installed, skip') | |
config.enable_cuda_graph = True | |
config.enable_jit = True | |
config.enable_jit_freeze = True | |
config.enable_cnn_optimization = True | |
config.preserve_parameters = False | |
config.prefer_lowp_gemm = True | |
import imageio | |
import gradio as gr | |
import numpy as np | |
from sklearn.svm import SVC | |
from sklearn.inspection import permutation_importance | |
from sklearn import preprocessing | |
import pandas as pd | |
import random | |
import time | |
from PIL import Image | |
from safety_checker_improved import maybe_nsfw | |
torch.set_grad_enabled(False) | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
# TODO put back? | |
# import spaces | |
prompt_list = [p for p in list(set( | |
pd.read_csv('./twitter_prompts.csv').iloc[:, 1].tolist())) if type(p) == str] | |
start_time = time.time() | |
####################### Setup Model | |
from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler, LCMScheduler, ConsistencyDecoderVAE, AutoencoderTiny | |
from hyper_tile import split_attention, flush | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
from PIL import Image | |
from transformers import CLIPVisionModelWithProjection | |
import uuid | |
import av | |
def write_video(file_name, images, fps=10): | |
print('Saving') | |
container = av.open(file_name, mode="w") | |
stream = container.add_stream("h264", rate=fps) | |
stream.width = sidel | |
stream.height = sidel | |
stream.pix_fmt = "yuv420p" | |
for img in images: | |
img = np.array(img) | |
img = np.round(img).astype(np.uint8) | |
frame = av.VideoFrame.from_ndarray(img, format="rgb24") | |
for packet in stream.encode(frame): | |
container.mux(packet) | |
# Flush stream | |
for packet in stream.encode(): | |
container.mux(packet) | |
# Close the file | |
container.close() | |
print('Saved') | |
bases = { | |
#"basem": "emilianJR/epiCRealism" | |
#SG161222/Realistic_Vision_V6.0_B1_noVAE | |
#runwayml/stable-diffusion-v1-5 | |
#frankjoshua/realisticVisionV51_v51VAE | |
#Lykon/dreamshaper-7 | |
} | |
image_encoder = CLIPVisionModelWithProjection.from_pretrained("h94/IP-Adapter", subfolder="models/image_encoder", torch_dtype=dtype).to(DEVICE) | |
vae = AutoencoderTiny.from_pretrained("madebyollin/taesd", torch_dtype=dtype) | |
# vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=dtype) | |
# vae = compile_unet(vae, config=config) | |
#adapter = MotionAdapter.from_pretrained("wangfuyun/AnimateLCM") | |
#pipe = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapter=adapter, image_encoder=image_encoder, torch_dtype=dtype) | |
#pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, beta_schedule="linear") | |
#pipe.load_lora_weights("wangfuyun/AnimateLCM", weight_name="AnimateLCM_sd15_t2v_lora.safetensors", adapter_name="lcm-lora",) | |
#pipe.set_adapters(["lcm-lora"], [1]) | |
#pipe.fuse_lora() | |
pipe = AnimateDiffPipeline.from_pretrained('emilianJR/epiCRealism', torch_dtype=dtype, image_encoder=image_encoder, vae=vae) | |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear") | |
repo = "ByteDance/AnimateDiff-Lightning" | |
ckpt = f"animatediff_lightning_4step_diffusers.safetensors" | |
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device='cpu'), strict=False) | |
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin", map_location='cpu') | |
pipe.set_ip_adapter_scale(.8) | |
# pipe.unet.fuse_qkv_projections() | |
#pipe.enable_free_init(method="gaussian", use_fast_sampling=True) | |
pipe = compile(pipe, config=config) | |
pipe.to(device=DEVICE) | |
# THIS WOULD NEED PATCHING TODO | |
with split_attention(pipe.vae, tile_size=128, swap_size=2, disable=False, aspect_ratio=1): | |
# ! Change the tile_size and disable to see their effects | |
with split_attention(pipe.unet, tile_size=128, swap_size=2, disable=False, aspect_ratio=1): | |
im_embs = torch.zeros(1, 1, 1, 1024, device=DEVICE, dtype=dtype) | |
output = pipe(prompt='a person', guidance_scale=0, added_cond_kwargs={}, ip_adapter_image_embeds=[im_embs], num_inference_steps=STEPS) | |
leave_im_emb, _ = pipe.encode_image( | |
output.frames[0][len(output.frames[0])//2], DEVICE, 1, output_hidden_state | |
) | |
assert len(output.frames[0]) == 16 | |
leave_im_emb.to('cpu') | |
# TODO put back | |
# @spaces.GPU() | |
def generate(prompt, in_im_embs=None, base='basem'): | |
if in_im_embs == None: | |
in_im_embs = torch.zeros(1, 1, 1, 1024, device=DEVICE, dtype=dtype) | |
#in_im_embs = in_im_embs / torch.norm(in_im_embs) | |
else: | |
in_im_embs = in_im_embs.to('cuda').unsqueeze(0).unsqueeze(0) | |
#im_embs = torch.cat((torch.zeros(1, 1024, device=DEVICE, dtype=dtype), in_im_embs), 0) | |
with split_attention(pipe.unet, tile_size=128, swap_size=2, disable=False, aspect_ratio=1): | |
# ! Change the tile_size and disable to see their effects | |
with split_attention(pipe.vae, tile_size=128, disable=False, aspect_ratio=1): | |
output = pipe(prompt=prompt, guidance_scale=0, added_cond_kwargs={}, ip_adapter_image_embeds=[in_im_embs], num_inference_steps=STEPS) | |
im_emb, _ = pipe.encode_image( | |
output.frames[0][len(output.frames[0])//2], DEVICE, 1, output_hidden_state | |
) | |
nsfw = maybe_nsfw(output.frames[0][len(output.frames[0])//2]) | |
name = str(uuid.uuid4()).replace("-", "") | |
path = f"/tmp/{name}.mp4" | |
if nsfw: | |
gr.Warning("NSFW content detected.") | |
# TODO could return an automatic dislike of auto dislike on the backend for neither as well; just would need refactoring. | |
return None, im_emb | |
plt.close('all') | |
plt.hist(np.array(im_emb.to('cpu')).flatten(), bins=5) | |
plt.savefig('real_im_emb_plot.jpg') | |
write_video(path, output.frames[0]) | |
return path, im_emb.to('cpu') | |
####################### | |
# TODO add to state instead of shared across all | |
glob_idx = 0 | |
def next_image(embs, ys, calibrate_prompts): | |
global glob_idx | |
glob_idx = glob_idx + 1 | |
with torch.no_grad(): | |
if len(calibrate_prompts) > 0: | |
print('######### Calibrating with sample prompts #########') | |
prompt = calibrate_prompts.pop(0) | |
print(prompt) | |
image, img_embs = generate(prompt) | |
embs += img_embs | |
print(len(embs)) | |
return image, embs, ys, calibrate_prompts | |
else: | |
print('######### Roaming #########') | |
# sample a .8 of rated embeddings for some stochasticity, or at least two embeddings. | |
# could take a sample < len(embs) | |
#n_to_choose = max(int((len(embs))), 2) | |
#indices = random.sample(range(len(embs)), n_to_choose) | |
# sample only as many negatives as there are positives | |
#pos_indices = [i for i in indices if ys[i] == 1] | |
#neg_indices = [i for i in indices if ys[i] == 0] | |
#lower = min(len(pos_indices), len(neg_indices)) | |
#neg_indices = random.sample(neg_indices, lower) | |
#pos_indices = random.sample(pos_indices, lower) | |
#indices = neg_indices + pos_indices | |
pos_indices = [i for i in range(len(embs)) if ys[i] == 1] | |
neg_indices = [i for i in range(len(embs)) if ys[i] == 0] | |
# the embs & ys stay tied by index but we shuffle to drop randomly | |
random.shuffle(pos_indices) | |
random.shuffle(neg_indices) | |
#if len(pos_indices) - len(neg_indices) > 48 and len(pos_indices) > 80: | |
# pos_indices = pos_indices[32:] | |
if len(neg_indices) - len(pos_indices) > 48/16 and len(pos_indices) > 120/16: | |
pos_indices = pos_indices[1:] | |
if len(neg_indices) - len(pos_indices) > 48/16 and len(neg_indices) > 200/16: | |
neg_indices = neg_indices[2:] | |
print(len(pos_indices), len(neg_indices)) | |
indices = pos_indices + neg_indices | |
embs = [embs[i] for i in indices] | |
ys = [ys[i] for i in indices] | |
indices = list(range(len(embs))) | |
# handle case where every instance of calibration prompts is 'Neither' or 'Like' or 'Dislike' | |
if len(list(set(ys))) <= 1: | |
embs.append(.01*torch.randn(1024)) | |
embs.append(.01*torch.randn(1024)) | |
ys.append(0) | |
ys.append(1) | |
# also add the latest 0 and the latest 1 | |
has_0 = False | |
has_1 = False | |
for i in reversed(range(len(ys))): | |
if ys[i] == 0 and has_0 == False: | |
indices.append(i) | |
has_0 = True | |
elif ys[i] == 1 and has_1 == False: | |
indices.append(i) | |
has_1 = True | |
if has_0 and has_1: | |
break | |
# we may have just encountered a rare multi-threading diffusers issue (https://github.com/huggingface/diffusers/issues/5749); | |
# this ends up adding a rating but losing an embedding, it seems. | |
# let's take off a rating if so to continue without indexing errors. | |
if len(ys) > len(embs): | |
print('ys are longer than embs; popping latest rating') | |
ys.pop(-1) | |
feature_embs = np.array(torch.stack([embs[i].to('cpu') for i in indices] + [leave_im_emb[0].to('cpu')]).to('cpu')) | |
scaler = preprocessing.StandardScaler().fit(feature_embs) | |
feature_embs = scaler.transform(feature_embs) | |
chosen_y = np.array([ys[i] for i in indices] + [0]) | |
print('Gathering coefficients') | |
#lin_class = LinearRegression(fit_intercept=False).fit(feature_embs, chosen_y) | |
lin_class = SVC(max_iter=50000, kernel='linear', class_weight='balanced', C=1).fit(feature_embs, chosen_y) | |
coef_ = torch.tensor(lin_class.coef_, dtype=torch.double) | |
coef_ = coef_ / coef_.abs().max() * 3 | |
print(coef_.shape, 'COEF') | |
plt.close('all') | |
plt.hist(np.array(coef_).flatten(), bins=5) | |
plt.savefig('plot.jpg') | |
print(coef_) | |
print('Gathered') | |
rng_prompt = random.choice(prompt_list) | |
w = 1# if len(embs) % 2 == 0 else 0 | |
im_emb = w * coef_.to(dtype=dtype) | |
prompt= 'the scene' if glob_idx % 2 == 0 else rng_prompt | |
print(prompt) | |
image, im_emb = generate(prompt, im_emb) | |
embs += im_emb | |
if len(embs) > 700/16: | |
embs = embs[1:] | |
ys = ys[1:] | |
return image, embs, ys, calibrate_prompts | |
def start(_, embs, ys, calibrate_prompts): | |
image, embs, ys, calibrate_prompts = next_image(embs, ys, calibrate_prompts) | |
return [ | |
gr.Button(value='Like (L)', interactive=True), | |
gr.Button(value='Neither (Space)', interactive=True), | |
gr.Button(value='Dislike (A)', interactive=True), | |
gr.Button(value='Start', interactive=False), | |
image, | |
embs, | |
ys, | |
calibrate_prompts | |
] | |
def choose(img, choice, embs, ys, calibrate_prompts): | |
if choice == 'Like (L)': | |
choice = 1 | |
elif choice == 'Neither (Space)': | |
embs = embs[:-1] | |
img, embs, ys, calibrate_prompts = next_image(embs, ys, calibrate_prompts) | |
return img, embs, ys, calibrate_prompts | |
else: | |
choice = 0 | |
# if we detected NSFW, leave that area of latent space regardless of how they rated chosen. | |
# TODO skip allowing rating | |
if img == None: | |
print('NSFW -- choice is disliked') | |
choice = 0 | |
ys += [choice]*1 | |
img, embs, ys, calibrate_prompts = next_image(embs, ys, calibrate_prompts) | |
return img, embs, ys, calibrate_prompts | |
css = '''.gradio-container{max-width: 700px !important} | |
#description{text-align: center} | |
#description h1, #description h3{display: block} | |
#description p{margin-top: 0} | |
.fade-in-out {animation: fadeInOut 3s forwards} | |
@keyframes fadeInOut { | |
0% { | |
background: var(--bg-color); | |
} | |
100% { | |
background: var(--button-secondary-background-fill); | |
} | |
} | |
''' | |
js_head = ''' | |
<script> | |
document.addEventListener('keydown', function(event) { | |
if (event.key === 'a' || event.key === 'A') { | |
// Trigger click on 'dislike' if 'A' is pressed | |
document.getElementById('dislike').click(); | |
} else if (event.key === ' ' || event.keyCode === 32) { | |
// Trigger click on 'neither' if Spacebar is pressed | |
document.getElementById('neither').click(); | |
} else if (event.key === 'l' || event.key === 'L') { | |
// Trigger click on 'like' if 'L' is pressed | |
document.getElementById('like').click(); | |
} | |
}); | |
function fadeInOut(button, color) { | |
button.style.setProperty('--bg-color', color); | |
button.classList.remove('fade-in-out'); | |
void button.offsetWidth; // This line forces a repaint by accessing a DOM property | |
button.classList.add('fade-in-out'); | |
button.addEventListener('animationend', () => { | |
button.classList.remove('fade-in-out'); // Reset the animation state | |
}, {once: true}); | |
} | |
document.body.addEventListener('click', function(event) { | |
const target = event.target; | |
if (target.id === 'dislike') { | |
fadeInOut(target, '#ff1717'); | |
} else if (target.id === 'like') { | |
fadeInOut(target, '#006500'); | |
} else if (target.id === 'neither') { | |
fadeInOut(target, '#cccccc'); | |
} | |
}); | |
</script> | |
''' | |
with gr.Blocks(css=css, head=js_head) as demo: | |
gr.Markdown('''### Blue Tigers: Generative Recommenders for Exporation of Video | |
Explore the latent space without text prompts based on your preferences. Learn more on [the write-up](https://rynmurdock.github.io/posts/2024/3/generative_recomenders/). | |
''', elem_id="description") | |
embs = gr.State([]) | |
ys = gr.State([]) | |
calibrate_prompts = gr.State([ | |
'the moon is melting into my glass of tea', | |
'a sea slug -- pair of claws scuttling -- jelly fish glowing', | |
'an adorable creature. It may be a goblin or a pig or a slug.', | |
'an animation about a gorgeous nebula', | |
'an octopus writhes', | |
]) | |
def l(): | |
return None | |
with gr.Row(elem_id='output-image'): | |
img = gr.Video( | |
label='Lightning', | |
autoplay=True, | |
interactive=False, | |
height=sidel, | |
width=sidel, | |
include_audio=False, | |
elem_id="video_output" | |
) | |
img.play(l, js='''document.querySelector('[data-testid="Lightning-player"]').loop = true''') | |
with gr.Row(equal_height=True): | |
b3 = gr.Button(value='Dislike (A)', interactive=False, elem_id="dislike") | |
b2 = gr.Button(value='Neither (Space)', interactive=False, elem_id="neither") | |
b1 = gr.Button(value='Like (L)', interactive=False, elem_id="like") | |
b1.click( | |
choose, | |
[img, b1, embs, ys, calibrate_prompts], | |
[img, embs, ys, calibrate_prompts] | |
) | |
b2.click( | |
choose, | |
[img, b2, embs, ys, calibrate_prompts], | |
[img, embs, ys, calibrate_prompts] | |
) | |
b3.click( | |
choose, | |
[img, b3, embs, ys, calibrate_prompts], | |
[img, embs, ys, calibrate_prompts] | |
) | |
with gr.Row(): | |
b4 = gr.Button(value='Start') | |
b4.click(start, | |
[b4, embs, ys, calibrate_prompts], | |
[b1, b2, b3, b4, img, embs, ys, calibrate_prompts]) | |
with gr.Row(): | |
html = gr.HTML('''<div style='text-align:center; font-size:20px'>You will calibrate for several prompts and then roam. </ div><br><br><br> | |
<div style='text-align:center; font-size:14px'>Note that while the AnimateDiff-Lightning model with NSFW filtering is unlikely to produce NSFW images, this may still occur, and users should avoid NSFW content when rating. | |
</ div> | |
<br><br> | |
<div style='text-align:center; font-size:14px'>Thanks to @multimodalart for their contributions to the demo, esp. the interface and @maxbittker for feedback. | |
</ div>''') | |
demo.launch(share=True) | |