Spaces:
Running
on
A10G
Running
on
A10G
File size: 16,875 Bytes
67e8481 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
import torch
# lol
sidel = 512
DEVICE = 'cuda'
STEPS = 4
output_hidden_state = False
device = "cuda"
dtype = torch.float16
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('TkAgg')
from sklearn.linear_model import LinearRegression
from sfast.compilers.diffusion_pipeline_compiler import (compile, compile_unet,
CompilationConfig)
config = CompilationConfig.Default()
try:
import triton
config.enable_triton = True
except ImportError:
print('Triton not installed, skip')
config.enable_cuda_graph = True
config.enable_jit = True
config.enable_jit_freeze = True
config.enable_cnn_optimization = True
config.preserve_parameters = False
config.prefer_lowp_gemm = True
import imageio
import gradio as gr
import numpy as np
from sklearn.svm import SVC
from sklearn.inspection import permutation_importance
from sklearn import preprocessing
import pandas as pd
import random
import time
from PIL import Image
from safety_checker_improved import maybe_nsfw
torch.set_grad_enabled(False)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# TODO put back?
# import spaces
prompt_list = [p for p in list(set(
pd.read_csv('./twitter_prompts.csv').iloc[:, 1].tolist())) if type(p) == str]
start_time = time.time()
####################### Setup Model
from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler, LCMScheduler, ConsistencyDecoderVAE, AutoencoderTiny
from hyper_tile import split_attention, flush
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from PIL import Image
from transformers import CLIPVisionModelWithProjection
import uuid
import av
def write_video(file_name, images, fps=10):
print('Saving')
container = av.open(file_name, mode="w")
stream = container.add_stream("h264", rate=fps)
stream.width = sidel
stream.height = sidel
stream.pix_fmt = "yuv420p"
for img in images:
img = np.array(img)
img = np.round(img).astype(np.uint8)
frame = av.VideoFrame.from_ndarray(img, format="rgb24")
for packet in stream.encode(frame):
container.mux(packet)
# Flush stream
for packet in stream.encode():
container.mux(packet)
# Close the file
container.close()
print('Saved')
bases = {
#"basem": "emilianJR/epiCRealism"
#SG161222/Realistic_Vision_V6.0_B1_noVAE
#runwayml/stable-diffusion-v1-5
#frankjoshua/realisticVisionV51_v51VAE
#Lykon/dreamshaper-7
}
image_encoder = CLIPVisionModelWithProjection.from_pretrained("h94/IP-Adapter", subfolder="models/image_encoder", torch_dtype=dtype).to(DEVICE)
vae = AutoencoderTiny.from_pretrained("madebyollin/taesd", torch_dtype=dtype)
# vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=dtype)
# vae = compile_unet(vae, config=config)
#adapter = MotionAdapter.from_pretrained("wangfuyun/AnimateLCM")
#pipe = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapter=adapter, image_encoder=image_encoder, torch_dtype=dtype)
#pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, beta_schedule="linear")
#pipe.load_lora_weights("wangfuyun/AnimateLCM", weight_name="AnimateLCM_sd15_t2v_lora.safetensors", adapter_name="lcm-lora",)
#pipe.set_adapters(["lcm-lora"], [1])
#pipe.fuse_lora()
pipe = AnimateDiffPipeline.from_pretrained('emilianJR/epiCRealism', torch_dtype=dtype, image_encoder=image_encoder, vae=vae)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
repo = "ByteDance/AnimateDiff-Lightning"
ckpt = f"animatediff_lightning_4step_diffusers.safetensors"
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device='cpu'), strict=False)
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin", map_location='cpu')
pipe.set_ip_adapter_scale(.8)
# pipe.unet.fuse_qkv_projections()
#pipe.enable_free_init(method="gaussian", use_fast_sampling=True)
pipe = compile(pipe, config=config)
pipe.to(device=DEVICE)
# THIS WOULD NEED PATCHING TODO
with split_attention(pipe.vae, tile_size=128, swap_size=2, disable=False, aspect_ratio=1):
# ! Change the tile_size and disable to see their effects
with split_attention(pipe.unet, tile_size=128, swap_size=2, disable=False, aspect_ratio=1):
im_embs = torch.zeros(1, 1, 1, 1024, device=DEVICE, dtype=dtype)
output = pipe(prompt='a person', guidance_scale=0, added_cond_kwargs={}, ip_adapter_image_embeds=[im_embs], num_inference_steps=STEPS)
leave_im_emb, _ = pipe.encode_image(
output.frames[0][len(output.frames[0])//2], DEVICE, 1, output_hidden_state
)
assert len(output.frames[0]) == 16
leave_im_emb.to('cpu')
# TODO put back
# @spaces.GPU()
def generate(prompt, in_im_embs=None, base='basem'):
if in_im_embs == None:
in_im_embs = torch.zeros(1, 1, 1, 1024, device=DEVICE, dtype=dtype)
#in_im_embs = in_im_embs / torch.norm(in_im_embs)
else:
in_im_embs = in_im_embs.to('cuda').unsqueeze(0).unsqueeze(0)
#im_embs = torch.cat((torch.zeros(1, 1024, device=DEVICE, dtype=dtype), in_im_embs), 0)
with split_attention(pipe.unet, tile_size=128, swap_size=2, disable=False, aspect_ratio=1):
# ! Change the tile_size and disable to see their effects
with split_attention(pipe.vae, tile_size=128, disable=False, aspect_ratio=1):
output = pipe(prompt=prompt, guidance_scale=0, added_cond_kwargs={}, ip_adapter_image_embeds=[in_im_embs], num_inference_steps=STEPS)
im_emb, _ = pipe.encode_image(
output.frames[0][len(output.frames[0])//2], DEVICE, 1, output_hidden_state
)
nsfw = maybe_nsfw(output.frames[0][len(output.frames[0])//2])
name = str(uuid.uuid4()).replace("-", "")
path = f"/tmp/{name}.mp4"
if nsfw:
gr.Warning("NSFW content detected.")
# TODO could return an automatic dislike of auto dislike on the backend for neither as well; just would need refactoring.
return None, im_emb
plt.close('all')
plt.hist(np.array(im_emb.to('cpu')).flatten(), bins=5)
plt.savefig('real_im_emb_plot.jpg')
write_video(path, output.frames[0])
return path, im_emb.to('cpu')
#######################
# TODO add to state instead of shared across all
glob_idx = 0
def next_image(embs, ys, calibrate_prompts):
global glob_idx
glob_idx = glob_idx + 1
with torch.no_grad():
if len(calibrate_prompts) > 0:
print('######### Calibrating with sample prompts #########')
prompt = calibrate_prompts.pop(0)
print(prompt)
image, img_embs = generate(prompt)
embs += img_embs
print(len(embs))
return image, embs, ys, calibrate_prompts
else:
print('######### Roaming #########')
# sample a .8 of rated embeddings for some stochasticity, or at least two embeddings.
# could take a sample < len(embs)
#n_to_choose = max(int((len(embs))), 2)
#indices = random.sample(range(len(embs)), n_to_choose)
# sample only as many negatives as there are positives
#pos_indices = [i for i in indices if ys[i] == 1]
#neg_indices = [i for i in indices if ys[i] == 0]
#lower = min(len(pos_indices), len(neg_indices))
#neg_indices = random.sample(neg_indices, lower)
#pos_indices = random.sample(pos_indices, lower)
#indices = neg_indices + pos_indices
pos_indices = [i for i in range(len(embs)) if ys[i] == 1]
neg_indices = [i for i in range(len(embs)) if ys[i] == 0]
# the embs & ys stay tied by index but we shuffle to drop randomly
random.shuffle(pos_indices)
random.shuffle(neg_indices)
#if len(pos_indices) - len(neg_indices) > 48 and len(pos_indices) > 80:
# pos_indices = pos_indices[32:]
if len(neg_indices) - len(pos_indices) > 48/16 and len(pos_indices) > 120/16:
pos_indices = pos_indices[1:]
if len(neg_indices) - len(pos_indices) > 48/16 and len(neg_indices) > 200/16:
neg_indices = neg_indices[2:]
print(len(pos_indices), len(neg_indices))
indices = pos_indices + neg_indices
embs = [embs[i] for i in indices]
ys = [ys[i] for i in indices]
indices = list(range(len(embs)))
# handle case where every instance of calibration prompts is 'Neither' or 'Like' or 'Dislike'
if len(list(set(ys))) <= 1:
embs.append(.01*torch.randn(1024))
embs.append(.01*torch.randn(1024))
ys.append(0)
ys.append(1)
# also add the latest 0 and the latest 1
has_0 = False
has_1 = False
for i in reversed(range(len(ys))):
if ys[i] == 0 and has_0 == False:
indices.append(i)
has_0 = True
elif ys[i] == 1 and has_1 == False:
indices.append(i)
has_1 = True
if has_0 and has_1:
break
# we may have just encountered a rare multi-threading diffusers issue (https://github.com/huggingface/diffusers/issues/5749);
# this ends up adding a rating but losing an embedding, it seems.
# let's take off a rating if so to continue without indexing errors.
if len(ys) > len(embs):
print('ys are longer than embs; popping latest rating')
ys.pop(-1)
feature_embs = np.array(torch.stack([embs[i].to('cpu') for i in indices] + [leave_im_emb[0].to('cpu')]).to('cpu'))
scaler = preprocessing.StandardScaler().fit(feature_embs)
feature_embs = scaler.transform(feature_embs)
chosen_y = np.array([ys[i] for i in indices] + [0])
print('Gathering coefficients')
#lin_class = LinearRegression(fit_intercept=False).fit(feature_embs, chosen_y)
lin_class = SVC(max_iter=50000, kernel='linear', class_weight='balanced', C=1).fit(feature_embs, chosen_y)
coef_ = torch.tensor(lin_class.coef_, dtype=torch.double)
coef_ = coef_ / coef_.abs().max() * 3
print(coef_.shape, 'COEF')
plt.close('all')
plt.hist(np.array(coef_).flatten(), bins=5)
plt.savefig('plot.jpg')
print(coef_)
print('Gathered')
rng_prompt = random.choice(prompt_list)
w = 1# if len(embs) % 2 == 0 else 0
im_emb = w * coef_.to(dtype=dtype)
prompt= 'the scene' if glob_idx % 2 == 0 else rng_prompt
print(prompt)
image, im_emb = generate(prompt, im_emb)
embs += im_emb
if len(embs) > 700/16:
embs = embs[1:]
ys = ys[1:]
return image, embs, ys, calibrate_prompts
def start(_, embs, ys, calibrate_prompts):
image, embs, ys, calibrate_prompts = next_image(embs, ys, calibrate_prompts)
return [
gr.Button(value='Like (L)', interactive=True),
gr.Button(value='Neither (Space)', interactive=True),
gr.Button(value='Dislike (A)', interactive=True),
gr.Button(value='Start', interactive=False),
image,
embs,
ys,
calibrate_prompts
]
def choose(img, choice, embs, ys, calibrate_prompts):
if choice == 'Like (L)':
choice = 1
elif choice == 'Neither (Space)':
embs = embs[:-1]
img, embs, ys, calibrate_prompts = next_image(embs, ys, calibrate_prompts)
return img, embs, ys, calibrate_prompts
else:
choice = 0
# if we detected NSFW, leave that area of latent space regardless of how they rated chosen.
# TODO skip allowing rating
if img == None:
print('NSFW -- choice is disliked')
choice = 0
ys += [choice]*1
img, embs, ys, calibrate_prompts = next_image(embs, ys, calibrate_prompts)
return img, embs, ys, calibrate_prompts
css = '''.gradio-container{max-width: 700px !important}
#description{text-align: center}
#description h1, #description h3{display: block}
#description p{margin-top: 0}
.fade-in-out {animation: fadeInOut 3s forwards}
@keyframes fadeInOut {
0% {
background: var(--bg-color);
}
100% {
background: var(--button-secondary-background-fill);
}
}
'''
js_head = '''
<script>
document.addEventListener('keydown', function(event) {
if (event.key === 'a' || event.key === 'A') {
// Trigger click on 'dislike' if 'A' is pressed
document.getElementById('dislike').click();
} else if (event.key === ' ' || event.keyCode === 32) {
// Trigger click on 'neither' if Spacebar is pressed
document.getElementById('neither').click();
} else if (event.key === 'l' || event.key === 'L') {
// Trigger click on 'like' if 'L' is pressed
document.getElementById('like').click();
}
});
function fadeInOut(button, color) {
button.style.setProperty('--bg-color', color);
button.classList.remove('fade-in-out');
void button.offsetWidth; // This line forces a repaint by accessing a DOM property
button.classList.add('fade-in-out');
button.addEventListener('animationend', () => {
button.classList.remove('fade-in-out'); // Reset the animation state
}, {once: true});
}
document.body.addEventListener('click', function(event) {
const target = event.target;
if (target.id === 'dislike') {
fadeInOut(target, '#ff1717');
} else if (target.id === 'like') {
fadeInOut(target, '#006500');
} else if (target.id === 'neither') {
fadeInOut(target, '#cccccc');
}
});
</script>
'''
with gr.Blocks(css=css, head=js_head) as demo:
gr.Markdown('''### Blue Tigers: Generative Recommenders for Exporation of Video
Explore the latent space without text prompts based on your preferences. Learn more on [the write-up](https://rynmurdock.github.io/posts/2024/3/generative_recomenders/).
''', elem_id="description")
embs = gr.State([])
ys = gr.State([])
calibrate_prompts = gr.State([
'the moon is melting into my glass of tea',
'a sea slug -- pair of claws scuttling -- jelly fish glowing',
'an adorable creature. It may be a goblin or a pig or a slug.',
'an animation about a gorgeous nebula',
'an octopus writhes',
])
def l():
return None
with gr.Row(elem_id='output-image'):
img = gr.Video(
label='Lightning',
autoplay=True,
interactive=False,
height=sidel,
width=sidel,
include_audio=False,
elem_id="video_output"
)
img.play(l, js='''document.querySelector('[data-testid="Lightning-player"]').loop = true''')
with gr.Row(equal_height=True):
b3 = gr.Button(value='Dislike (A)', interactive=False, elem_id="dislike")
b2 = gr.Button(value='Neither (Space)', interactive=False, elem_id="neither")
b1 = gr.Button(value='Like (L)', interactive=False, elem_id="like")
b1.click(
choose,
[img, b1, embs, ys, calibrate_prompts],
[img, embs, ys, calibrate_prompts]
)
b2.click(
choose,
[img, b2, embs, ys, calibrate_prompts],
[img, embs, ys, calibrate_prompts]
)
b3.click(
choose,
[img, b3, embs, ys, calibrate_prompts],
[img, embs, ys, calibrate_prompts]
)
with gr.Row():
b4 = gr.Button(value='Start')
b4.click(start,
[b4, embs, ys, calibrate_prompts],
[b1, b2, b3, b4, img, embs, ys, calibrate_prompts])
with gr.Row():
html = gr.HTML('''<div style='text-align:center; font-size:20px'>You will calibrate for several prompts and then roam. </ div><br><br><br>
<div style='text-align:center; font-size:14px'>Note that while the AnimateDiff-Lightning model with NSFW filtering is unlikely to produce NSFW images, this may still occur, and users should avoid NSFW content when rating.
</ div>
<br><br>
<div style='text-align:center; font-size:14px'>Thanks to @multimodalart for their contributions to the demo, esp. the interface and @maxbittker for feedback.
</ div>''')
demo.launch(share=True)
|