File size: 16,875 Bytes
67e8481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453

import torch

# lol
sidel = 512
DEVICE = 'cuda'
STEPS = 4
output_hidden_state = False
device = "cuda"
dtype = torch.float16

import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('TkAgg')

from sklearn.linear_model import LinearRegression
from sfast.compilers.diffusion_pipeline_compiler import (compile, compile_unet,
                                                         CompilationConfig)
config = CompilationConfig.Default()

try:
    import triton
    config.enable_triton = True
except ImportError:
    print('Triton not installed, skip')
config.enable_cuda_graph = True

config.enable_jit = True
config.enable_jit_freeze = True

config.enable_cnn_optimization = True
config.preserve_parameters = False
config.prefer_lowp_gemm = True

import imageio
import gradio as gr
import numpy as np
from sklearn.svm import SVC
from sklearn.inspection import permutation_importance
from sklearn import preprocessing
import pandas as pd

import random
import time
from PIL import Image
from safety_checker_improved import maybe_nsfw


torch.set_grad_enabled(False)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True

# TODO put back?
# import spaces

prompt_list = [p for p in list(set(
                pd.read_csv('./twitter_prompts.csv').iloc[:, 1].tolist())) if type(p) == str]

start_time = time.time()

####################### Setup Model
from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler, LCMScheduler, ConsistencyDecoderVAE, AutoencoderTiny
from hyper_tile import split_attention, flush
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from PIL import Image
from transformers import CLIPVisionModelWithProjection
import uuid
import av

def write_video(file_name, images, fps=10):
    print('Saving')
    container = av.open(file_name, mode="w")

    stream = container.add_stream("h264", rate=fps)
    stream.width = sidel
    stream.height = sidel
    stream.pix_fmt = "yuv420p"

    for img in images:
        img = np.array(img)
        img = np.round(img).astype(np.uint8)
        frame = av.VideoFrame.from_ndarray(img, format="rgb24")
        for packet in stream.encode(frame):
            container.mux(packet)
    # Flush stream
    for packet in stream.encode():
        container.mux(packet)
    # Close the file
    container.close()
    print('Saved')

bases = {
    #"basem": "emilianJR/epiCRealism"
    #SG161222/Realistic_Vision_V6.0_B1_noVAE
    #runwayml/stable-diffusion-v1-5
    #frankjoshua/realisticVisionV51_v51VAE
    #Lykon/dreamshaper-7
}

image_encoder = CLIPVisionModelWithProjection.from_pretrained("h94/IP-Adapter", subfolder="models/image_encoder", torch_dtype=dtype).to(DEVICE)
vae = AutoencoderTiny.from_pretrained("madebyollin/taesd", torch_dtype=dtype)

# vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=dtype)
# vae = compile_unet(vae, config=config)

#adapter = MotionAdapter.from_pretrained("wangfuyun/AnimateLCM")
#pipe = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapter=adapter, image_encoder=image_encoder, torch_dtype=dtype)
#pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, beta_schedule="linear")
#pipe.load_lora_weights("wangfuyun/AnimateLCM", weight_name="AnimateLCM_sd15_t2v_lora.safetensors", adapter_name="lcm-lora",)
#pipe.set_adapters(["lcm-lora"], [1])
#pipe.fuse_lora()

pipe = AnimateDiffPipeline.from_pretrained('emilianJR/epiCRealism', torch_dtype=dtype, image_encoder=image_encoder, vae=vae)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
repo = "ByteDance/AnimateDiff-Lightning"
ckpt = f"animatediff_lightning_4step_diffusers.safetensors"
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device='cpu'), strict=False)


pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin", map_location='cpu')
pipe.set_ip_adapter_scale(.8)
# pipe.unet.fuse_qkv_projections()
#pipe.enable_free_init(method="gaussian", use_fast_sampling=True)

pipe = compile(pipe, config=config)
pipe.to(device=DEVICE)


# THIS WOULD NEED PATCHING TODO
with split_attention(pipe.vae, tile_size=128, swap_size=2, disable=False, aspect_ratio=1):
    # ! Change the tile_size and disable to see their effects
    with split_attention(pipe.unet, tile_size=128, swap_size=2, disable=False, aspect_ratio=1):
        im_embs = torch.zeros(1, 1, 1, 1024, device=DEVICE, dtype=dtype)
        output = pipe(prompt='a person', guidance_scale=0, added_cond_kwargs={}, ip_adapter_image_embeds=[im_embs], num_inference_steps=STEPS)
        leave_im_emb, _ = pipe.encode_image(
                output.frames[0][len(output.frames[0])//2], DEVICE, 1, output_hidden_state
    )
assert len(output.frames[0]) == 16
leave_im_emb.to('cpu')


# TODO put back
# @spaces.GPU()
def generate(prompt, in_im_embs=None, base='basem'):

    if in_im_embs == None:
        in_im_embs = torch.zeros(1, 1, 1, 1024, device=DEVICE, dtype=dtype)
        #in_im_embs = in_im_embs / torch.norm(in_im_embs)
    else:
        in_im_embs = in_im_embs.to('cuda').unsqueeze(0).unsqueeze(0)
        #im_embs = torch.cat((torch.zeros(1, 1024, device=DEVICE, dtype=dtype), in_im_embs), 0)

    with split_attention(pipe.unet, tile_size=128, swap_size=2, disable=False, aspect_ratio=1):
        # ! Change the tile_size and disable to see their effects
        with split_attention(pipe.vae, tile_size=128, disable=False, aspect_ratio=1):
            output = pipe(prompt=prompt, guidance_scale=0, added_cond_kwargs={}, ip_adapter_image_embeds=[in_im_embs], num_inference_steps=STEPS)

    im_emb, _ = pipe.encode_image(
                output.frames[0][len(output.frames[0])//2], DEVICE, 1, output_hidden_state
            )

    nsfw = maybe_nsfw(output.frames[0][len(output.frames[0])//2])
    
    name = str(uuid.uuid4()).replace("-", "")
    path = f"/tmp/{name}.mp4"
    
    if nsfw:
        gr.Warning("NSFW content detected.")
        # TODO could return an automatic dislike of auto dislike on the backend for neither as well; just would need refactoring.
        return None, im_emb
    
    plt.close('all')
    plt.hist(np.array(im_emb.to('cpu')).flatten(), bins=5)
    plt.savefig('real_im_emb_plot.jpg')
    
    write_video(path, output.frames[0])
    return path, im_emb.to('cpu')


#######################

# TODO add to state instead of shared across all
glob_idx = 0

def next_image(embs, ys, calibrate_prompts):
    global glob_idx
    glob_idx = glob_idx + 1
        
    with torch.no_grad():
        if len(calibrate_prompts) > 0:
            print('######### Calibrating with sample prompts #########')
            prompt = calibrate_prompts.pop(0)
            print(prompt)
            image, img_embs = generate(prompt)
            embs += img_embs
            print(len(embs))
            return image, embs, ys, calibrate_prompts
        else:
            print('######### Roaming #########')
            
            # sample a .8 of rated embeddings for some stochasticity, or at least two embeddings.
            # could take a sample < len(embs)
            #n_to_choose = max(int((len(embs))), 2)
            #indices = random.sample(range(len(embs)), n_to_choose)
            
            # sample only as many negatives as there are positives
            #pos_indices = [i for i in indices if ys[i] == 1]
            #neg_indices = [i for i in indices if ys[i] == 0]
            #lower = min(len(pos_indices), len(neg_indices))
            #neg_indices = random.sample(neg_indices, lower)
            #pos_indices = random.sample(pos_indices, lower)
            #indices = neg_indices + pos_indices
            
            pos_indices = [i for i in range(len(embs)) if ys[i] == 1]
            neg_indices = [i for i in range(len(embs)) if ys[i] == 0]
            
            # the embs & ys stay tied by index but we shuffle to drop randomly
            random.shuffle(pos_indices)
            random.shuffle(neg_indices)
            
            #if len(pos_indices) - len(neg_indices) > 48 and len(pos_indices) > 80:
            #    pos_indices = pos_indices[32:]
            if len(neg_indices) - len(pos_indices) > 48/16 and len(pos_indices) > 120/16:
                pos_indices = pos_indices[1:]
            if len(neg_indices) - len(pos_indices) > 48/16 and len(neg_indices) > 200/16:
                neg_indices = neg_indices[2:]
            
            
            print(len(pos_indices), len(neg_indices))
            indices = pos_indices + neg_indices
            
            embs = [embs[i] for i in indices]
            ys = [ys[i] for i in indices]
            indices = list(range(len(embs)))
            
            
            # handle case where every instance of calibration prompts is 'Neither' or 'Like' or 'Dislike'
            if len(list(set(ys))) <= 1:
                embs.append(.01*torch.randn(1024))
                embs.append(.01*torch.randn(1024))
                ys.append(0)
                ys.append(1)

            
            # also add the latest 0 and the latest 1
            has_0 = False
            has_1 = False
            for i in reversed(range(len(ys))):
                if ys[i] == 0 and has_0 == False:
                    indices.append(i)
                    has_0 = True
                elif ys[i] == 1 and has_1 == False:
                    indices.append(i)
                    has_1 = True
                if has_0 and has_1:
                    break
                    
            # we may have just encountered a rare multi-threading diffusers issue (https://github.com/huggingface/diffusers/issues/5749);
            # this ends up adding a rating but losing an embedding, it seems.
            # let's take off a rating if so to continue without indexing errors.
            if len(ys) > len(embs):
                print('ys are longer than embs; popping latest rating')
                ys.pop(-1)
            
            feature_embs = np.array(torch.stack([embs[i].to('cpu') for i in indices] + [leave_im_emb[0].to('cpu')]).to('cpu'))
            scaler = preprocessing.StandardScaler().fit(feature_embs)
            feature_embs = scaler.transform(feature_embs)
            chosen_y = np.array([ys[i] for i in indices] + [0])
            
            print('Gathering coefficients')
            #lin_class = LinearRegression(fit_intercept=False).fit(feature_embs, chosen_y)
            lin_class = SVC(max_iter=50000, kernel='linear', class_weight='balanced', C=1).fit(feature_embs, chosen_y)
            coef_ = torch.tensor(lin_class.coef_, dtype=torch.double)
            coef_ = coef_ / coef_.abs().max() * 3
            print(coef_.shape, 'COEF')

            plt.close('all')
            plt.hist(np.array(coef_).flatten(), bins=5)
            plt.savefig('plot.jpg')
            print(coef_)
            print('Gathered')

            rng_prompt = random.choice(prompt_list)
            w = 1# if len(embs) % 2 == 0 else 0
            im_emb = w * coef_.to(dtype=dtype)

            prompt= 'the scene' if glob_idx % 2 == 0 else rng_prompt
            print(prompt)
            image, im_emb = generate(prompt, im_emb)
            embs += im_emb
            
            if len(embs) > 700/16:
                embs = embs[1:]
                ys = ys[1:]
            
            return image, embs, ys, calibrate_prompts









def start(_, embs, ys, calibrate_prompts):
    image, embs, ys, calibrate_prompts = next_image(embs, ys, calibrate_prompts)
    return [
            gr.Button(value='Like (L)', interactive=True), 
            gr.Button(value='Neither (Space)', interactive=True), 
            gr.Button(value='Dislike (A)', interactive=True),
            gr.Button(value='Start', interactive=False),
            image,
            embs,
            ys,
            calibrate_prompts
            ]


def choose(img, choice, embs, ys, calibrate_prompts):
    if choice == 'Like (L)':
        choice = 1
    elif choice == 'Neither (Space)':
        embs = embs[:-1]
        img, embs, ys, calibrate_prompts = next_image(embs, ys, calibrate_prompts)
        return img, embs, ys, calibrate_prompts
    else:
        choice = 0

    # if we detected NSFW, leave that area of latent space regardless of how they rated chosen.
    # TODO skip allowing rating
    if img == None:
        print('NSFW -- choice is disliked')
        choice = 0
    
    ys += [choice]*1
    img, embs, ys, calibrate_prompts = next_image(embs, ys, calibrate_prompts)
    return img, embs, ys, calibrate_prompts

css = '''.gradio-container{max-width: 700px !important}
#description{text-align: center}
#description h1, #description h3{display: block}
#description p{margin-top: 0}
.fade-in-out {animation: fadeInOut 3s forwards}
@keyframes fadeInOut {
    0% {
      background: var(--bg-color);
    }
    100% {
      background: var(--button-secondary-background-fill);
    }
}
'''
js_head = '''
<script>
document.addEventListener('keydown', function(event) {
    if (event.key === 'a' || event.key === 'A') {
        // Trigger click on 'dislike' if 'A' is pressed
        document.getElementById('dislike').click();
    } else if (event.key === ' ' || event.keyCode === 32) {
        // Trigger click on 'neither' if Spacebar is pressed
        document.getElementById('neither').click();
    } else if (event.key === 'l' || event.key === 'L') {
        // Trigger click on 'like' if 'L' is pressed
        document.getElementById('like').click();
    }
});
function fadeInOut(button, color) {
  button.style.setProperty('--bg-color', color);
  button.classList.remove('fade-in-out');
  void button.offsetWidth; // This line forces a repaint by accessing a DOM property
  
  button.classList.add('fade-in-out');
  button.addEventListener('animationend', () => {
    button.classList.remove('fade-in-out'); // Reset the animation state
  }, {once: true});
}
document.body.addEventListener('click', function(event) {
    const target = event.target;
    if (target.id === 'dislike') {
      fadeInOut(target, '#ff1717');
    } else if (target.id === 'like') {
      fadeInOut(target, '#006500');
    } else if (target.id === 'neither') {
      fadeInOut(target, '#cccccc');
    }
});

</script>
'''

with gr.Blocks(css=css, head=js_head) as demo:
    gr.Markdown('''### Blue Tigers: Generative Recommenders for Exporation of Video
    Explore the latent space without text prompts based on your preferences. Learn more on [the write-up](https://rynmurdock.github.io/posts/2024/3/generative_recomenders/).
    ''', elem_id="description")
    embs = gr.State([])
    ys = gr.State([])
    calibrate_prompts = gr.State([
    'the moon is melting into my glass of tea',
    'a sea slug -- pair of claws scuttling -- jelly fish glowing',
    'an adorable creature. It may be a goblin or a pig or a slug.',
    'an animation about a gorgeous nebula',
    'an octopus writhes',
    ])
    def l():
        return None

    with gr.Row(elem_id='output-image'):
        img = gr.Video(
        label='Lightning',
        autoplay=True,
        interactive=False,
        height=sidel,
        width=sidel,
        include_audio=False,
        elem_id="video_output"
       )
        img.play(l, js='''document.querySelector('[data-testid="Lightning-player"]').loop = true''')
    with gr.Row(equal_height=True):
        b3 = gr.Button(value='Dislike (A)', interactive=False, elem_id="dislike")
        b2 = gr.Button(value='Neither (Space)', interactive=False, elem_id="neither")
        b1 = gr.Button(value='Like (L)', interactive=False, elem_id="like")
        b1.click(
        choose, 
        [img, b1, embs, ys, calibrate_prompts],
        [img, embs, ys, calibrate_prompts]
        )
        b2.click(
        choose, 
        [img, b2, embs, ys, calibrate_prompts],
        [img, embs, ys, calibrate_prompts]
        )
        b3.click(
        choose, 
        [img, b3, embs, ys, calibrate_prompts],
        [img, embs, ys, calibrate_prompts]
        )
    with gr.Row():
        b4 = gr.Button(value='Start')
        b4.click(start,
                 [b4, embs, ys, calibrate_prompts],
                 [b1, b2, b3, b4, img, embs, ys, calibrate_prompts])
    with gr.Row():
        html = gr.HTML('''<div style='text-align:center; font-size:20px'>You will calibrate for several prompts and then roam. </ div><br><br><br>
<div style='text-align:center; font-size:14px'>Note that while the AnimateDiff-Lightning model with NSFW filtering is unlikely to produce NSFW images, this may still occur, and users should avoid NSFW content when rating.
</ div>
<br><br>
<div style='text-align:center; font-size:14px'>Thanks to @multimodalart for their contributions to the demo, esp. the interface and @maxbittker for feedback.
</ div>''')

demo.launch(share=True)