Spaces:
Sleeping
Sleeping
import gradio as gr | |
from langchain.embeddings import HuggingFaceEmbeddings, HuggingFaceInstructEmbeddings, OpenAIEmbeddings | |
from pymilvus import Collection, connections | |
import json | |
import os | |
import subprocess | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
MILVUS_COLLECTION = os.environ.get("MILVUS_COLLECTION", "LangChainCollection") | |
MILVUS_HOST = os.environ.get("MILVUS_HOST", "") | |
MILVUS_PORT = "19530" | |
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "hkunlp/instructor-large") | |
EMBEDDING_LOADER = os.environ.get("EMBEDDING_LOADER", "HuggingFaceInstructEmbeddings") | |
EMBEDDING_LIST = ["HuggingFaceInstructEmbeddings", "HuggingFaceEmbeddings"] | |
# return top-k text chunks from vector store | |
TOP_K_DEFAULT = 15 | |
TOP_K_MAX = 30 | |
SCORE_DEFAULT = 0.33 | |
BUTTON_MIN_WIDTH = 100 | |
global g_emb | |
g_emb = None | |
global g_col | |
g_col = None | |
def init_emb(emb_name, emb_loader, db_col_textbox): | |
global g_emb | |
global g_col | |
g_emb = eval(emb_loader)(model_name=emb_name) | |
connections.connect( | |
host=MILVUS_HOST, | |
port=MILVUS_PORT | |
) | |
g_col = Collection(db_col_textbox) | |
g_col.load() | |
return (str(g_emb), str(g_col)) | |
def get_emb(): | |
return g_emb | |
def get_col(): | |
return g_col | |
def remove_duplicates(documents, score_min): | |
seen_content = set() | |
unique_documents = [] | |
for (doc, score) in documents: | |
if (doc.page_content not in seen_content) and (score >= score_min): | |
seen_content.add(doc.page_content) | |
unique_documents.append(doc) | |
return unique_documents | |
def get_data(query, top_k, score, db_col, db_index): | |
if not query: | |
return "Please init db in configuration" | |
embed_query = g_emb.embed_query(query) | |
search_params = {"metric_type": "L2", | |
"params": {"nprobe": 1}, | |
"offset": 0} | |
results = g_col.search( | |
data=[embed_query], | |
anns_field="vector", | |
param=search_params, | |
limit=top_k, | |
expr=None, | |
output_fields=['source', 'text'], | |
consistency_level="Strong" | |
) | |
jsons = json.dumps([{'source': hit.entity.get('source'), | |
'text': hit.entity.get('text')} | |
for hit in results[0]], | |
indent=0) | |
return jsons | |
def run_command(command): | |
try: | |
result = subprocess.check_output(command, shell=True, text=True) | |
return result | |
except subprocess.CalledProcessError as e: | |
return f"Error: {e}" | |
with gr.Blocks( | |
title = "3GPP Database", | |
theme = "Base", | |
css = """.bigbox { | |
min-height:250px; | |
} | |
""") as demo: | |
with gr.Tab("Matching"): | |
with gr.Accordion("Vector similarity"): | |
with gr.Row(): | |
with gr.Column(): | |
top_k = gr.Slider(1, | |
TOP_K_MAX, | |
value=TOP_K_DEFAULT, | |
step=1, | |
label="Vector similarity top_k", | |
interactive=True) | |
with gr.Column(): | |
score = gr.Slider(0.01, | |
0.99, | |
value=SCORE_DEFAULT, | |
step=0.01, | |
label="Vector similarity score", | |
interactive=True) | |
with gr.Row(): | |
with gr.Column(scale=10): | |
input_box = gr.Textbox(label = "Input", placeholder="What are you looking for?") | |
with gr.Column(scale=1, min_width=BUTTON_MIN_WIDTH): | |
btn_run = gr.Button("Run", variant="primary") | |
output_box = gr.JSON(label = "Output") | |
with gr.Tab("Configuration"): | |
with gr.Row(): | |
btn_init = gr.Button("Init") | |
load_emb = gr.Textbox(get_emb, label = 'Embedding Client', show_label=True) | |
load_col = gr.Textbox(get_col, label = 'Milvus Collection', show_label=True) | |
with gr.Accordion("Embedding"): | |
with gr.Row(): | |
with gr.Column(): | |
emb_textbox = gr.Textbox( | |
label = "Embedding Model", | |
# show_label = False, | |
value = EMBEDDING_MODEL, | |
placeholder = "Paste Your Embedding Model Repo on HuggingFace", | |
lines=1, | |
interactive=True, | |
type='email') | |
with gr.Column(): | |
emb_dropdown = gr.Dropdown( | |
EMBEDDING_LIST, | |
value=EMBEDDING_LOADER, | |
multiselect=False, | |
interactive=True, | |
label="Embedding Loader") | |
with gr.Accordion("Milvus Database"): | |
with gr.Row(): | |
db_col_textbox = gr.Textbox( | |
label = "Milvus Collection", | |
# show_label = False, | |
value = MILVUS_COLLECTION, | |
placeholder = "Paste Your Milvus Collection (xx-xx-xx) and Hit ENTER", | |
lines=1, | |
interactive=True, | |
type='email') | |
db_index_textbox = gr.Textbox( | |
label = "Milvus Host", | |
# show_label = False, | |
value = MILVUS_HOST, | |
placeholder = "Paste Your Milvus Index (xxxx) and Hit ENTER", | |
lines=1, | |
interactive=True, | |
type='password') | |
btn_init.click(fn=init_emb, | |
inputs=[emb_textbox, emb_dropdown, db_col_textbox], | |
outputs=[load_emb, load_col]) | |
btn_run.click(fn=get_data, | |
inputs=[input_box, top_k, score, db_col_textbox, db_index_textbox], | |
outputs=[output_box]) | |
if __name__ == "__main__": | |
demo.queue() | |
demo.launch(server_name="0.0.0.0", | |
server_port=7860) | |
''' | |
import gradio as gr | |
import subprocess | |
def run_command(command): | |
try: | |
result = subprocess.check_output(command, shell=True, text=True) | |
return result | |
except subprocess.CalledProcessError as e: | |
return f"Error: {e}" | |
iface = gr.Interface( | |
fn=run_command, | |
inputs="text", | |
outputs="text", | |
title="Command Output Viewer", | |
description="Enter a command and view its output.", | |
examples=[ | |
["ls"], | |
["pwd"], | |
["echo 'Hello, Gradio!'"], | |
["python --version"] | |
] | |
) | |
# Updated line with additional port binding for Milvus server | |
iface.launch(server_name="0.0.0.0", server_port=7860, share=True, debug=True) | |
''' |