File size: 6,890 Bytes
70c89ac
 
 
 
 
 
cb0e659
70c89ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aacae39
 
 
 
 
 
78fe2de
 
aacae39
422be11
70c89ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1ac10e
 
 
 
70c89ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aacae39
 
 
70c89ac
 
 
 
 
 
 
1816e1b
a45ad57
559b8d7
a1ac10e
70c89ac
 
 
 
 
13ac9a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1816e1b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import gradio as gr

from langchain.embeddings import HuggingFaceEmbeddings, HuggingFaceInstructEmbeddings, OpenAIEmbeddings
from pymilvus import Collection, connections
import json
import os
import subprocess
os.environ["TOKENIZERS_PARALLELISM"] = "false"


MILVUS_COLLECTION = os.environ.get("MILVUS_COLLECTION", "LangChainCollection")

MILVUS_HOST = os.environ.get("MILVUS_HOST", "")
MILVUS_PORT = "19530"

EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "hkunlp/instructor-large")
EMBEDDING_LOADER = os.environ.get("EMBEDDING_LOADER", "HuggingFaceInstructEmbeddings")
EMBEDDING_LIST = ["HuggingFaceInstructEmbeddings", "HuggingFaceEmbeddings"]

# return top-k text chunks from vector store
TOP_K_DEFAULT = 15
TOP_K_MAX = 30
SCORE_DEFAULT = 0.33

BUTTON_MIN_WIDTH = 100

global g_emb
g_emb = None
global g_col
g_col = None

def init_emb(emb_name, emb_loader, db_col_textbox):
    
    global g_emb
    global g_col

    g_emb = eval(emb_loader)(model_name=emb_name)
    
    connections.connect( 
        host=MILVUS_HOST,
        port=MILVUS_PORT
    )
    
    g_col = Collection(db_col_textbox)
    
    g_col.load()
    
    return (str(g_emb), str(g_col))


def get_emb():
    return g_emb

def get_col():
    return g_col


def remove_duplicates(documents, score_min):
    seen_content = set()
    unique_documents = []
    for (doc, score) in documents:
        if (doc.page_content not in seen_content) and (score >= score_min):
            seen_content.add(doc.page_content)
            unique_documents.append(doc)
    return unique_documents


def get_data(query, top_k, score, db_col, db_index):
    if not query:
        return "Please init db in configuration"

    embed_query = g_emb.embed_query(query)
    
    search_params = {"metric_type": "L2",
                     "params": {"nprobe": 1},
                     "offset": 0}
    
    
    results = g_col.search(
        data=[embed_query], 
        anns_field="vector",
        param=search_params,
        limit=top_k, 
        expr=None,
        output_fields=['source', 'text'],
        consistency_level="Strong"
    )
    
    jsons = json.dumps([{'source': hit.entity.get('source'),
                        'text': hit.entity.get('text')}
                       for hit in results[0]],
                      indent=0)

    return jsons

def run_command(command):
    try:
        result = subprocess.check_output(command, shell=True, text=True)
        return result
    except subprocess.CalledProcessError as e:
        return f"Error: {e}"
        



with gr.Blocks(
    title = "3GPP Database",
    theme = "Base",
    css = """.bigbox {
    min-height:250px;
}
""") as demo:
    with gr.Tab("Matching"):
        with gr.Accordion("Vector similarity"):
            with gr.Row():
                with gr.Column():
                    top_k = gr.Slider(1,
                                      TOP_K_MAX,
                                      value=TOP_K_DEFAULT,
                                      step=1,
                                      label="Vector similarity top_k",
                                      interactive=True)
                with gr.Column():
                    score = gr.Slider(0.01,
                                      0.99,
                                      value=SCORE_DEFAULT,
                                      step=0.01,
                                      label="Vector similarity score",
                                      interactive=True)

        with gr.Row():
            with gr.Column(scale=10):
                input_box = gr.Textbox(label = "Input", placeholder="What are you looking for?")
            with gr.Column(scale=1, min_width=BUTTON_MIN_WIDTH):
                btn_run = gr.Button("Run", variant="primary")

        output_box = gr.JSON(label = "Output")


    
 
    
    
    with gr.Tab("Configuration"):
        with gr.Row():
            btn_init = gr.Button("Init")
        
        load_emb = gr.Textbox(get_emb, label = 'Embedding Client', show_label=True)
        load_col = gr.Textbox(get_col, label = 'Milvus Collection', show_label=True)
        
        with gr.Accordion("Embedding"):
                
            with gr.Row():
                with gr.Column():
                    emb_textbox = gr.Textbox(
                        label = "Embedding Model",
                        # show_label = False,
                        value = EMBEDDING_MODEL,
                        placeholder = "Paste Your Embedding Model Repo on HuggingFace",
                        lines=1,
                        interactive=True,
                        type='email')

                with gr.Column():
                    emb_dropdown = gr.Dropdown(
                        EMBEDDING_LIST,
                        value=EMBEDDING_LOADER,
                        multiselect=False,
                        interactive=True,
                        label="Embedding Loader")

        with gr.Accordion("Milvus Database"):
            with gr.Row():
                db_col_textbox = gr.Textbox(
                    label = "Milvus Collection",
                    # show_label = False,
                    value = MILVUS_COLLECTION,
                    placeholder = "Paste Your Milvus Collection (xx-xx-xx) and Hit ENTER",
                    lines=1,
                    interactive=True,
                    type='email')
                db_index_textbox = gr.Textbox(
                    label = "Milvus Host",
                    # show_label = False,
                    value = MILVUS_HOST,
                    placeholder = "Paste Your Milvus Index (xxxx) and Hit ENTER",
                    lines=1,
                    interactive=True,
                    type='password')


                

    btn_init.click(fn=init_emb,
                   inputs=[emb_textbox, emb_dropdown, db_col_textbox],
                   outputs=[load_emb, load_col])
    btn_run.click(fn=get_data,
                  inputs=[input_box, top_k, score, db_col_textbox, db_index_textbox],
                  outputs=[output_box])

  

    

if __name__ == "__main__":
    demo.queue()
    demo.launch(server_name="0.0.0.0",
                server_port=7860)

'''
import gradio as gr
import subprocess

def run_command(command):
    try:
        result = subprocess.check_output(command, shell=True, text=True)
        return result
    except subprocess.CalledProcessError as e:
        return f"Error: {e}"

iface = gr.Interface(
    fn=run_command,
    inputs="text",
    outputs="text",
    title="Command Output Viewer",
    description="Enter a command and view its output.",
    examples=[
        ["ls"],
        ["pwd"],
        ["echo 'Hello, Gradio!'"],
        ["python --version"]
    ]
)

# Updated line with additional port binding for Milvus server
iface.launch(server_name="0.0.0.0", server_port=7860, share=True, debug=True)
'''