ruslanmv's picture
First commit
c232276
raw
history blame
12.2 kB
# lora_handling.py
import torch
from typing import Any, Dict, List, Optional, Union
import gradio as gr
from huggingface_hub import ModelCard, HfFileSystem
from flux_app.utilities import calculate_shift, retrieve_timesteps, calculateDuration # Absolute import
import numpy as np
from PIL import Image
import copy
from flux_app.lora import loras
# FLUX pipeline (continued from previous response)
@torch.inference_mode()
def flux_pipe_call_that_returns_an_iterable_of_images(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 28,
timesteps: List[int] = None,
guidance_scale: float = 3.5,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
max_sequence_length: int = 512,
good_vae: Optional[Any] = None,
):
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
self.check_inputs(
prompt,
prompt_2,
height,
width,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
self._joint_attention_kwargs = joint_attention_kwargs
self._interrupt = False
batch_size = 1 if isinstance(prompt, str) else len(prompt)
device = self._execution_device
lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
num_channels_latents = self.transformer.config.in_channels // 4
latents, latent_image_ids = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
image_seq_len = latents.shape[1]
mu = calculate_shift(
image_seq_len,
self.scheduler.config.base_image_seq_len,
self.scheduler.config.max_image_seq_len,
self.scheduler.config.base_shift,
self.scheduler.config.max_shift,
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
timesteps,
sigmas,
mu=mu,
)
self._num_timesteps = len(timesteps)
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
for i, t in enumerate(timesteps):
if self.interrupt:
continue
timestep = t.expand(latents.shape[0]).to(latents.dtype)
noise_pred = self.transformer(
hidden_states=latents,
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)[0]
latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
image = self.vae.decode(latents_for_image, return_dict=False)[0]
yield self.image_processor.postprocess(image, output_type=output_type)[0]
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
torch.cuda.empty_cache()
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
image = good_vae.decode(latents, return_dict=False)[0]
self.maybe_free_model_hooks()
torch.cuda.empty_cache()
yield self.image_processor.postprocess(image, output_type=output_type)[0]
def get_huggingface_safetensors(link: str) -> tuple[str, str, str, str, str]:
"""
Extracts LoRA information from a Hugging Face model card.
Args:
link: The Hugging Face model repository URL or ID (e.g., "user/repo" or
"https://huggingface.co/user/repo").
Returns:
A tuple containing:
- title (str): The repository name.
- repo (str): The full repository ID ("user/repo").
- path (str): The filename of the .safetensors file.
- trigger_word (str): The instance prompt (trigger word) from the model card.
- image_url (str): URL of a preview image, if found.
Raises:
Exception: If the provided link is not a valid FLUX LoRA repository.
"""
split_link = link.split("/")
if len(split_link) == 2:
model_card = ModelCard.load(link)
base_model = model_card.data.get("base_model")
print(base_model)
# Allows Both FLUX.1-dev and FLUX.1-schnell
if base_model not in ("black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"):
raise Exception("Flux LoRA Not Found!")
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
trigger_word = model_card.data.get("instance_prompt", "")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
fs = HfFileSystem()
try:
list_of_files = fs.ls(link, detail=False)
for file in list_of_files:
if file.endswith(".safetensors"):
safetensors_name = file.split("/")[-1]
if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")):
image_elements = file.split("/")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
return split_link[1], link, safetensors_name, trigger_word, image_url # Return as soon as .safetensors is found
except Exception as e:
print(e)
raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA") # More concise exception
else: #if the links is not complete
raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
def check_custom_model(link: str) -> tuple[str, str, str, str, str]:
"""
Checks if the provided link is a Hugging Face URL and extracts LoRA info.
Args:
link: The URL or repository ID.
Returns:
The same tuple as `get_huggingface_safetensors`.
"""
if link.startswith("https://"):
if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"):
link_split = link.split("huggingface.co/")
return get_huggingface_safetensors(link_split[1])
return get_huggingface_safetensors(link)
def create_lora_card(title: str, repo: str, trigger_word: str, image: str) -> str:
"""
Generates HTML for a LoRA card in the Gradio UI.
"""
trigger_word_info = (
f"Using: <code><b>{trigger_word}</code></b> as the trigger word"
if trigger_word
else "No trigger word found. If there's a trigger word, include it in your prompt"
)
return f'''
<div class="custom_lora_card">
<span>Loaded custom LoRA:</span>
<div class="card_internal">
<img src="{image}" />
<div>
<h3>{title}</h3>
<small>{trigger_word_info}<br></small>
</div>
</div>
</div>
'''
def add_custom_lora(custom_lora: str, loras: list) -> tuple:
"""Adds a custom LoRA to the list of available LoRAs."""
if custom_lora:
try:
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
print(f"Loaded custom LoRA: {repo}")
card = create_lora_card(title, repo, trigger_word, image)
# Check if the repo is already in the list
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
if existing_item_index is None: # Use 'is None' for comparison
new_item = {
"image": image,
"title": title,
"repo": repo,
"weights": path,
"trigger_word": trigger_word
}
print(new_item)
loras.append(new_item) # Append to the passed-in loras list
existing_item_index = len(loras) -1 #the index of new appended item
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
except Exception as e:
print(f"Error loading LoRA: {e}") # Debugging
return gr.update(visible=True, value="Invalid LoRA"), gr.update(visible=False), gr.update(), "", None, ""
else:
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
def remove_custom_lora() -> tuple:
"""Removes the custom LoRA from the UI."""
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
def prepare_prompt(prompt: str, selected_index: Optional[int], loras: List[Dict]) -> str:
"""Combines the user prompt with the LoRA trigger word."""
if selected_index is None:
raise gr.Error("You must select a LoRA before proceeding.🧨")
selected_lora = loras[selected_index]
trigger_word = selected_lora.get("trigger_word") # Use get()
if trigger_word:
trigger_position = selected_lora.get("trigger_position", "append")
if trigger_position == "prepend":
prompt_mash = f"{trigger_word} {prompt}"
else:
prompt_mash = f"{prompt} {trigger_word}"
else:
prompt_mash = prompt
return prompt_mash
def unload_lora_weights(pipe, pipe_i2i):
"""Unloads LoRA weights from both pipelines."""
if pipe is not None:
pipe.unload_lora_weights()
if pipe_i2i is not None:
pipe_i2i.unload_lora_weights()
def load_lora_weights_into_pipeline(pipe_to_use, lora_path: str, weight_name: Optional[str]):
"""Loads LoRA weights into the specified pipeline."""
pipe_to_use.load_lora_weights(
lora_path,
weight_name=weight_name,
low_cpu_mem_usage=True
)
def update_selection(evt: gr.SelectData, width, height, loras):
"""Updates the UI when a LoRA is selected from the gallery."""
selected_lora = loras[evt.index]
new_placeholder = f"Type a prompt for {selected_lora['title']}"
lora_repo = selected_lora["repo"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✅"
if "aspect" in selected_lora:
if selected_lora["aspect"] == "portrait":
width = 768
height = 1024
elif selected_lora["aspect"] == "landscape":
width = 1024
height = 768
else:
width = 1024
height = 1024
return (
gr.update(placeholder=new_placeholder),
updated_text,
evt.index,
width,
height,
)