Spaces:
Running
on
Zero
Running
on
Zero
# lora_handling.py | |
import torch | |
from typing import Any, Dict, List, Optional, Union | |
import gradio as gr | |
from huggingface_hub import ModelCard, HfFileSystem | |
from flux_app.utilities import calculate_shift, retrieve_timesteps, calculateDuration # Absolute import | |
import numpy as np | |
from PIL import Image | |
import copy | |
from flux_app.lora import loras | |
# FLUX pipeline (continued from previous response) | |
def flux_pipe_call_that_returns_an_iterable_of_images( | |
self, | |
prompt: Union[str, List[str]] = None, | |
prompt_2: Optional[Union[str, List[str]]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 28, | |
timesteps: List[int] = None, | |
guidance_scale: float = 3.5, | |
num_images_per_prompt: Optional[int] = 1, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
max_sequence_length: int = 512, | |
good_vae: Optional[Any] = None, | |
): | |
height = height or self.default_sample_size * self.vae_scale_factor | |
width = width or self.default_sample_size * self.vae_scale_factor | |
self.check_inputs( | |
prompt, | |
prompt_2, | |
height, | |
width, | |
prompt_embeds=prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
max_sequence_length=max_sequence_length, | |
) | |
self._guidance_scale = guidance_scale | |
self._joint_attention_kwargs = joint_attention_kwargs | |
self._interrupt = False | |
batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
device = self._execution_device | |
lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None | |
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt( | |
prompt=prompt, | |
prompt_2=prompt_2, | |
prompt_embeds=prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
max_sequence_length=max_sequence_length, | |
lora_scale=lora_scale, | |
) | |
num_channels_latents = self.transformer.config.in_channels // 4 | |
latents, latent_image_ids = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) | |
image_seq_len = latents.shape[1] | |
mu = calculate_shift( | |
image_seq_len, | |
self.scheduler.config.base_image_seq_len, | |
self.scheduler.config.max_image_seq_len, | |
self.scheduler.config.base_shift, | |
self.scheduler.config.max_shift, | |
) | |
timesteps, num_inference_steps = retrieve_timesteps( | |
self.scheduler, | |
num_inference_steps, | |
device, | |
timesteps, | |
sigmas, | |
mu=mu, | |
) | |
self._num_timesteps = len(timesteps) | |
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None | |
for i, t in enumerate(timesteps): | |
if self.interrupt: | |
continue | |
timestep = t.expand(latents.shape[0]).to(latents.dtype) | |
noise_pred = self.transformer( | |
hidden_states=latents, | |
timestep=timestep / 1000, | |
guidance=guidance, | |
pooled_projections=pooled_prompt_embeds, | |
encoder_hidden_states=prompt_embeds, | |
txt_ids=text_ids, | |
img_ids=latent_image_ids, | |
joint_attention_kwargs=self.joint_attention_kwargs, | |
return_dict=False, | |
)[0] | |
latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor) | |
latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor | |
image = self.vae.decode(latents_for_image, return_dict=False)[0] | |
yield self.image_processor.postprocess(image, output_type=output_type)[0] | |
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
torch.cuda.empty_cache() | |
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) | |
latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor | |
image = good_vae.decode(latents, return_dict=False)[0] | |
self.maybe_free_model_hooks() | |
torch.cuda.empty_cache() | |
yield self.image_processor.postprocess(image, output_type=output_type)[0] | |
def get_huggingface_safetensors(link: str) -> tuple[str, str, str, str, str]: | |
""" | |
Extracts LoRA information from a Hugging Face model card. | |
Args: | |
link: The Hugging Face model repository URL or ID (e.g., "user/repo" or | |
"https://huggingface.co/user/repo"). | |
Returns: | |
A tuple containing: | |
- title (str): The repository name. | |
- repo (str): The full repository ID ("user/repo"). | |
- path (str): The filename of the .safetensors file. | |
- trigger_word (str): The instance prompt (trigger word) from the model card. | |
- image_url (str): URL of a preview image, if found. | |
Raises: | |
Exception: If the provided link is not a valid FLUX LoRA repository. | |
""" | |
split_link = link.split("/") | |
if len(split_link) == 2: | |
model_card = ModelCard.load(link) | |
base_model = model_card.data.get("base_model") | |
print(base_model) | |
# Allows Both FLUX.1-dev and FLUX.1-schnell | |
if base_model not in ("black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"): | |
raise Exception("Flux LoRA Not Found!") | |
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None) | |
trigger_word = model_card.data.get("instance_prompt", "") | |
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None | |
fs = HfFileSystem() | |
try: | |
list_of_files = fs.ls(link, detail=False) | |
for file in list_of_files: | |
if file.endswith(".safetensors"): | |
safetensors_name = file.split("/")[-1] | |
if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")): | |
image_elements = file.split("/") | |
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}" | |
return split_link[1], link, safetensors_name, trigger_word, image_url # Return as soon as .safetensors is found | |
except Exception as e: | |
print(e) | |
raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA") # More concise exception | |
else: #if the links is not complete | |
raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA") | |
def check_custom_model(link: str) -> tuple[str, str, str, str, str]: | |
""" | |
Checks if the provided link is a Hugging Face URL and extracts LoRA info. | |
Args: | |
link: The URL or repository ID. | |
Returns: | |
The same tuple as `get_huggingface_safetensors`. | |
""" | |
if link.startswith("https://"): | |
if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"): | |
link_split = link.split("huggingface.co/") | |
return get_huggingface_safetensors(link_split[1]) | |
return get_huggingface_safetensors(link) | |
def create_lora_card(title: str, repo: str, trigger_word: str, image: str) -> str: | |
""" | |
Generates HTML for a LoRA card in the Gradio UI. | |
""" | |
trigger_word_info = ( | |
f"Using: <code><b>{trigger_word}</code></b> as the trigger word" | |
if trigger_word | |
else "No trigger word found. If there's a trigger word, include it in your prompt" | |
) | |
return f''' | |
<div class="custom_lora_card"> | |
<span>Loaded custom LoRA:</span> | |
<div class="card_internal"> | |
<img src="{image}" /> | |
<div> | |
<h3>{title}</h3> | |
<small>{trigger_word_info}<br></small> | |
</div> | |
</div> | |
</div> | |
''' | |
def add_custom_lora(custom_lora: str, loras: list) -> tuple: | |
"""Adds a custom LoRA to the list of available LoRAs.""" | |
if custom_lora: | |
try: | |
title, repo, path, trigger_word, image = check_custom_model(custom_lora) | |
print(f"Loaded custom LoRA: {repo}") | |
card = create_lora_card(title, repo, trigger_word, image) | |
# Check if the repo is already in the list | |
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None) | |
if existing_item_index is None: # Use 'is None' for comparison | |
new_item = { | |
"image": image, | |
"title": title, | |
"repo": repo, | |
"weights": path, | |
"trigger_word": trigger_word | |
} | |
print(new_item) | |
loras.append(new_item) # Append to the passed-in loras list | |
existing_item_index = len(loras) -1 #the index of new appended item | |
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word | |
except Exception as e: | |
print(f"Error loading LoRA: {e}") # Debugging | |
return gr.update(visible=True, value="Invalid LoRA"), gr.update(visible=False), gr.update(), "", None, "" | |
else: | |
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, "" | |
def remove_custom_lora() -> tuple: | |
"""Removes the custom LoRA from the UI.""" | |
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, "" | |
def prepare_prompt(prompt: str, selected_index: Optional[int], loras: List[Dict]) -> str: | |
"""Combines the user prompt with the LoRA trigger word.""" | |
if selected_index is None: | |
raise gr.Error("You must select a LoRA before proceeding.🧨") | |
selected_lora = loras[selected_index] | |
trigger_word = selected_lora.get("trigger_word") # Use get() | |
if trigger_word: | |
trigger_position = selected_lora.get("trigger_position", "append") | |
if trigger_position == "prepend": | |
prompt_mash = f"{trigger_word} {prompt}" | |
else: | |
prompt_mash = f"{prompt} {trigger_word}" | |
else: | |
prompt_mash = prompt | |
return prompt_mash | |
def unload_lora_weights(pipe, pipe_i2i): | |
"""Unloads LoRA weights from both pipelines.""" | |
if pipe is not None: | |
pipe.unload_lora_weights() | |
if pipe_i2i is not None: | |
pipe_i2i.unload_lora_weights() | |
def load_lora_weights_into_pipeline(pipe_to_use, lora_path: str, weight_name: Optional[str]): | |
"""Loads LoRA weights into the specified pipeline.""" | |
pipe_to_use.load_lora_weights( | |
lora_path, | |
weight_name=weight_name, | |
low_cpu_mem_usage=True | |
) | |
def update_selection(evt: gr.SelectData, width, height, loras): | |
"""Updates the UI when a LoRA is selected from the gallery.""" | |
selected_lora = loras[evt.index] | |
new_placeholder = f"Type a prompt for {selected_lora['title']}" | |
lora_repo = selected_lora["repo"] | |
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✅" | |
if "aspect" in selected_lora: | |
if selected_lora["aspect"] == "portrait": | |
width = 768 | |
height = 1024 | |
elif selected_lora["aspect"] == "landscape": | |
width = 1024 | |
height = 768 | |
else: | |
width = 1024 | |
height = 1024 | |
return ( | |
gr.update(placeholder=new_placeholder), | |
updated_text, | |
evt.index, | |
width, | |
height, | |
) |