Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,185 Bytes
c232276 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
# lora_handling.py
import torch
from typing import Any, Dict, List, Optional, Union
import gradio as gr
from huggingface_hub import ModelCard, HfFileSystem
from flux_app.utilities import calculate_shift, retrieve_timesteps, calculateDuration # Absolute import
import numpy as np
from PIL import Image
import copy
from flux_app.lora import loras
# FLUX pipeline (continued from previous response)
@torch.inference_mode()
def flux_pipe_call_that_returns_an_iterable_of_images(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 28,
timesteps: List[int] = None,
guidance_scale: float = 3.5,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
max_sequence_length: int = 512,
good_vae: Optional[Any] = None,
):
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
self.check_inputs(
prompt,
prompt_2,
height,
width,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
self._joint_attention_kwargs = joint_attention_kwargs
self._interrupt = False
batch_size = 1 if isinstance(prompt, str) else len(prompt)
device = self._execution_device
lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
num_channels_latents = self.transformer.config.in_channels // 4
latents, latent_image_ids = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
image_seq_len = latents.shape[1]
mu = calculate_shift(
image_seq_len,
self.scheduler.config.base_image_seq_len,
self.scheduler.config.max_image_seq_len,
self.scheduler.config.base_shift,
self.scheduler.config.max_shift,
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
timesteps,
sigmas,
mu=mu,
)
self._num_timesteps = len(timesteps)
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
for i, t in enumerate(timesteps):
if self.interrupt:
continue
timestep = t.expand(latents.shape[0]).to(latents.dtype)
noise_pred = self.transformer(
hidden_states=latents,
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)[0]
latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
image = self.vae.decode(latents_for_image, return_dict=False)[0]
yield self.image_processor.postprocess(image, output_type=output_type)[0]
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
torch.cuda.empty_cache()
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
image = good_vae.decode(latents, return_dict=False)[0]
self.maybe_free_model_hooks()
torch.cuda.empty_cache()
yield self.image_processor.postprocess(image, output_type=output_type)[0]
def get_huggingface_safetensors(link: str) -> tuple[str, str, str, str, str]:
"""
Extracts LoRA information from a Hugging Face model card.
Args:
link: The Hugging Face model repository URL or ID (e.g., "user/repo" or
"https://huggingface.co/user/repo").
Returns:
A tuple containing:
- title (str): The repository name.
- repo (str): The full repository ID ("user/repo").
- path (str): The filename of the .safetensors file.
- trigger_word (str): The instance prompt (trigger word) from the model card.
- image_url (str): URL of a preview image, if found.
Raises:
Exception: If the provided link is not a valid FLUX LoRA repository.
"""
split_link = link.split("/")
if len(split_link) == 2:
model_card = ModelCard.load(link)
base_model = model_card.data.get("base_model")
print(base_model)
# Allows Both FLUX.1-dev and FLUX.1-schnell
if base_model not in ("black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"):
raise Exception("Flux LoRA Not Found!")
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
trigger_word = model_card.data.get("instance_prompt", "")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
fs = HfFileSystem()
try:
list_of_files = fs.ls(link, detail=False)
for file in list_of_files:
if file.endswith(".safetensors"):
safetensors_name = file.split("/")[-1]
if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")):
image_elements = file.split("/")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
return split_link[1], link, safetensors_name, trigger_word, image_url # Return as soon as .safetensors is found
except Exception as e:
print(e)
raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA") # More concise exception
else: #if the links is not complete
raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
def check_custom_model(link: str) -> tuple[str, str, str, str, str]:
"""
Checks if the provided link is a Hugging Face URL and extracts LoRA info.
Args:
link: The URL or repository ID.
Returns:
The same tuple as `get_huggingface_safetensors`.
"""
if link.startswith("https://"):
if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"):
link_split = link.split("huggingface.co/")
return get_huggingface_safetensors(link_split[1])
return get_huggingface_safetensors(link)
def create_lora_card(title: str, repo: str, trigger_word: str, image: str) -> str:
"""
Generates HTML for a LoRA card in the Gradio UI.
"""
trigger_word_info = (
f"Using: <code><b>{trigger_word}</code></b> as the trigger word"
if trigger_word
else "No trigger word found. If there's a trigger word, include it in your prompt"
)
return f'''
<div class="custom_lora_card">
<span>Loaded custom LoRA:</span>
<div class="card_internal">
<img src="{image}" />
<div>
<h3>{title}</h3>
<small>{trigger_word_info}<br></small>
</div>
</div>
</div>
'''
def add_custom_lora(custom_lora: str, loras: list) -> tuple:
"""Adds a custom LoRA to the list of available LoRAs."""
if custom_lora:
try:
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
print(f"Loaded custom LoRA: {repo}")
card = create_lora_card(title, repo, trigger_word, image)
# Check if the repo is already in the list
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
if existing_item_index is None: # Use 'is None' for comparison
new_item = {
"image": image,
"title": title,
"repo": repo,
"weights": path,
"trigger_word": trigger_word
}
print(new_item)
loras.append(new_item) # Append to the passed-in loras list
existing_item_index = len(loras) -1 #the index of new appended item
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
except Exception as e:
print(f"Error loading LoRA: {e}") # Debugging
return gr.update(visible=True, value="Invalid LoRA"), gr.update(visible=False), gr.update(), "", None, ""
else:
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
def remove_custom_lora() -> tuple:
"""Removes the custom LoRA from the UI."""
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
def prepare_prompt(prompt: str, selected_index: Optional[int], loras: List[Dict]) -> str:
"""Combines the user prompt with the LoRA trigger word."""
if selected_index is None:
raise gr.Error("You must select a LoRA before proceeding.🧨")
selected_lora = loras[selected_index]
trigger_word = selected_lora.get("trigger_word") # Use get()
if trigger_word:
trigger_position = selected_lora.get("trigger_position", "append")
if trigger_position == "prepend":
prompt_mash = f"{trigger_word} {prompt}"
else:
prompt_mash = f"{prompt} {trigger_word}"
else:
prompt_mash = prompt
return prompt_mash
def unload_lora_weights(pipe, pipe_i2i):
"""Unloads LoRA weights from both pipelines."""
if pipe is not None:
pipe.unload_lora_weights()
if pipe_i2i is not None:
pipe_i2i.unload_lora_weights()
def load_lora_weights_into_pipeline(pipe_to_use, lora_path: str, weight_name: Optional[str]):
"""Loads LoRA weights into the specified pipeline."""
pipe_to_use.load_lora_weights(
lora_path,
weight_name=weight_name,
low_cpu_mem_usage=True
)
def update_selection(evt: gr.SelectData, width, height, loras):
"""Updates the UI when a LoRA is selected from the gallery."""
selected_lora = loras[evt.index]
new_placeholder = f"Type a prompt for {selected_lora['title']}"
lora_repo = selected_lora["repo"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✅"
if "aspect" in selected_lora:
if selected_lora["aspect"] == "portrait":
width = 768
height = 1024
elif selected_lora["aspect"] == "landscape":
width = 1024
height = 768
else:
width = 1024
height = 1024
return (
gr.update(placeholder=new_placeholder),
updated_text,
evt.index,
width,
height,
) |