File size: 12,185 Bytes
c232276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
# lora_handling.py
import torch
from typing import Any, Dict, List, Optional, Union
import gradio as gr
from huggingface_hub import ModelCard, HfFileSystem
from flux_app.utilities import calculate_shift, retrieve_timesteps, calculateDuration  # Absolute import
import numpy as np
from PIL import Image
import copy
from flux_app.lora import loras
# FLUX pipeline (continued from previous response)
@torch.inference_mode()
def flux_pipe_call_that_returns_an_iterable_of_images(
    self,
    prompt: Union[str, List[str]] = None,
    prompt_2: Optional[Union[str, List[str]]] = None,
    height: Optional[int] = None,
    width: Optional[int] = None,
    num_inference_steps: int = 28,
    timesteps: List[int] = None,
    guidance_scale: float = 3.5,
    num_images_per_prompt: Optional[int] = 1,
    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
    latents: Optional[torch.FloatTensor] = None,
    prompt_embeds: Optional[torch.FloatTensor] = None,
    pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
    output_type: Optional[str] = "pil",
    return_dict: bool = True,
    joint_attention_kwargs: Optional[Dict[str, Any]] = None,
    max_sequence_length: int = 512,
    good_vae: Optional[Any] = None,
):
    height = height or self.default_sample_size * self.vae_scale_factor
    width = width or self.default_sample_size * self.vae_scale_factor
    
    self.check_inputs(
        prompt,
        prompt_2,
        height,
        width,
        prompt_embeds=prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        max_sequence_length=max_sequence_length,
    )

    self._guidance_scale = guidance_scale
    self._joint_attention_kwargs = joint_attention_kwargs
    self._interrupt = False

    batch_size = 1 if isinstance(prompt, str) else len(prompt)
    device = self._execution_device

    lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
    prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
        prompt=prompt,
        prompt_2=prompt_2,
        prompt_embeds=prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        device=device,
        num_images_per_prompt=num_images_per_prompt,
        max_sequence_length=max_sequence_length,
        lora_scale=lora_scale,
    )
    
    num_channels_latents = self.transformer.config.in_channels // 4
    latents, latent_image_ids = self.prepare_latents(
        batch_size * num_images_per_prompt,
        num_channels_latents,
        height,
        width,
        prompt_embeds.dtype,
        device,
        generator,
        latents,
    )
    
    sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
    image_seq_len = latents.shape[1]
    mu = calculate_shift(
        image_seq_len,
        self.scheduler.config.base_image_seq_len,
        self.scheduler.config.max_image_seq_len,
        self.scheduler.config.base_shift,
        self.scheduler.config.max_shift,
    )
    timesteps, num_inference_steps = retrieve_timesteps(
        self.scheduler,
        num_inference_steps,
        device,
        timesteps,
        sigmas,
        mu=mu,
    )
    self._num_timesteps = len(timesteps)

    guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None

    for i, t in enumerate(timesteps):
        if self.interrupt:
            continue

        timestep = t.expand(latents.shape[0]).to(latents.dtype)

        noise_pred = self.transformer(
            hidden_states=latents,
            timestep=timestep / 1000,
            guidance=guidance,
            pooled_projections=pooled_prompt_embeds,
            encoder_hidden_states=prompt_embeds,
            txt_ids=text_ids,
            img_ids=latent_image_ids,
            joint_attention_kwargs=self.joint_attention_kwargs,
            return_dict=False,
        )[0]

        latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
        latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
        image = self.vae.decode(latents_for_image, return_dict=False)[0]
        yield self.image_processor.postprocess(image, output_type=output_type)[0]
        latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
        torch.cuda.empty_cache()
        
    latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
    latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
    image = good_vae.decode(latents, return_dict=False)[0]
    self.maybe_free_model_hooks()
    torch.cuda.empty_cache()
    yield self.image_processor.postprocess(image, output_type=output_type)[0]


def get_huggingface_safetensors(link: str) -> tuple[str, str, str, str, str]:
    """
    Extracts LoRA information from a Hugging Face model card.

    Args:
        link: The Hugging Face model repository URL or ID (e.g., "user/repo" or
              "https://huggingface.co/user/repo").

    Returns:
        A tuple containing:
          - title (str): The repository name.
          - repo (str):  The full repository ID ("user/repo").
          - path (str): The filename of the .safetensors file.
          - trigger_word (str): The instance prompt (trigger word) from the model card.
          - image_url (str): URL of a preview image, if found.

    Raises:
        Exception: If the provided link is not a valid FLUX LoRA repository.
    """
    split_link = link.split("/")
    if len(split_link) == 2:
        model_card = ModelCard.load(link)
        base_model = model_card.data.get("base_model")
        print(base_model)

        # Allows Both FLUX.1-dev and FLUX.1-schnell
        if base_model not in ("black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"):
            raise Exception("Flux LoRA Not Found!")

        image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
        trigger_word = model_card.data.get("instance_prompt", "")
        image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
        fs = HfFileSystem()
        try:
            list_of_files = fs.ls(link, detail=False)
            for file in list_of_files:
                if file.endswith(".safetensors"):
                    safetensors_name = file.split("/")[-1]
                if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")):
                    image_elements = file.split("/")
                    image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
            return split_link[1], link, safetensors_name, trigger_word, image_url  # Return as soon as .safetensors is found
        except Exception as e:
            print(e)
            raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA") # More concise exception
    else: #if the links is not complete
        raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")

def check_custom_model(link: str) -> tuple[str, str, str, str, str]:
    """
    Checks if the provided link is a Hugging Face URL and extracts LoRA info.

    Args:
        link: The URL or repository ID.

    Returns:
        The same tuple as `get_huggingface_safetensors`.
    """
    if link.startswith("https://"):
        if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"):
            link_split = link.split("huggingface.co/")
            return get_huggingface_safetensors(link_split[1])
    return get_huggingface_safetensors(link)



def create_lora_card(title: str, repo: str, trigger_word: str, image: str) -> str:
    """
    Generates HTML for a LoRA card in the Gradio UI.
    """
    trigger_word_info = (
        f"Using: <code><b>{trigger_word}</code></b> as the trigger word"
        if trigger_word
        else "No trigger word found. If there's a trigger word, include it in your prompt"
    )
    return f'''
    <div class="custom_lora_card">
        <span>Loaded custom LoRA:</span>
        <div class="card_internal">
            <img src="{image}" />
            <div>
                <h3>{title}</h3>
                <small>{trigger_word_info}<br></small>
            </div>
        </div>
    </div>
    '''

def add_custom_lora(custom_lora: str, loras: list) -> tuple:
    """Adds a custom LoRA to the list of available LoRAs."""
    if custom_lora:
        try:
            title, repo, path, trigger_word, image = check_custom_model(custom_lora)
            print(f"Loaded custom LoRA: {repo}")
            card = create_lora_card(title, repo, trigger_word, image)

            # Check if the repo is already in the list
            existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
            if existing_item_index is None:  # Use 'is None' for comparison
                new_item = {
                    "image": image,
                    "title": title,
                    "repo": repo,
                    "weights": path,
                    "trigger_word": trigger_word
                }
                print(new_item)
                loras.append(new_item)  # Append to the passed-in loras list
                existing_item_index = len(loras) -1 #the index of new appended item


            return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word

        except Exception as e:
            print(f"Error loading LoRA: {e}")  # Debugging
            return gr.update(visible=True, value="Invalid LoRA"), gr.update(visible=False), gr.update(), "", None, ""

    else:
        return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""



def remove_custom_lora() -> tuple:
    """Removes the custom LoRA from the UI."""
    return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""

def prepare_prompt(prompt: str, selected_index: Optional[int], loras: List[Dict]) -> str:
    """Combines the user prompt with the LoRA trigger word."""
    if selected_index is None:
        raise gr.Error("You must select a LoRA before proceeding.🧨")

    selected_lora = loras[selected_index]
    trigger_word = selected_lora.get("trigger_word")  # Use get()

    if trigger_word:
        trigger_position = selected_lora.get("trigger_position", "append")
        if trigger_position == "prepend":
            prompt_mash = f"{trigger_word} {prompt}"
        else:
            prompt_mash = f"{prompt} {trigger_word}"
    else:
        prompt_mash = prompt
    return prompt_mash

def unload_lora_weights(pipe, pipe_i2i):
    """Unloads LoRA weights from both pipelines."""
    if pipe is not None:
        pipe.unload_lora_weights()
    if pipe_i2i is not None:
        pipe_i2i.unload_lora_weights()


def load_lora_weights_into_pipeline(pipe_to_use, lora_path: str, weight_name: Optional[str]):
    """Loads LoRA weights into the specified pipeline."""
    pipe_to_use.load_lora_weights(
        lora_path,
        weight_name=weight_name,
        low_cpu_mem_usage=True
    )


def update_selection(evt: gr.SelectData, width, height, loras):
    """Updates the UI when a LoRA is selected from the gallery."""
    selected_lora = loras[evt.index]
    new_placeholder = f"Type a prompt for {selected_lora['title']}"
    lora_repo = selected_lora["repo"]
    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✅"
    if "aspect" in selected_lora:
        if selected_lora["aspect"] == "portrait":
            width = 768
            height = 1024
        elif selected_lora["aspect"] == "landscape":
            width = 1024
            height = 768
        else:
            width = 1024
            height = 1024
    return (
        gr.update(placeholder=new_placeholder),
        updated_text,
        evt.index,
        width,
        height,
    )