Spaces:
Running
on
Zero
Running
on
Zero
File size: 28,349 Bytes
18d3f26 98605c5 18d3f26 aadfbd4 18d3f26 0b25329 27448ca aadfbd4 18d3f26 0b25329 18d3f26 0b25329 18d3f26 0b25329 18d3f26 0b25329 18d3f26 0b25329 18d3f26 0b25329 18d3f26 0b25329 18d3f26 0b25329 18d3f26 0b25329 18d3f26 0b25329 18d3f26 0b25329 18d3f26 0b25329 18d3f26 0b25329 18d3f26 0b25329 18d3f26 0b25329 18d3f26 0b25329 18d3f26 0b25329 18d3f26 0b25329 18d3f26 0b25329 18d3f26 0b25329 aadfbd4 d836319 0b25329 18d3f26 0b25329 18d3f26 d836319 18d3f26 0b25329 18d3f26 0b25329 18d3f26 0b25329 18d3f26 0b25329 18d3f26 98605c5 b1d31cc 98605c5 aadfbd4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 |
##############################
# ===== Standard Imports =====
##############################
import os
import sys
import time
import random
import json
from typing import Any, Dict, List, Optional, Union
import torch
import numpy as np
from PIL import Image
import gradio as gr
import spaces
# Diffusers imports
from diffusers import (
DiffusionPipeline,
AutoencoderTiny,
AutoencoderKL,
AutoPipelineForImage2Image,
)
from diffusers.utils import load_image
# Hugging Face Hub imports
from huggingface_hub import ModelCard, HfFileSystem
##############################
# ===== config.py =====
##############################
DTYPE = torch.bfloat16
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
BASE_MODEL = "black-forest-labs/FLUX.1-dev"
TAEF1_MODEL = "madebyollin/taef1"
MAX_SEED = 2**32 - 1
##############################
# ===== utilities.py =====
##############################
def calculate_shift(image_seq_len, base_seq_len=256, max_seq_len=4096, base_shift=0.5, max_shift=1.16):
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
b = base_shift - m * base_seq_len
mu = image_seq_len * m + b
return mu
def retrieve_timesteps(scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs):
if timesteps is not None and sigmas is not None:
raise ValueError("Only one of `timesteps` or `sigmas` can be passed.")
if timesteps is not None:
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
def load_image_from_path(image_path: str):
return load_image(image_path)
def randomize_seed_if_needed(randomize_seed: bool, seed: int, max_seed: int) -> int:
if randomize_seed:
return random.randint(0, max_seed)
return seed
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
elapsed = self.end_time - self.start_time
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {elapsed:.6f} seconds")
else:
print(f"Elapsed time: {elapsed:.6f} seconds")
##############################
# ===== enhance.py =====
##############################
def generate(message, max_new_tokens=256, temperature=0.9, top_p=0.95, repetition_penalty=1.0):
SYSTEM_PROMPT = (
"You are a prompt enhancer and your work is to enhance the given prompt under 100 words "
"without changing the essence, only write the enhanced prompt and nothing else."
)
timestamp = time.time()
formatted_prompt = f"<s>[INST] SYSTEM: {SYSTEM_PROMPT} [/INST][INST] {message} {timestamp} [/INST]"
api_url = "https://ruslanmv-hf-llm-api.hf.space/api/v1/chat/completions"
headers = {"Content-Type": "application/json"}
payload = {
"model": "mixtral-8x7b",
"messages": [{"role": "user", "content": formatted_prompt}],
"temperature": temperature,
"top_p": top_p,
"max_tokens": max_new_tokens,
"use_cache": False,
"stream": True
}
try:
response = requests.post(api_url, headers=headers, json=payload, stream=True)
response.raise_for_status()
full_output = ""
for line in response.iter_lines():
if not line:
continue
decoded_line = line.decode("utf-8").strip()
if decoded_line.startswith("data:"):
decoded_line = decoded_line[len("data:"):].strip()
if decoded_line == "[DONE]":
break
try:
json_data = json.loads(decoded_line)
for choice in json_data.get("choices", []):
delta = choice.get("delta", {})
content = delta.get("content", "")
full_output += content
yield full_output
if choice.get("finish_reason") == "stop":
return
except json.JSONDecodeError:
continue
except requests.exceptions.RequestException as e:
yield f"Error during generation: {str(e)}"
##############################
# ===== lora_handling.py =====
##############################
# Default LoRA list for initial UI setup
loras = [
{"image": "placeholder.jpg", "title": "Placeholder LoRA", "repo": "placeholder/repo", "weights": None, "trigger_word": ""}
]
@torch.inference_mode()
def flux_pipe_call_that_returns_an_iterable_of_images(self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 28,
timesteps: List[int] = None,
guidance_scale: float = 3.5,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
max_sequence_length: int = 512,
good_vae: Optional[Any] = None):
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
self.check_inputs(
prompt,
prompt_2,
height,
width,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
self._joint_attention_kwargs = joint_attention_kwargs
self._interrupt = False
batch_size = 1 if isinstance(prompt, str) else len(prompt)
device = self._execution_device
lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
num_channels_latents = self.transformer.config.in_channels // 4
latents, latent_image_ids = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
image_seq_len = latents.shape[1]
mu = calculate_shift(
image_seq_len,
self.scheduler.config.base_image_seq_len,
self.scheduler.config.max_image_seq_len,
self.scheduler.config.base_shift,
self.scheduler.config.max_shift,
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
timesteps,
sigmas,
mu=mu,
)
self._num_timesteps = len(timesteps)
guidance = (torch.full([1], guidance_scale, device=device, dtype=torch.float32)
.expand(latents.shape[0])
if self.transformer.config.guidance_embeds else None)
for i, t in enumerate(timesteps):
if self.interrupt:
continue
timestep = t.expand(latents.shape[0]).to(latents.dtype)
noise_pred = self.transformer(
hidden_states=latents,
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)[0]
latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
image = self.vae.decode(latents_for_image, return_dict=False)[0]
yield self.image_processor.postprocess(image, output_type=output_type)[0]
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
torch.cuda.empty_cache()
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
image = good_vae.decode(latents, return_dict=False)[0]
self.maybe_free_model_hooks()
torch.cuda.empty_cache()
yield self.image_processor.postprocess(image, output_type=output_type)[0]
def get_huggingface_safetensors(link: str) -> tuple:
split_link = link.split("/")
if len(split_link) == 2:
model_card = ModelCard.load(link)
base_model_card = model_card.data.get("base_model")
print(base_model_card)
if base_model_card not in ("black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"):
raise Exception("Flux LoRA Not Found!")
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
trigger_word = model_card.data.get("instance_prompt", "")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
fs = HfFileSystem()
try:
list_of_files = fs.ls(link, detail=False)
for file in list_of_files:
if file.endswith(".safetensors"):
safetensors_name = file.split("/")[-1]
if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")):
image_elements = file.split("/")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
except Exception as e:
print(e)
raise Exception("Invalid LoRA repository")
return split_link[1], link, safetensors_name, trigger_word, image_url
else:
raise Exception("Invalid LoRA link format")
def check_custom_model(link: str) -> tuple:
if link.startswith("https://"):
if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"):
link_split = link.split("huggingface.co/")
return get_huggingface_safetensors(link_split[1])
return get_huggingface_safetensors(link)
def create_lora_card(title: str, repo: str, trigger_word: str, image: str) -> str:
trigger_word_info = (f"Using: <code><b>{trigger_word}</b></code> as the trigger word"
if trigger_word else "No trigger word found. Include it in your prompt")
return f'''
<div class="custom_lora_card">
<span>Loaded custom LoRA:</span>
<div class="card_internal">
<img src="{image}" />
<div>
<h3>{title}</h3>
<small>{trigger_word_info}<br></small>
</div>
</div>
</div>
'''
def add_custom_lora(custom_lora: str) -> tuple:
global loras
if custom_lora:
try:
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
print(f"Loaded custom LoRA: {repo}")
card = create_lora_card(title, repo, trigger_word, image)
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
if existing_item_index is None:
new_item = {
"image": image,
"title": title,
"repo": repo,
"weights": path,
"trigger_word": trigger_word
}
print(new_item)
loras.append(new_item)
existing_item_index = len(loras) - 1
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
except Exception as e:
print(f"Error loading LoRA: {e}")
return gr.update(visible=True, value="Invalid LoRA"), gr.update(visible=False), gr.update(), "", None, ""
else:
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
def remove_custom_lora() -> tuple:
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
def prepare_prompt(prompt: str, selected_index: Optional[int], loras_list: list) -> str:
if selected_index is None:
raise gr.Error("You must select a LoRA before proceeding.🧨")
selected_lora = loras_list[selected_index]
trigger_word = selected_lora.get("trigger_word")
if trigger_word:
trigger_position = selected_lora.get("trigger_position", "append")
if trigger_position == "prepend":
prompt_mash = f"{trigger_word} {prompt}"
else:
prompt_mash = f"{prompt} {trigger_word}"
else:
prompt_mash = prompt
return prompt_mash
def unload_lora_weights(pipe, pipe_i2i):
if pipe is not None:
pipe.unload_lora_weights()
if pipe_i2i is not None:
pipe_i2i.unload_lora_weights()
def load_lora_weights_into_pipeline(pipe_to_use, lora_path: str, weight_name: Optional[str]):
pipe_to_use.load_lora_weights(
lora_path,
weight_name=weight_name,
low_cpu_mem_usage=True
)
def update_selection(evt: gr.SelectData, width, height) -> tuple:
selected_lora = loras[evt.index]
new_placeholder = f"Type a prompt for {selected_lora['title']}"
lora_repo = selected_lora["repo"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✅"
if "aspect" in selected_lora:
if selected_lora["aspect"] == "portrait":
width = 768
height = 1024
elif selected_lora["aspect"] == "landscape":
width = 1024
height = 768
else:
width = 1024
height = 1024
return (
gr.update(placeholder=new_placeholder),
updated_text,
evt.index,
width,
height,
)
##############################
# ===== backend.py =====
##############################
class ModelManager:
def __init__(self, hf_token=None):
self.hf_token = hf_token
self.pipe = None
self.pipe_i2i = None
self.good_vae = None
self.taef1 = None
self.initialize_models()
def initialize_models(self):
self.taef1 = AutoencoderTiny.from_pretrained(TAEF1_MODEL, torch_dtype=DTYPE).to(DEVICE)
self.good_vae = AutoencoderKL.from_pretrained(BASE_MODEL, subfolder="vae", torch_dtype=DTYPE).to(DEVICE)
self.pipe = DiffusionPipeline.from_pretrained(BASE_MODEL, torch_dtype=DTYPE, vae=self.taef1).to(DEVICE)
self.pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
BASE_MODEL,
vae=self.good_vae,
transformer=self.pipe.transformer,
text_encoder=self.pipe.text_encoder,
tokenizer=self.pipe.tokenizer,
text_encoder_2=self.pipe.text_encoder_2,
tokenizer_2=self.pipe.tokenizer_2,
torch_dtype=DTYPE,
).to(DEVICE)
# Bind custom LoRA method to the pipeline class (to avoid __slots__ issues)
self.pipe.__class__.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images
@spaces.GPU(duration=100)
def generate_image(self, prompt_mash, steps, seed, cfg_scale, width, height, lora_scale):
generator = torch.Generator(device=DEVICE).manual_seed(seed)
with calculateDuration("Generating image"):
for img in self.pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=prompt_mash,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
output_type="pil",
good_vae=self.good_vae,
):
yield img
def generate_image_to_image(self, prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, lora_scale, seed):
generator = torch.Generator(device=DEVICE).manual_seed(seed)
image_input = load_image_from_path(image_input_path)
with calculateDuration("Generating image to image"):
final_image = self.pipe_i2i(
prompt=prompt_mash,
image=image_input,
strength=image_strength,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
output_type="pil",
).images[0]
return final_image
##############################
# ===== frontend.py =====
##############################
class Frontend:
def __init__(self, model_manager: ModelManager):
self.model_manager = model_manager
self.loras = loras
self.load_initial_loras()
self.css = self.define_css()
def define_css(self):
return '''
/* Title Styling */
#title {
text-align: center;
margin-bottom: 20px;
}
#title h1 {
font-size: 2.5rem;
margin: 0;
color: #333;
}
/* Button and Column Styling */
#gen_btn {
width: 100%;
padding: 12px;
font-weight: bold;
border-radius: 5px;
}
#gen_column {
display: flex;
align-items: center;
justify-content: center;
}
/* Gallery and List Styling */
#gallery .grid-wrap {
margin-top: 15px;
}
#lora_list {
background-color: #f5f5f5;
padding: 10px;
border-radius: 4px;
font-size: 0.9rem;
}
.card_internal {
display: flex;
align-items: center;
height: 100px;
margin-top: 10px;
}
.card_internal img {
margin-right: 10px;
}
.styler {
--form-gap-width: 0px !important;
}
/* Progress Bar Styling */
.progress-container {
width: 100%;
height: 20px;
background-color: #e0e0e0;
border-radius: 10px;
overflow: hidden;
margin-bottom: 20px;
}
.progress-bar {
height: 100%;
background-color: #4f46e5;
transition: width 0.3s ease-in-out;
width: calc(var(--current) / var(--total) * 100%);
}
'''
def load_initial_loras(self):
try:
from lora import loras as loras_list
self.loras = loras_list
except ImportError:
print("Warning: lora.py not found, using placeholder LoRAs.")
@spaces.GPU(duration=100)
def run_lora(self, prompt, image_input, image_strength, cfg_scale, steps, selected_index,
randomize_seed, seed, width, height, lora_scale, use_enhancer,
progress=gr.Progress(track_tqdm=True)):
seed = randomize_seed_if_needed(randomize_seed, seed, MAX_SEED)
prompt_mash = prepare_prompt(prompt, selected_index, self.loras)
enhanced_text = ""
if use_enhancer:
for enhanced_chunk in generate(prompt_mash):
enhanced_text = enhanced_chunk
yield None, seed, gr.update(visible=False), enhanced_text
prompt_mash = enhanced_text
else:
enhanced_text = ""
selected_lora = self.loras[selected_index]
unload_lora_weights(self.model_manager.pipe, self.model_manager.pipe_i2i)
pipe_to_use = self.model_manager.pipe_i2i if image_input is not None else self.model_manager.pipe
load_lora_weights_into_pipeline(pipe_to_use, selected_lora["repo"], selected_lora.get("weights"))
if image_input is not None:
final_image = self.model_manager.generate_image_to_image(
prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, lora_scale, seed
)
yield final_image, seed, gr.update(visible=False), enhanced_text
else:
image_generator = self.model_manager.generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale)
final_image = None
step_counter = 0
for image in image_generator:
step_counter += 1
final_image = image
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
yield image, seed, gr.update(value=progress_bar, visible=True), enhanced_text
yield final_image, seed, gr.update(value=progress_bar, visible=False), enhanced_text
def create_ui(self):
with gr.Blocks(theme=gr.themes.Base(), css=self.css, title="Flux LoRA Generation") as app:
title = gr.HTML("<h1>Flux LoRA Generation</h1>", elem_id="title")
selected_index = gr.State(None)
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Choose the LoRA and type the prompt")
with gr.Column(scale=1, elem_id="gen_column"):
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
with gr.Row():
with gr.Column():
selected_info = gr.Markdown("")
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in self.loras],
label="LoRA Collection",
allow_preview=False,
columns=3,
elem_id="gallery",
show_share_button=False
)
with gr.Group():
custom_lora = gr.Textbox(label="Enter Custom LoRA", placeholder="prithivMLmods/Canopus-LoRA-Flux-Anime")
gr.Markdown("[Check the list of FLUX LoRA's](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
custom_lora_info = gr.HTML(visible=False)
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
with gr.Column():
progress_bar = gr.Markdown(elem_id="progress", visible=False)
result = gr.Image(label="Generated Image")
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
input_image = gr.Image(label="Input image", type="filepath")
image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
with gr.Column():
with gr.Row():
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
with gr.Row():
randomize_seed = gr.Checkbox(True, label="Randomize seed")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=0.95)
with gr.Row():
use_enhancer = gr.Checkbox(value=False, label="Use Prompt Enhancer")
show_enhanced_prompt = gr.Checkbox(value=False, label="Display Enhanced Prompt")
enhanced_prompt_box = gr.Textbox(label="Enhanced Prompt", visible=False)
gallery.select(
update_selection,
inputs=[width, height],
outputs=[prompt, selected_info, selected_index, width, height]
)
custom_lora.input(
add_custom_lora,
inputs=[custom_lora],
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
)
custom_lora_button.click(
remove_custom_lora,
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
)
show_enhanced_prompt.change(fn=lambda show: gr.update(visible=show),
inputs=show_enhanced_prompt,
outputs=enhanced_prompt_box)
gr.on(
triggers=[generate_button.click, prompt.submit],
fn=self.run_lora,
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, use_enhancer],
outputs=[result, seed, progress_bar, enhanced_prompt_box]
)
with gr.Row():
gr.HTML("<div style='text-align:center; font-size:0.9em; margin-top:20px;'>Credits: <a href='https://ruslanmv.com' target='_blank'>ruslanmv.com</a></div>")
return app
##############################
# ===== Main app.py =====
##############################
if __name__ == "__main__":
hf_token = os.environ.get("HF_TOKEN")
if not hf_token:
raise ValueError("Hugging Face token (HF_TOKEN) not found in environment variables. Please set it.")
model_manager = ModelManager(hf_token=hf_token)
frontend = Frontend(model_manager)
app = frontend.create_ui()
app.queue()
app.launch(share=False, debug=True)
|