File size: 28,349 Bytes
18d3f26
 
 
98605c5
18d3f26
 
 
 
 
aadfbd4
18d3f26
 
 
0b25329
27448ca
aadfbd4
18d3f26
 
 
 
 
 
 
 
 
0b25329
18d3f26
 
 
 
 
 
 
 
 
 
 
 
 
 
0b25329
18d3f26
 
 
 
 
0b25329
 
 
 
 
 
18d3f26
0b25329
18d3f26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b25329
18d3f26
0b25329
18d3f26
0b25329
18d3f26
 
 
 
 
 
 
 
 
 
0b25329
18d3f26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b25329
18d3f26
 
 
 
 
0b25329
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18d3f26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b25329
 
 
18d3f26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b25329
 
18d3f26
0b25329
18d3f26
 
 
 
 
 
 
 
 
0b25329
 
18d3f26
 
 
 
 
 
 
 
 
 
 
 
 
0b25329
 
18d3f26
 
 
 
 
0b25329
18d3f26
 
 
 
 
 
 
 
 
0b25329
 
18d3f26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b25329
 
18d3f26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b25329
18d3f26
 
 
 
 
 
 
 
 
 
0b25329
aadfbd4
d836319
0b25329
18d3f26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b25329
18d3f26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d836319
18d3f26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b25329
18d3f26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b25329
18d3f26
 
 
 
0b25329
18d3f26
 
 
 
 
 
 
 
 
 
 
 
0b25329
18d3f26
 
 
 
 
 
 
 
 
 
98605c5
 
b1d31cc
98605c5
 
 
 
aadfbd4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
##############################
# ===== Standard Imports =====
##############################
import os
import sys
import time
import random
import json
from typing import Any, Dict, List, Optional, Union

import torch
import numpy as np
from PIL import Image
import gradio as gr
import spaces

# Diffusers imports
from diffusers import (
    DiffusionPipeline,
    AutoencoderTiny,
    AutoencoderKL,
    AutoPipelineForImage2Image,
)
from diffusers.utils import load_image

# Hugging Face Hub imports
from huggingface_hub import ModelCard, HfFileSystem

##############################
# ===== config.py =====
##############################
DTYPE = torch.bfloat16
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
BASE_MODEL = "black-forest-labs/FLUX.1-dev"
TAEF1_MODEL = "madebyollin/taef1"
MAX_SEED = 2**32 - 1

##############################
# ===== utilities.py =====
##############################
def calculate_shift(image_seq_len, base_seq_len=256, max_seq_len=4096, base_shift=0.5, max_shift=1.16):
    m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
    b = base_shift - m * base_seq_len
    mu = image_seq_len * m + b
    return mu

def retrieve_timesteps(scheduler,
                       num_inference_steps: Optional[int] = None,
                       device: Optional[Union[str, torch.device]] = None,
                       timesteps: Optional[List[int]] = None,
                       sigmas: Optional[List[float]] = None,
                       **kwargs):
    if timesteps is not None and sigmas is not None:
        raise ValueError("Only one of `timesteps` or `sigmas` can be passed.")
    if timesteps is not None:
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps

def load_image_from_path(image_path: str):
    return load_image(image_path)

def randomize_seed_if_needed(randomize_seed: bool, seed: int, max_seed: int) -> int:
    if randomize_seed:
        return random.randint(0, max_seed)
    return seed

class calculateDuration:
    def __init__(self, activity_name=""):
        self.activity_name = activity_name
    def __enter__(self):
        self.start_time = time.time()
        return self
    def __exit__(self, exc_type, exc_value, traceback):
        self.end_time = time.time()
        elapsed = self.end_time - self.start_time
        if self.activity_name:
            print(f"Elapsed time for {self.activity_name}: {elapsed:.6f} seconds")
        else:
            print(f"Elapsed time: {elapsed:.6f} seconds")

##############################
# ===== enhance.py =====
##############################
def generate(message, max_new_tokens=256, temperature=0.9, top_p=0.95, repetition_penalty=1.0):
    SYSTEM_PROMPT = (
        "You are a prompt enhancer and your work is to enhance the given prompt under 100 words "
        "without changing the essence, only write the enhanced prompt and nothing else."
    )
    timestamp = time.time()
    formatted_prompt = f"<s>[INST] SYSTEM: {SYSTEM_PROMPT} [/INST][INST] {message} {timestamp} [/INST]"
    api_url = "https://ruslanmv-hf-llm-api.hf.space/api/v1/chat/completions"
    headers = {"Content-Type": "application/json"}
    payload = {
        "model": "mixtral-8x7b",
        "messages": [{"role": "user", "content": formatted_prompt}],
        "temperature": temperature,
        "top_p": top_p,
        "max_tokens": max_new_tokens,
        "use_cache": False,
        "stream": True
    }
    try:
        response = requests.post(api_url, headers=headers, json=payload, stream=True)
        response.raise_for_status()
        full_output = ""
        for line in response.iter_lines():
            if not line:
                continue
            decoded_line = line.decode("utf-8").strip()
            if decoded_line.startswith("data:"):
                decoded_line = decoded_line[len("data:"):].strip()
            if decoded_line == "[DONE]":
                break
            try:
                json_data = json.loads(decoded_line)
                for choice in json_data.get("choices", []):
                    delta = choice.get("delta", {})
                    content = delta.get("content", "")
                    full_output += content
                    yield full_output
                    if choice.get("finish_reason") == "stop":
                        return
            except json.JSONDecodeError:
                continue
    except requests.exceptions.RequestException as e:
        yield f"Error during generation: {str(e)}"

##############################
# ===== lora_handling.py =====
##############################
# Default LoRA list for initial UI setup
loras = [
    {"image": "placeholder.jpg", "title": "Placeholder LoRA", "repo": "placeholder/repo", "weights": None, "trigger_word": ""}
]

@torch.inference_mode()
def flux_pipe_call_that_returns_an_iterable_of_images(self,
                                                       prompt: Union[str, List[str]] = None,
                                                       prompt_2: Optional[Union[str, List[str]]] = None,
                                                       height: Optional[int] = None,
                                                       width: Optional[int] = None,
                                                       num_inference_steps: int = 28,
                                                       timesteps: List[int] = None,
                                                       guidance_scale: float = 3.5,
                                                       num_images_per_prompt: Optional[int] = 1,
                                                       generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
                                                       latents: Optional[torch.FloatTensor] = None,
                                                       prompt_embeds: Optional[torch.FloatTensor] = None,
                                                       pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
                                                       output_type: Optional[str] = "pil",
                                                       return_dict: bool = True,
                                                       joint_attention_kwargs: Optional[Dict[str, Any]] = None,
                                                       max_sequence_length: int = 512,
                                                       good_vae: Optional[Any] = None):
    height = height or self.default_sample_size * self.vae_scale_factor
    width = width or self.default_sample_size * self.vae_scale_factor
    
    self.check_inputs(
        prompt,
        prompt_2,
        height,
        width,
        prompt_embeds=prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        max_sequence_length=max_sequence_length,
    )
    self._guidance_scale = guidance_scale
    self._joint_attention_kwargs = joint_attention_kwargs
    self._interrupt = False
    batch_size = 1 if isinstance(prompt, str) else len(prompt)
    device = self._execution_device
    lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
    prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
        prompt=prompt,
        prompt_2=prompt_2,
        prompt_embeds=prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        device=device,
        num_images_per_prompt=num_images_per_prompt,
        max_sequence_length=max_sequence_length,
        lora_scale=lora_scale,
    )
    num_channels_latents = self.transformer.config.in_channels // 4
    latents, latent_image_ids = self.prepare_latents(
        batch_size * num_images_per_prompt,
        num_channels_latents,
        height,
        width,
        prompt_embeds.dtype,
        device,
        generator,
        latents,
    )
    sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
    image_seq_len = latents.shape[1]
    mu = calculate_shift(
        image_seq_len,
        self.scheduler.config.base_image_seq_len,
        self.scheduler.config.max_image_seq_len,
        self.scheduler.config.base_shift,
        self.scheduler.config.max_shift,
    )
    timesteps, num_inference_steps = retrieve_timesteps(
        self.scheduler,
        num_inference_steps,
        device,
        timesteps,
        sigmas,
        mu=mu,
    )
    self._num_timesteps = len(timesteps)
    guidance = (torch.full([1], guidance_scale, device=device, dtype=torch.float32)
                .expand(latents.shape[0])
                if self.transformer.config.guidance_embeds else None)
    for i, t in enumerate(timesteps):
        if self.interrupt:
            continue
        timestep = t.expand(latents.shape[0]).to(latents.dtype)
        noise_pred = self.transformer(
            hidden_states=latents,
            timestep=timestep / 1000,
            guidance=guidance,
            pooled_projections=pooled_prompt_embeds,
            encoder_hidden_states=prompt_embeds,
            txt_ids=text_ids,
            img_ids=latent_image_ids,
            joint_attention_kwargs=self.joint_attention_kwargs,
            return_dict=False,
        )[0]
        latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
        latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
        image = self.vae.decode(latents_for_image, return_dict=False)[0]
        yield self.image_processor.postprocess(image, output_type=output_type)[0]
        latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
        torch.cuda.empty_cache()
    latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
    latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
    image = good_vae.decode(latents, return_dict=False)[0]
    self.maybe_free_model_hooks()
    torch.cuda.empty_cache()
    yield self.image_processor.postprocess(image, output_type=output_type)[0]

def get_huggingface_safetensors(link: str) -> tuple:
    split_link = link.split("/")
    if len(split_link) == 2:
        model_card = ModelCard.load(link)
        base_model_card = model_card.data.get("base_model")
        print(base_model_card)
        if base_model_card not in ("black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"):
            raise Exception("Flux LoRA Not Found!")
        image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
        trigger_word = model_card.data.get("instance_prompt", "")
        image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
        fs = HfFileSystem()
        try:
            list_of_files = fs.ls(link, detail=False)
            for file in list_of_files:
                if file.endswith(".safetensors"):
                    safetensors_name = file.split("/")[-1]
                if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")):
                    image_elements = file.split("/")
                    image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
        except Exception as e:
            print(e)
            raise Exception("Invalid LoRA repository")
        return split_link[1], link, safetensors_name, trigger_word, image_url
    else:
        raise Exception("Invalid LoRA link format")

def check_custom_model(link: str) -> tuple:
    if link.startswith("https://"):
        if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"):
            link_split = link.split("huggingface.co/")
            return get_huggingface_safetensors(link_split[1])
    return get_huggingface_safetensors(link)

def create_lora_card(title: str, repo: str, trigger_word: str, image: str) -> str:
    trigger_word_info = (f"Using: <code><b>{trigger_word}</b></code> as the trigger word"
                         if trigger_word else "No trigger word found. Include it in your prompt")
    return f'''
    <div class="custom_lora_card">
        <span>Loaded custom LoRA:</span>
        <div class="card_internal">
            <img src="{image}" />
            <div>
                <h3>{title}</h3>
                <small>{trigger_word_info}<br></small>
            </div>
        </div>
    </div>
    '''

def add_custom_lora(custom_lora: str) -> tuple:
    global loras
    if custom_lora:
        try:
            title, repo, path, trigger_word, image = check_custom_model(custom_lora)
            print(f"Loaded custom LoRA: {repo}")
            card = create_lora_card(title, repo, trigger_word, image)
            existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
            if existing_item_index is None:
                new_item = {
                    "image": image,
                    "title": title,
                    "repo": repo,
                    "weights": path,
                    "trigger_word": trigger_word
                }
                print(new_item)
                loras.append(new_item)
                existing_item_index = len(loras) - 1
            return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
        except Exception as e:
            print(f"Error loading LoRA: {e}")
            return gr.update(visible=True, value="Invalid LoRA"), gr.update(visible=False), gr.update(), "", None, ""
    else:
        return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""

def remove_custom_lora() -> tuple:
    return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""

def prepare_prompt(prompt: str, selected_index: Optional[int], loras_list: list) -> str:
    if selected_index is None:
        raise gr.Error("You must select a LoRA before proceeding.🧨")
    selected_lora = loras_list[selected_index]
    trigger_word = selected_lora.get("trigger_word")
    if trigger_word:
        trigger_position = selected_lora.get("trigger_position", "append")
        if trigger_position == "prepend":
            prompt_mash = f"{trigger_word} {prompt}"
        else:
            prompt_mash = f"{prompt} {trigger_word}"
    else:
        prompt_mash = prompt
    return prompt_mash

def unload_lora_weights(pipe, pipe_i2i):
    if pipe is not None:
        pipe.unload_lora_weights()
    if pipe_i2i is not None:
        pipe_i2i.unload_lora_weights()

def load_lora_weights_into_pipeline(pipe_to_use, lora_path: str, weight_name: Optional[str]):
    pipe_to_use.load_lora_weights(
        lora_path,
        weight_name=weight_name,
        low_cpu_mem_usage=True
    )

def update_selection(evt: gr.SelectData, width, height) -> tuple:
    selected_lora = loras[evt.index]
    new_placeholder = f"Type a prompt for {selected_lora['title']}"
    lora_repo = selected_lora["repo"]
    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✅"
    if "aspect" in selected_lora:
        if selected_lora["aspect"] == "portrait":
            width = 768
            height = 1024
        elif selected_lora["aspect"] == "landscape":
            width = 1024
            height = 768
        else:
            width = 1024
            height = 1024
    return (
        gr.update(placeholder=new_placeholder),
        updated_text,
        evt.index,
        width,
        height,
    )

##############################
# ===== backend.py =====
##############################
class ModelManager:
    def __init__(self, hf_token=None):
        self.hf_token = hf_token
        self.pipe = None
        self.pipe_i2i = None
        self.good_vae = None
        self.taef1 = None
        self.initialize_models()

    def initialize_models(self):
        self.taef1 = AutoencoderTiny.from_pretrained(TAEF1_MODEL, torch_dtype=DTYPE).to(DEVICE)
        self.good_vae = AutoencoderKL.from_pretrained(BASE_MODEL, subfolder="vae", torch_dtype=DTYPE).to(DEVICE)
        self.pipe = DiffusionPipeline.from_pretrained(BASE_MODEL, torch_dtype=DTYPE, vae=self.taef1).to(DEVICE)
        self.pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
            BASE_MODEL,
            vae=self.good_vae,
            transformer=self.pipe.transformer,
            text_encoder=self.pipe.text_encoder,
            tokenizer=self.pipe.tokenizer,
            text_encoder_2=self.pipe.text_encoder_2,
            tokenizer_2=self.pipe.tokenizer_2,
            torch_dtype=DTYPE,
        ).to(DEVICE)
        # Bind custom LoRA method to the pipeline class (to avoid __slots__ issues)
        self.pipe.__class__.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images
    
    @spaces.GPU(duration=100) 
    def generate_image(self, prompt_mash, steps, seed, cfg_scale, width, height, lora_scale):
        generator = torch.Generator(device=DEVICE).manual_seed(seed)
        with calculateDuration("Generating image"):
            for img in self.pipe.flux_pipe_call_that_returns_an_iterable_of_images(
                prompt=prompt_mash,
                num_inference_steps=steps,
                guidance_scale=cfg_scale,
                width=width,
                height=height,
                generator=generator,
                joint_attention_kwargs={"scale": lora_scale},
                output_type="pil",
                good_vae=self.good_vae,
            ):
                yield img

    def generate_image_to_image(self, prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, lora_scale, seed):
        generator = torch.Generator(device=DEVICE).manual_seed(seed)
        image_input = load_image_from_path(image_input_path)
        with calculateDuration("Generating image to image"):
            final_image = self.pipe_i2i(
                prompt=prompt_mash,
                image=image_input,
                strength=image_strength,
                num_inference_steps=steps,
                guidance_scale=cfg_scale,
                width=width,
                height=height,
                generator=generator,
                joint_attention_kwargs={"scale": lora_scale},
                output_type="pil",
            ).images[0]
            return final_image

##############################
# ===== frontend.py =====
##############################
class Frontend:
    def __init__(self, model_manager: ModelManager):
        self.model_manager = model_manager
        self.loras = loras
        self.load_initial_loras()
        self.css = self.define_css()

    def define_css(self):
        return '''
        /* Title Styling */
        #title {
            text-align: center;
            margin-bottom: 20px;
        }
        #title h1 {
            font-size: 2.5rem;
            margin: 0;
            color: #333;
        }
        /* Button and Column Styling */
        #gen_btn {
            width: 100%;
            padding: 12px;
            font-weight: bold;
            border-radius: 5px;
        }
        #gen_column {
            display: flex;
            align-items: center;
            justify-content: center;
        }
        /* Gallery and List Styling */
        #gallery .grid-wrap {
            margin-top: 15px;
        }
        #lora_list {
            background-color: #f5f5f5;
            padding: 10px;
            border-radius: 4px;
            font-size: 0.9rem;
        }
        .card_internal {
            display: flex;
            align-items: center;
            height: 100px;
            margin-top: 10px;
        }
        .card_internal img {
            margin-right: 10px;
        }
        .styler {
            --form-gap-width: 0px !important;
        }
        /* Progress Bar Styling */
        .progress-container {
            width: 100%;
            height: 20px;
            background-color: #e0e0e0;
            border-radius: 10px;
            overflow: hidden;
            margin-bottom: 20px;
        }
        .progress-bar {
            height: 100%;
            background-color: #4f46e5;
            transition: width 0.3s ease-in-out;
            width: calc(var(--current) / var(--total) * 100%);
        }
        '''

    def load_initial_loras(self):
        try:
            from lora import loras as loras_list
            self.loras = loras_list
        except ImportError:
            print("Warning: lora.py not found, using placeholder LoRAs.")

    @spaces.GPU(duration=100)
    def run_lora(self, prompt, image_input, image_strength, cfg_scale, steps, selected_index,
                 randomize_seed, seed, width, height, lora_scale, use_enhancer,
                 progress=gr.Progress(track_tqdm=True)):
        seed = randomize_seed_if_needed(randomize_seed, seed, MAX_SEED)
        prompt_mash = prepare_prompt(prompt, selected_index, self.loras)
        enhanced_text = ""
        if use_enhancer:
            for enhanced_chunk in generate(prompt_mash):
                enhanced_text = enhanced_chunk
                yield None, seed, gr.update(visible=False), enhanced_text
            prompt_mash = enhanced_text
        else:
            enhanced_text = ""
        selected_lora = self.loras[selected_index]
        unload_lora_weights(self.model_manager.pipe, self.model_manager.pipe_i2i)
        pipe_to_use = self.model_manager.pipe_i2i if image_input is not None else self.model_manager.pipe
        load_lora_weights_into_pipeline(pipe_to_use, selected_lora["repo"], selected_lora.get("weights"))
        if image_input is not None:
            final_image = self.model_manager.generate_image_to_image(
                prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, lora_scale, seed
            )
            yield final_image, seed, gr.update(visible=False), enhanced_text
        else:
            image_generator = self.model_manager.generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale)
            final_image = None
            step_counter = 0
            for image in image_generator:
                step_counter += 1
                final_image = image
                progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
                yield image, seed, gr.update(value=progress_bar, visible=True), enhanced_text
            yield final_image, seed, gr.update(value=progress_bar, visible=False), enhanced_text

    def create_ui(self):
        with gr.Blocks(theme=gr.themes.Base(), css=self.css, title="Flux LoRA Generation") as app:
            title = gr.HTML("<h1>Flux LoRA Generation</h1>", elem_id="title")
            selected_index = gr.State(None)
            with gr.Row():
                with gr.Column(scale=3):
                    prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Choose the LoRA and type the prompt")
                with gr.Column(scale=1, elem_id="gen_column"):
                    generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
            with gr.Row():
                with gr.Column():
                    selected_info = gr.Markdown("")
                    gallery = gr.Gallery(
                        [(item["image"], item["title"]) for item in self.loras],
                        label="LoRA Collection",
                        allow_preview=False,
                        columns=3,
                        elem_id="gallery",
                        show_share_button=False
                    )
                    with gr.Group():
                        custom_lora = gr.Textbox(label="Enter Custom LoRA", placeholder="prithivMLmods/Canopus-LoRA-Flux-Anime")
                        gr.Markdown("[Check the list of FLUX LoRA's](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
                    custom_lora_info = gr.HTML(visible=False)
                    custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
                with gr.Column():
                    progress_bar = gr.Markdown(elem_id="progress", visible=False)
                    result = gr.Image(label="Generated Image")
            with gr.Row():
                with gr.Accordion("Advanced Settings", open=False):
                    with gr.Row():
                        input_image = gr.Image(label="Input image", type="filepath")
                        image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
                    with gr.Column():
                        with gr.Row():
                            cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
                            steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
                        with gr.Row():
                            width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
                            height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
                        with gr.Row():
                            randomize_seed = gr.Checkbox(True, label="Randomize seed")
                            seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
                            lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=0.95)
                        with gr.Row():
                            use_enhancer = gr.Checkbox(value=False, label="Use Prompt Enhancer")
                            show_enhanced_prompt = gr.Checkbox(value=False, label="Display Enhanced Prompt")
                    enhanced_prompt_box = gr.Textbox(label="Enhanced Prompt", visible=False)
            gallery.select(
                update_selection,
                inputs=[width, height],
                outputs=[prompt, selected_info, selected_index, width, height]
            )
            custom_lora.input(
                add_custom_lora,
                inputs=[custom_lora],
                outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
            )
            custom_lora_button.click(
                remove_custom_lora,
                outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
            )
            show_enhanced_prompt.change(fn=lambda show: gr.update(visible=show),
                                        inputs=show_enhanced_prompt,
                                        outputs=enhanced_prompt_box)
            gr.on(
                triggers=[generate_button.click, prompt.submit],
                fn=self.run_lora,
                inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, use_enhancer],
                outputs=[result, seed, progress_bar, enhanced_prompt_box]
            )
            with gr.Row():
                gr.HTML("<div style='text-align:center; font-size:0.9em; margin-top:20px;'>Credits: <a href='https://ruslanmv.com' target='_blank'>ruslanmv.com</a></div>")
            return app

##############################
# ===== Main app.py =====
##############################
if __name__ == "__main__":
    hf_token = os.environ.get("HF_TOKEN")
    if not hf_token:
        raise ValueError("Hugging Face token (HF_TOKEN) not found in environment variables. Please set it.")
    model_manager = ModelManager(hf_token=hf_token)
    frontend = Frontend(model_manager)
    app = frontend.create_ui()
    app.queue()
    app.launch(share=False, debug=True)