Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,733 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
2 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
hf_token = os.environ.get("HF_TOKEN")
|
10 |
if not hf_token:
|
11 |
raise ValueError("Hugging Face token (HF_TOKEN) not found in environment variables. Please set it.")
|
12 |
-
|
13 |
model_manager = ModelManager(hf_token=hf_token)
|
14 |
frontend = Frontend(model_manager)
|
15 |
app = frontend.create_ui()
|
16 |
-
|
17 |
-
# Enable request queuing. (No extra keyword arguments here.)
|
18 |
app.queue()
|
19 |
-
|
20 |
-
# Launch the app with the specified server configuration.
|
21 |
-
app.launch(server_name="0.0.0.0", server_port=7860, share=False)
|
22 |
-
|
23 |
-
if __name__ == "__main__":
|
24 |
-
main()
|
|
|
1 |
+
|
2 |
+
|
3 |
+
##############################
|
4 |
+
# ===== Standard Imports =====
|
5 |
+
##############################
|
6 |
import os
|
7 |
+
import sys
|
8 |
+
import time
|
9 |
+
import random
|
10 |
+
import json
|
11 |
+
from math import floor
|
12 |
+
from typing import Any, Dict, List, Optional, Union
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import numpy as np
|
16 |
+
import requests
|
17 |
+
from PIL import Image
|
18 |
+
|
19 |
+
# Diffusers imports
|
20 |
+
from diffusers import (
|
21 |
+
DiffusionPipeline,
|
22 |
+
AutoencoderTiny,
|
23 |
+
AutoencoderKL,
|
24 |
+
AutoPipelineForImage2Image,
|
25 |
+
)
|
26 |
+
from diffusers.utils import load_image
|
27 |
+
|
28 |
+
# Hugging Face Hub
|
29 |
+
from huggingface_hub import ModelCard, HfFileSystem
|
30 |
+
|
31 |
+
# Gradio (UI)
|
32 |
+
import gradio as gr
|
33 |
+
|
34 |
+
##############################
|
35 |
+
# ===== config.py =====
|
36 |
+
##############################
|
37 |
+
# Configuration parameters
|
38 |
+
DTYPE = torch.bfloat16
|
39 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
40 |
+
BASE_MODEL = "black-forest-labs/FLUX.1-dev"
|
41 |
+
TAEF1_MODEL = "madebyollin/taef1"
|
42 |
+
MAX_SEED = 2**32 - 1
|
43 |
+
|
44 |
+
##############################
|
45 |
+
# ===== utilities.py =====
|
46 |
+
##############################
|
47 |
+
def calculate_shift(
|
48 |
+
image_seq_len,
|
49 |
+
base_seq_len: int = 256,
|
50 |
+
max_seq_len: int = 4096,
|
51 |
+
base_shift: float = 0.5,
|
52 |
+
max_shift: float = 1.16,
|
53 |
+
):
|
54 |
+
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
55 |
+
b = base_shift - m * base_seq_len
|
56 |
+
mu = image_seq_len * m + b
|
57 |
+
return mu
|
58 |
+
|
59 |
+
def retrieve_timesteps(
|
60 |
+
scheduler,
|
61 |
+
num_inference_steps: Optional[int] = None,
|
62 |
+
device: Optional[Union[str, torch.device]] = None,
|
63 |
+
timesteps: Optional[List[int]] = None,
|
64 |
+
sigmas: Optional[List[float]] = None,
|
65 |
+
**kwargs,
|
66 |
+
):
|
67 |
+
if timesteps is not None and sigmas is not None:
|
68 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
69 |
+
if timesteps is not None:
|
70 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
71 |
+
timesteps = scheduler.timesteps
|
72 |
+
num_inference_steps = len(timesteps)
|
73 |
+
elif sigmas is not None:
|
74 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
75 |
+
timesteps = scheduler.timesteps
|
76 |
+
num_inference_steps = len(timesteps)
|
77 |
+
else:
|
78 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
79 |
+
timesteps = scheduler.timesteps
|
80 |
+
return timesteps, num_inference_steps
|
81 |
+
|
82 |
+
def load_image_from_path(image_path: str):
|
83 |
+
"""Loads an image from a given file path."""
|
84 |
+
return load_image(image_path)
|
85 |
+
|
86 |
+
def randomize_seed_if_needed(randomize_seed: bool, seed: int, max_seed: int) -> int:
|
87 |
+
"""Randomizes the seed if requested."""
|
88 |
+
if randomize_seed:
|
89 |
+
return random.randint(0, max_seed)
|
90 |
+
return seed
|
91 |
+
|
92 |
+
class calculateDuration:
|
93 |
+
def __init__(self, activity_name=""):
|
94 |
+
self.activity_name = activity_name
|
95 |
+
|
96 |
+
def __enter__(self):
|
97 |
+
self.start_time = time.time()
|
98 |
+
return self
|
99 |
+
|
100 |
+
def __exit__(self, exc_type, exc_value, traceback):
|
101 |
+
self.end_time = time.time()
|
102 |
+
self.elapsed_time = self.end_time - self.start_time
|
103 |
+
if self.activity_name:
|
104 |
+
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
|
105 |
+
else:
|
106 |
+
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
|
107 |
+
|
108 |
+
##############################
|
109 |
+
# ===== enhance.py =====
|
110 |
+
##############################
|
111 |
+
def generate(message, max_new_tokens=256, temperature=0.9, top_p=0.95, repetition_penalty=1.0):
|
112 |
+
"""
|
113 |
+
Generates an enhanced prompt using a streaming Hugging Face API.
|
114 |
+
Enhances the given prompt under 100 words without changing its essence.
|
115 |
+
"""
|
116 |
+
SYSTEM_PROMPT = (
|
117 |
+
"You are a prompt enhancer and your work is to enhance the given prompt under 100 words "
|
118 |
+
"without changing the essence, only write the enhanced prompt and nothing else."
|
119 |
+
)
|
120 |
+
timestamp = time.time()
|
121 |
+
formatted_prompt = (
|
122 |
+
f"<s>[INST] SYSTEM: {SYSTEM_PROMPT} [/INST]"
|
123 |
+
f"[INST] {message} {timestamp} [/INST]"
|
124 |
+
)
|
125 |
+
|
126 |
+
api_url = "https://ruslanmv-hf-llm-api.hf.space/api/v1/chat/completions"
|
127 |
+
headers = {"Content-Type": "application/json"}
|
128 |
+
|
129 |
+
payload = {
|
130 |
+
"model": "mixtral-8x7b",
|
131 |
+
"messages": [{"role": "user", "content": formatted_prompt}],
|
132 |
+
"temperature": temperature,
|
133 |
+
"top_p": top_p,
|
134 |
+
"max_tokens": max_new_tokens,
|
135 |
+
"use_cache": False,
|
136 |
+
"stream": True
|
137 |
+
}
|
138 |
+
|
139 |
+
try:
|
140 |
+
response = requests.post(api_url, headers=headers, json=payload, stream=True)
|
141 |
+
response.raise_for_status()
|
142 |
+
full_output = ""
|
143 |
+
|
144 |
+
for line in response.iter_lines():
|
145 |
+
if not line:
|
146 |
+
continue
|
147 |
+
decoded_line = line.decode("utf-8").strip()
|
148 |
+
if decoded_line.startswith("data:"):
|
149 |
+
decoded_line = decoded_line[len("data:"):].strip()
|
150 |
+
if decoded_line == "[DONE]":
|
151 |
+
break
|
152 |
+
try:
|
153 |
+
json_data = json.loads(decoded_line)
|
154 |
+
for choice in json_data.get("choices", []):
|
155 |
+
delta = choice.get("delta", {})
|
156 |
+
content = delta.get("content", "")
|
157 |
+
full_output += content
|
158 |
+
yield full_output
|
159 |
+
if choice.get("finish_reason") == "stop":
|
160 |
+
return
|
161 |
+
except json.JSONDecodeError:
|
162 |
+
continue
|
163 |
+
except requests.exceptions.RequestException as e:
|
164 |
+
yield f"Error during generation: {str(e)}"
|
165 |
+
|
166 |
+
##############################
|
167 |
+
# ===== lora_handling.py =====
|
168 |
+
##############################
|
169 |
+
# A default list of LoRAs for the UI (this would normally be loaded from a separate module)
|
170 |
+
loras = [
|
171 |
+
{"image": "placeholder.jpg", "title": "Placeholder LoRA", "repo": "placeholder/repo", "weights": None, "trigger_word": ""}
|
172 |
+
]
|
173 |
+
|
174 |
+
@torch.inference_mode()
|
175 |
+
def flux_pipe_call_that_returns_an_iterable_of_images(
|
176 |
+
self,
|
177 |
+
prompt: Union[str, List[str]] = None,
|
178 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
179 |
+
height: Optional[int] = None,
|
180 |
+
width: Optional[int] = None,
|
181 |
+
num_inference_steps: int = 28,
|
182 |
+
timesteps: List[int] = None,
|
183 |
+
guidance_scale: float = 3.5,
|
184 |
+
num_images_per_prompt: Optional[int] = 1,
|
185 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
186 |
+
latents: Optional[torch.FloatTensor] = None,
|
187 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
188 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
189 |
+
output_type: Optional[str] = "pil",
|
190 |
+
return_dict: bool = True,
|
191 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
192 |
+
max_sequence_length: int = 512,
|
193 |
+
good_vae: Optional[Any] = None,
|
194 |
+
):
|
195 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
196 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
197 |
+
|
198 |
+
self.check_inputs(
|
199 |
+
prompt,
|
200 |
+
prompt_2,
|
201 |
+
height,
|
202 |
+
width,
|
203 |
+
prompt_embeds=prompt_embeds,
|
204 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
205 |
+
max_sequence_length=max_sequence_length,
|
206 |
+
)
|
207 |
+
|
208 |
+
self._guidance_scale = guidance_scale
|
209 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
210 |
+
self._interrupt = False
|
211 |
+
|
212 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
213 |
+
device = self._execution_device
|
214 |
+
|
215 |
+
lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
|
216 |
+
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
|
217 |
+
prompt=prompt,
|
218 |
+
prompt_2=prompt_2,
|
219 |
+
prompt_embeds=prompt_embeds,
|
220 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
221 |
+
device=device,
|
222 |
+
num_images_per_prompt=num_images_per_prompt,
|
223 |
+
max_sequence_length=max_sequence_length,
|
224 |
+
lora_scale=lora_scale,
|
225 |
+
)
|
226 |
+
|
227 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
228 |
+
latents, latent_image_ids = self.prepare_latents(
|
229 |
+
batch_size * num_images_per_prompt,
|
230 |
+
num_channels_latents,
|
231 |
+
height,
|
232 |
+
width,
|
233 |
+
prompt_embeds.dtype,
|
234 |
+
device,
|
235 |
+
generator,
|
236 |
+
latents,
|
237 |
+
)
|
238 |
+
|
239 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
240 |
+
image_seq_len = latents.shape[1]
|
241 |
+
mu = calculate_shift(
|
242 |
+
image_seq_len,
|
243 |
+
self.scheduler.config.base_image_seq_len,
|
244 |
+
self.scheduler.config.max_image_seq_len,
|
245 |
+
self.scheduler.config.base_shift,
|
246 |
+
self.scheduler.config.max_shift,
|
247 |
+
)
|
248 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
249 |
+
self.scheduler,
|
250 |
+
num_inference_steps,
|
251 |
+
device,
|
252 |
+
timesteps,
|
253 |
+
sigmas,
|
254 |
+
mu=mu,
|
255 |
+
)
|
256 |
+
self._num_timesteps = len(timesteps)
|
257 |
+
|
258 |
+
guidance = (torch.full([1], guidance_scale, device=device, dtype=torch.float32)
|
259 |
+
.expand(latents.shape[0])
|
260 |
+
if self.transformer.config.guidance_embeds else None)
|
261 |
+
|
262 |
+
for i, t in enumerate(timesteps):
|
263 |
+
if self.interrupt:
|
264 |
+
continue
|
265 |
+
|
266 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
267 |
+
|
268 |
+
noise_pred = self.transformer(
|
269 |
+
hidden_states=latents,
|
270 |
+
timestep=timestep / 1000,
|
271 |
+
guidance=guidance,
|
272 |
+
pooled_projections=pooled_prompt_embeds,
|
273 |
+
encoder_hidden_states=prompt_embeds,
|
274 |
+
txt_ids=text_ids,
|
275 |
+
img_ids=latent_image_ids,
|
276 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
277 |
+
return_dict=False,
|
278 |
+
)[0]
|
279 |
+
|
280 |
+
latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
281 |
+
latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
282 |
+
image = self.vae.decode(latents_for_image, return_dict=False)[0]
|
283 |
+
yield self.image_processor.postprocess(image, output_type=output_type)[0]
|
284 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
285 |
+
torch.cuda.empty_cache()
|
286 |
+
|
287 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
288 |
+
latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
|
289 |
+
image = good_vae.decode(latents, return_dict=False)[0]
|
290 |
+
self.maybe_free_model_hooks()
|
291 |
+
torch.cuda.empty_cache()
|
292 |
+
yield self.image_processor.postprocess(image, output_type=output_type)[0]
|
293 |
+
|
294 |
+
def get_huggingface_safetensors(link: str) -> tuple:
|
295 |
+
split_link = link.split("/")
|
296 |
+
if len(split_link) == 2:
|
297 |
+
model_card = ModelCard.load(link)
|
298 |
+
base_model = model_card.data.get("base_model")
|
299 |
+
print(base_model)
|
300 |
+
|
301 |
+
if base_model not in ("black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"):
|
302 |
+
raise Exception("Flux LoRA Not Found!")
|
303 |
+
|
304 |
+
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
|
305 |
+
trigger_word = model_card.data.get("instance_prompt", "")
|
306 |
+
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
|
307 |
+
fs = HfFileSystem()
|
308 |
+
try:
|
309 |
+
list_of_files = fs.ls(link, detail=False)
|
310 |
+
for file in list_of_files:
|
311 |
+
if file.endswith(".safetensors"):
|
312 |
+
safetensors_name = file.split("/")[-1]
|
313 |
+
if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")):
|
314 |
+
image_elements = file.split("/")
|
315 |
+
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
|
316 |
+
return split_link[1], link, safetensors_name, trigger_word, image_url
|
317 |
+
except Exception as e:
|
318 |
+
print(e)
|
319 |
+
raise Exception("You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
|
320 |
+
else:
|
321 |
+
raise Exception("You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
|
322 |
+
|
323 |
+
def check_custom_model(link: str) -> tuple:
|
324 |
+
if link.startswith("https://"):
|
325 |
+
if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"):
|
326 |
+
link_split = link.split("huggingface.co/")
|
327 |
+
return get_huggingface_safetensors(link_split[1])
|
328 |
+
return get_huggingface_safetensors(link)
|
329 |
+
|
330 |
+
def create_lora_card(title: str, repo: str, trigger_word: str, image: str) -> str:
|
331 |
+
trigger_word_info = (
|
332 |
+
f"Using: <code><b>{trigger_word}</b></code> as the trigger word"
|
333 |
+
if trigger_word
|
334 |
+
else "No trigger word found. If there's a trigger word, include it in your prompt"
|
335 |
+
)
|
336 |
+
return f'''
|
337 |
+
<div class="custom_lora_card">
|
338 |
+
<span>Loaded custom LoRA:</span>
|
339 |
+
<div class="card_internal">
|
340 |
+
<img src="{image}" />
|
341 |
+
<div>
|
342 |
+
<h3>{title}</h3>
|
343 |
+
<small>{trigger_word_info}<br></small>
|
344 |
+
</div>
|
345 |
+
</div>
|
346 |
+
</div>
|
347 |
+
'''
|
348 |
+
|
349 |
+
def add_custom_lora(custom_lora: str, loras_list: list) -> tuple:
|
350 |
+
if custom_lora:
|
351 |
+
try:
|
352 |
+
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
|
353 |
+
print(f"Loaded custom LoRA: {repo}")
|
354 |
+
card = create_lora_card(title, repo, trigger_word, image)
|
355 |
|
356 |
+
existing_item_index = next((index for (index, item) in enumerate(loras_list) if item['repo'] == repo), None)
|
357 |
+
if existing_item_index is None:
|
358 |
+
new_item = {
|
359 |
+
"image": image,
|
360 |
+
"title": title,
|
361 |
+
"repo": repo,
|
362 |
+
"weights": path,
|
363 |
+
"trigger_word": trigger_word
|
364 |
+
}
|
365 |
+
print(new_item)
|
366 |
+
loras_list.append(new_item)
|
367 |
+
existing_item_index = len(loras_list) - 1
|
368 |
|
369 |
+
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
|
370 |
+
|
371 |
+
except Exception as e:
|
372 |
+
print(f"Error loading LoRA: {e}")
|
373 |
+
return gr.update(visible=True, value="Invalid LoRA"), gr.update(visible=False), gr.update(), "", None, ""
|
374 |
+
else:
|
375 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
|
376 |
+
|
377 |
+
def remove_custom_lora() -> tuple:
|
378 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
|
379 |
+
|
380 |
+
def prepare_prompt(prompt: str, selected_index: Optional[int], loras_list: list) -> str:
|
381 |
+
if selected_index is None:
|
382 |
+
raise gr.Error("You must select a LoRA before proceeding.🧨")
|
383 |
+
|
384 |
+
selected_lora = loras_list[selected_index]
|
385 |
+
trigger_word = selected_lora.get("trigger_word")
|
386 |
+
if trigger_word:
|
387 |
+
trigger_position = selected_lora.get("trigger_position", "append")
|
388 |
+
if trigger_position == "prepend":
|
389 |
+
prompt_mash = f"{trigger_word} {prompt}"
|
390 |
+
else:
|
391 |
+
prompt_mash = f"{prompt} {trigger_word}"
|
392 |
+
else:
|
393 |
+
prompt_mash = prompt
|
394 |
+
return prompt_mash
|
395 |
+
|
396 |
+
def unload_lora_weights(pipe, pipe_i2i):
|
397 |
+
if pipe is not None:
|
398 |
+
pipe.unload_lora_weights()
|
399 |
+
if pipe_i2i is not None:
|
400 |
+
pipe_i2i.unload_lora_weights()
|
401 |
+
|
402 |
+
def load_lora_weights_into_pipeline(pipe_to_use, lora_path: str, weight_name: Optional[str]):
|
403 |
+
pipe_to_use.load_lora_weights(
|
404 |
+
lora_path,
|
405 |
+
weight_name=weight_name,
|
406 |
+
low_cpu_mem_usage=True
|
407 |
+
)
|
408 |
+
|
409 |
+
def update_selection(evt: gr.SelectData, width, height, loras_list):
|
410 |
+
selected_lora = loras_list[evt.index]
|
411 |
+
new_placeholder = f"Type a prompt for {selected_lora['title']}"
|
412 |
+
lora_repo = selected_lora["repo"]
|
413 |
+
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✅"
|
414 |
+
if "aspect" in selected_lora:
|
415 |
+
if selected_lora["aspect"] == "portrait":
|
416 |
+
width = 768
|
417 |
+
height = 1024
|
418 |
+
elif selected_lora["aspect"] == "landscape":
|
419 |
+
width = 1024
|
420 |
+
height = 768
|
421 |
+
else:
|
422 |
+
width = 1024
|
423 |
+
height = 1024
|
424 |
+
return (
|
425 |
+
gr.update(placeholder=new_placeholder),
|
426 |
+
updated_text,
|
427 |
+
evt.index,
|
428 |
+
width,
|
429 |
+
height,
|
430 |
+
)
|
431 |
+
|
432 |
+
##############################
|
433 |
+
# ===== backend.py =====
|
434 |
+
##############################
|
435 |
+
class ModelManager:
|
436 |
+
def __init__(self, hf_token=None):
|
437 |
+
self.hf_token = hf_token
|
438 |
+
self.pipe = None
|
439 |
+
self.pipe_i2i = None
|
440 |
+
self.good_vae = None
|
441 |
+
self.taef1 = None
|
442 |
+
self.initialize_models()
|
443 |
+
|
444 |
+
def initialize_models(self):
|
445 |
+
"""Initializes the diffusion pipelines and autoencoders."""
|
446 |
+
self.taef1 = AutoencoderTiny.from_pretrained(TAEF1_MODEL, torch_dtype=DTYPE).to(DEVICE)
|
447 |
+
self.good_vae = AutoencoderKL.from_pretrained(BASE_MODEL, subfolder="vae", torch_dtype=DTYPE).to(DEVICE)
|
448 |
+
# Optionally, if your model is private, you can pass `use_auth_token=self.hf_token` here.
|
449 |
+
self.pipe = DiffusionPipeline.from_pretrained(BASE_MODEL, torch_dtype=DTYPE, vae=self.taef1)
|
450 |
+
self.pipe = self.pipe.to(DEVICE)
|
451 |
+
self.pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
452 |
+
BASE_MODEL,
|
453 |
+
vae=self.good_vae,
|
454 |
+
transformer=self.pipe.transformer,
|
455 |
+
text_encoder=self.pipe.text_encoder,
|
456 |
+
tokenizer=self.pipe.tokenizer,
|
457 |
+
text_encoder_2=self.pipe.text_encoder_2,
|
458 |
+
tokenizer_2=self.pipe.tokenizer_2,
|
459 |
+
torch_dtype=DTYPE,
|
460 |
+
).to(DEVICE)
|
461 |
+
# Bind the custom LoRA call to the pipeline.
|
462 |
+
self.pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(self.pipe)
|
463 |
+
|
464 |
+
def generate_image(self, prompt_mash, steps, seed, cfg_scale, width, height, lora_scale):
|
465 |
+
"""Generates an image using the text-to-image pipeline."""
|
466 |
+
self.pipe.to(DEVICE)
|
467 |
+
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
468 |
+
with calculateDuration("Generating image"):
|
469 |
+
for img in self.pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
470 |
+
prompt=prompt_mash,
|
471 |
+
num_inference_steps=steps,
|
472 |
+
guidance_scale=cfg_scale,
|
473 |
+
width=width,
|
474 |
+
height=height,
|
475 |
+
generator=generator,
|
476 |
+
joint_attention_kwargs={"scale": lora_scale},
|
477 |
+
output_type="pil",
|
478 |
+
good_vae=self.good_vae,
|
479 |
+
):
|
480 |
+
yield img
|
481 |
+
|
482 |
+
def generate_image_to_image(self, prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, lora_scale, seed):
|
483 |
+
"""Generates an image using the image-to-image pipeline."""
|
484 |
+
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
485 |
+
self.pipe_i2i.to(DEVICE)
|
486 |
+
image_input = load_image_from_path(image_input_path)
|
487 |
+
with calculateDuration("Generating image to image"):
|
488 |
+
final_image = self.pipe_i2i(
|
489 |
+
prompt=prompt_mash,
|
490 |
+
image=image_input,
|
491 |
+
strength=image_strength,
|
492 |
+
num_inference_steps=steps,
|
493 |
+
guidance_scale=cfg_scale,
|
494 |
+
width=width,
|
495 |
+
height=height,
|
496 |
+
generator=generator,
|
497 |
+
joint_attention_kwargs={"scale": lora_scale},
|
498 |
+
output_type="pil",
|
499 |
+
).images[0]
|
500 |
+
return final_image
|
501 |
+
|
502 |
+
##############################
|
503 |
+
# ===== frontend.py =====
|
504 |
+
##############################
|
505 |
+
# The original code used a decorator from a module named `spaces`.
|
506 |
+
# If unavailable, we define a dummy decorator.
|
507 |
+
try:
|
508 |
+
import spaces
|
509 |
+
except ImportError:
|
510 |
+
class spaces:
|
511 |
+
@staticmethod
|
512 |
+
def GPU(duration):
|
513 |
+
def decorator(func):
|
514 |
+
return func
|
515 |
+
return decorator
|
516 |
+
|
517 |
+
class Frontend:
|
518 |
+
def __init__(self, model_manager: ModelManager):
|
519 |
+
self.model_manager = model_manager
|
520 |
+
self.loras = loras # Use the default LoRA list defined above.
|
521 |
+
self.load_initial_loras()
|
522 |
+
self.css = self.define_css()
|
523 |
+
|
524 |
+
def define_css(self):
|
525 |
+
# Clean and professional CSS styling.
|
526 |
+
return '''
|
527 |
+
/* Title Styling */
|
528 |
+
#title {
|
529 |
+
text-align: center;
|
530 |
+
margin-bottom: 20px;
|
531 |
+
}
|
532 |
+
#title h1 {
|
533 |
+
font-size: 2.5rem;
|
534 |
+
margin: 0;
|
535 |
+
color: #333;
|
536 |
+
}
|
537 |
+
/* Button and Column Styling */
|
538 |
+
#gen_btn {
|
539 |
+
width: 100%;
|
540 |
+
padding: 12px;
|
541 |
+
font-weight: bold;
|
542 |
+
border-radius: 5px;
|
543 |
+
}
|
544 |
+
#gen_column {
|
545 |
+
display: flex;
|
546 |
+
align-items: center;
|
547 |
+
justify-content: center;
|
548 |
+
}
|
549 |
+
/* Gallery and List Styling */
|
550 |
+
#gallery .grid-wrap {
|
551 |
+
margin-top: 15px;
|
552 |
+
}
|
553 |
+
#lora_list {
|
554 |
+
background-color: #f5f5f5;
|
555 |
+
padding: 10px;
|
556 |
+
border-radius: 4px;
|
557 |
+
font-size: 0.9rem;
|
558 |
+
}
|
559 |
+
.card_internal {
|
560 |
+
display: flex;
|
561 |
+
align-items: center;
|
562 |
+
height: 100px;
|
563 |
+
margin-top: 10px;
|
564 |
+
}
|
565 |
+
.card_internal img {
|
566 |
+
margin-right: 10px;
|
567 |
+
}
|
568 |
+
.styler {
|
569 |
+
--form-gap-width: 0px !important;
|
570 |
+
}
|
571 |
+
/* Progress Bar Styling */
|
572 |
+
.progress-container {
|
573 |
+
width: 100%;
|
574 |
+
height: 20px;
|
575 |
+
background-color: #e0e0e0;
|
576 |
+
border-radius: 10px;
|
577 |
+
overflow: hidden;
|
578 |
+
margin-bottom: 20px;
|
579 |
+
}
|
580 |
+
.progress-bar {
|
581 |
+
height: 100%;
|
582 |
+
background-color: #4f46e5;
|
583 |
+
transition: width 0.3s ease-in-out;
|
584 |
+
width: calc(var(--current) / var(--total) * 100%);
|
585 |
+
}
|
586 |
+
'''
|
587 |
+
|
588 |
+
def load_initial_loras(self):
|
589 |
+
try:
|
590 |
+
from lora import loras as loras_list
|
591 |
+
self.loras = loras_list
|
592 |
+
except ImportError:
|
593 |
+
print("Warning: lora.py not found, using placeholder LoRAs.")
|
594 |
+
pass
|
595 |
+
|
596 |
+
@spaces.GPU(duration=300)
|
597 |
+
def run_lora(self, prompt, image_input, image_strength, cfg_scale, steps, selected_index,
|
598 |
+
randomize_seed, seed, width, height, lora_scale, use_enhancer,
|
599 |
+
progress=gr.Progress(track_tqdm=True)):
|
600 |
+
seed = randomize_seed_if_needed(randomize_seed, seed, MAX_SEED)
|
601 |
+
# Prepare the prompt using the selected LoRA trigger word.
|
602 |
+
prompt_mash = prepare_prompt(prompt, selected_index, self.loras)
|
603 |
+
enhanced_text = ""
|
604 |
+
|
605 |
+
# Optionally enhance the prompt.
|
606 |
+
if use_enhancer:
|
607 |
+
for enhanced_chunk in generate(prompt_mash):
|
608 |
+
enhanced_text = enhanced_chunk
|
609 |
+
yield None, seed, gr.update(visible=False), enhanced_text
|
610 |
+
prompt_mash = enhanced_text
|
611 |
+
else:
|
612 |
+
enhanced_text = ""
|
613 |
+
|
614 |
+
selected_lora = self.loras[selected_index]
|
615 |
+
unload_lora_weights(self.model_manager.pipe, self.model_manager.pipe_i2i)
|
616 |
+
pipe_to_use = self.model_manager.pipe_i2i if image_input is not None else self.model_manager.pipe
|
617 |
+
load_lora_weights_into_pipeline(pipe_to_use, selected_lora["repo"], selected_lora.get("weights"))
|
618 |
+
|
619 |
+
if image_input is not None:
|
620 |
+
final_image = self.model_manager.generate_image_to_image(
|
621 |
+
prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, lora_scale, seed
|
622 |
+
)
|
623 |
+
yield final_image, seed, gr.update(visible=False), enhanced_text
|
624 |
+
else:
|
625 |
+
image_generator = self.model_manager.generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale)
|
626 |
+
final_image = None
|
627 |
+
step_counter = 0
|
628 |
+
for image in image_generator:
|
629 |
+
step_counter += 1
|
630 |
+
final_image = image
|
631 |
+
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
632 |
+
yield image, seed, gr.update(value=progress_bar, visible=True), enhanced_text
|
633 |
+
yield final_image, seed, gr.update(value=progress_bar, visible=False), enhanced_text
|
634 |
+
|
635 |
+
def create_ui(self):
|
636 |
+
with gr.Blocks(theme=gr.themes.Base(), css=self.css, title="Flux LoRA Generation") as app:
|
637 |
+
title = gr.HTML(
|
638 |
+
"""<h1>Flux LoRA Generation</h1>""",
|
639 |
+
elem_id="title",
|
640 |
+
)
|
641 |
+
selected_index = gr.State(None)
|
642 |
+
|
643 |
+
with gr.Row():
|
644 |
+
with gr.Column(scale=3):
|
645 |
+
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Choose the LoRA and type the prompt")
|
646 |
+
with gr.Column(scale=1, elem_id="gen_column"):
|
647 |
+
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
|
648 |
+
with gr.Row():
|
649 |
+
with gr.Column():
|
650 |
+
selected_info = gr.Markdown("")
|
651 |
+
gallery = gr.Gallery(
|
652 |
+
[(item["image"], item["title"]) for item in self.loras],
|
653 |
+
label="LoRA Collection",
|
654 |
+
allow_preview=False,
|
655 |
+
columns=3,
|
656 |
+
elem_id="gallery",
|
657 |
+
show_share_button=False
|
658 |
+
)
|
659 |
+
with gr.Group():
|
660 |
+
custom_lora = gr.Textbox(label="Enter Custom LoRA", placeholder="prithivMLmods/Canopus-LoRA-Flux-Anime")
|
661 |
+
gr.Markdown("[Check the list of FLUX LoRA's](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
|
662 |
+
custom_lora_info = gr.HTML(visible=False)
|
663 |
+
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
|
664 |
+
with gr.Column():
|
665 |
+
progress_bar = gr.Markdown(elem_id="progress", visible=False)
|
666 |
+
result = gr.Image(label="Generated Image")
|
667 |
+
|
668 |
+
with gr.Row():
|
669 |
+
with gr.Accordion("Advanced Settings", open=False):
|
670 |
+
with gr.Row():
|
671 |
+
input_image = gr.Image(label="Input image", type="filepath")
|
672 |
+
image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
|
673 |
+
with gr.Column():
|
674 |
+
with gr.Row():
|
675 |
+
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
|
676 |
+
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
|
677 |
+
with gr.Row():
|
678 |
+
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
|
679 |
+
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
|
680 |
+
with gr.Row():
|
681 |
+
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
682 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
683 |
+
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=0.95)
|
684 |
+
with gr.Row():
|
685 |
+
use_enhancer = gr.Checkbox(value=False, label="Use Prompt Enhancer")
|
686 |
+
show_enhanced_prompt = gr.Checkbox(value=False, label="Display Enhanced Prompt")
|
687 |
+
enhanced_prompt_box = gr.Textbox(label="Enhanced Prompt", visible=False)
|
688 |
+
|
689 |
+
gallery.select(
|
690 |
+
update_selection,
|
691 |
+
inputs=[width, height, gr.State(self.loras)],
|
692 |
+
outputs=[prompt, selected_info, selected_index, width, height]
|
693 |
+
)
|
694 |
+
custom_lora.input(
|
695 |
+
add_custom_lora,
|
696 |
+
inputs=[custom_lora, gr.State(self.loras)],
|
697 |
+
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
|
698 |
+
)
|
699 |
+
custom_lora_button.click(
|
700 |
+
remove_custom_lora,
|
701 |
+
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
|
702 |
+
)
|
703 |
+
|
704 |
+
show_enhanced_prompt.change(fn=lambda show: gr.update(visible=show),
|
705 |
+
inputs=show_enhanced_prompt,
|
706 |
+
outputs=enhanced_prompt_box)
|
707 |
+
|
708 |
+
gr.on(
|
709 |
+
triggers=[generate_button.click, prompt.submit],
|
710 |
+
fn=self.run_lora,
|
711 |
+
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_index,
|
712 |
+
randomize_seed, seed, width, height, lora_scale, use_enhancer],
|
713 |
+
outputs=[result, seed, progress_bar, enhanced_prompt_box]
|
714 |
+
)
|
715 |
+
|
716 |
+
with gr.Row():
|
717 |
+
gr.HTML("<div style='text-align:center; font-size:0.9em; margin-top:20px;'>Credits: <a href='https://ruslanmv.com' target='_blank'>ruslanmv.com</a></div>")
|
718 |
+
|
719 |
+
return app
|
720 |
+
|
721 |
+
##############################
|
722 |
+
# ===== Main app.py =====
|
723 |
+
##############################
|
724 |
+
if __name__ == "__main__":
|
725 |
+
# Get the Hugging Face token from the environment.
|
726 |
hf_token = os.environ.get("HF_TOKEN")
|
727 |
if not hf_token:
|
728 |
raise ValueError("Hugging Face token (HF_TOKEN) not found in environment variables. Please set it.")
|
|
|
729 |
model_manager = ModelManager(hf_token=hf_token)
|
730 |
frontend = Frontend(model_manager)
|
731 |
app = frontend.create_ui()
|
|
|
|
|
732 |
app.queue()
|
733 |
+
app.launch()
|
|
|
|
|
|
|
|
|
|