Nadine Rueegg
initial commit with code and data
753fd9a
raw
history blame
7.79 kB
import torch
class LossGConMesh(torch.nn.Module):
def __init__(self , n_verts=3889):
super(LossGConMesh, self).__init__()
self.n_verts = n_verts
self.criterion_class = torch.nn.CrossEntropyLoss(reduction='mean')
def forward(self, pred_gc, target_gc, has_gc, loss_type_gcmesh='ce'):
# pred_gc has shape (bs, n_verts, 2)
# target_gc has shape (bs, n_verts, 3)
# with [first: no-contact=0 contact=1
# second: index of closest vertex with opposite label
# third: dist to that closest vertex]
target_gc_class = target_gc[:, :, 0]
target_gc_nearoppvert_ind = target_gc[:, :, 1]
target_gc_nearoppvert_dist = target_gc[:, :, 2]
# bs = pred_gc.shape[0]
bs = has_gc.sum()
if loss_type_gcmesh == 'ce': # cross entropy
# import pdb; pdb.set_trace()
# classification_loss = self.criterion_class(pred_gc.reshape((bs*self.n_verts, 2)), target_gc_class.reshape((bs*self.n_verts)))
classification_loss = self.criterion_class(pred_gc[has_gc==True, ...].reshape((bs*self.n_verts, 2)), target_gc_class[has_gc==True, ...].reshape((bs*self.n_verts)))
loss = classification_loss
else:
raise ValueError
return loss
def calculate_plane_errors_batch(vertices, target_gc_class, target_has_gc, has_gc_is_touching, return_error_under_plane=True):
# remarks:
# visualization of the plane: debug_code/curve_fitting_v2.py
# theory: https://www.ltu.se/cms_fs/1.51590!/svd-fitting.pdf
# remark: torch.svd is depreciated
# new plane equation:
# a(x−x0)+b(y−y0)+c(z−z0)=0
# ax+by+cz=d with d=ax0+by0+cz0
# z = (d-ax-by)/c
# here:
# a, b, c describe the plane normal
# d can be calculated (from a, b, c, x0, y0, z0)
# (x0, y0, z0) are the coordinates of a point on the
# plane, for example points_centroid
# (x, y, z) are the coordinates of a query point on the plane
#
# input:
# vertices: (bs, 3889, 3)
# target_gc_class: (bs, 3889)
#
bs = vertices.shape[0]
error_list = []
error_under_plane_list = []
for ind_b in range(bs):
if target_has_gc[ind_b] == 1 and has_gc_is_touching[ind_b] == 1:
try:
points_npx3 = vertices[ind_b, target_gc_class[ind_b, :]==1, :]
points = torch.transpose(points_npx3, 0, 1) # (3, n_points)
points_centroid = torch.mean(points, dim=1)
input_svd = points - points_centroid[:, None]
# U_svd, sigma_svd, V_svd = torch.svd(input_svd, compute_uv=True)
# plane_normal = U_svd[:, 2]
# _, sigma_svd, _ = torch.svd(input_svd, compute_uv=False)
# _, sigma_svd, _ = torch.svd(input_svd, compute_uv=True)
U_svd, sigma_svd, V_svd = torch.svd(input_svd, compute_uv=True)
plane_squaredsumofdists = sigma_svd[2]
error_list.append(plane_squaredsumofdists)
if return_error_under_plane:
# plane information
# plane_centroid = points_centroid
plane_normal = U_svd[:, 2]
# non-plane points
nonplane_points_npx3 = vertices[ind_b, target_gc_class[ind_b, :]==0, :] # (n_points_3)
nonplane_points = torch.transpose(nonplane_points_npx3, 0, 1) # (3, n_points)
nonplane_points_centered = nonplane_points - points_centroid[:, None]
nonplane_points_projected = torch.matmul(plane_normal[None, :], nonplane_points_centered) # plane normal already has length 1
if nonplane_points_projected.sum() > 0:
# bug corrected 07.11.22
# error_under_plane = nonplane_points_projected[nonplane_points_projected<0].sum() / 100
error_under_plane = - nonplane_points_projected[nonplane_points_projected<0].sum() / 100
else:
error_under_plane = nonplane_points_projected[nonplane_points_projected>0].sum() / 100
error_under_plane_list.append(error_under_plane)
except:
print('was not able to calculate plane error for this image')
error_list.append(torch.zeros((1), dtype=vertices.dtype, device=vertices.device)[0])
error_under_plane_list.append(torch.zeros((1), dtype=vertices.dtype, device=vertices.device)[0])
else:
error_list.append(torch.zeros((1), dtype=vertices.dtype, device=vertices.device)[0])
error_under_plane_list.append(torch.zeros((1), dtype=vertices.dtype, device=vertices.device)[0])
errors = torch.stack(error_list, dim=0)
errors_under_plane = torch.stack(error_under_plane_list, dim=0)
if return_error_under_plane:
return errors, errors_under_plane
else:
return errors
# def calculate_vertex_wise_labeling_error():
# vertexwise_ground_contact
'''
def paws_to_groundplane_error_batch(vertices, return_details=False):
# list of feet vertices (some of them)
# remark: we did annotate left indices and find the right insices using sym_ids_dict
# REMARK: this loss is not yet for batches!
import pdb; pdb.set_trace()
print('this loss is not yet for batches!')
list_back_left = [1524, 1517, 1512, 1671, 1678, 1664, 1956, 1680, 1685, 1602, 1953, 1569]
list_front_left = [1331, 1327, 1332, 1764, 1767, 1747, 1779, 1789, 1944, 1339, 1323, 1420]
list_back_right = [3476, 3469, 3464, 3623, 3630, 3616, 3838, 3632, 3637, 3554, 3835, 3521]
list_front_right = [3283, 3279, 3284, 3715, 3718, 3698, 3730, 3740, 3826, 3291, 3275, 3372]
assert vertices.shape[0] == 3889
assert vertices.shape[1] == 3
all_paw_vert_idxs = list_back_left + list_front_left + list_back_right + list_front_right
verts_paws = vertices[all_paw_vert_idxs, :]
plane_centroid, plane_normal, error = fit_plane_batch(verts_paws)
if return_details:
return plane_centroid, plane_normal, error
else:
return error
def paws_to_groundplane_error_batch_new(vertices, return_details=False):
# list of feet vertices (some of them)
# remark: we did annotate left indices and find the right insices using sym_ids_dict
# REMARK: this loss is not yet for batches!
import pdb; pdb.set_trace()
print('this loss is not yet for batches!')
list_back_left = [1524, 1517, 1512, 1671, 1678, 1664, 1956, 1680, 1685, 1602, 1953, 1569]
list_front_left = [1331, 1327, 1332, 1764, 1767, 1747, 1779, 1789, 1944, 1339, 1323, 1420]
list_back_right = [3476, 3469, 3464, 3623, 3630, 3616, 3838, 3632, 3637, 3554, 3835, 3521]
list_front_right = [3283, 3279, 3284, 3715, 3718, 3698, 3730, 3740, 3826, 3291, 3275, 3372]
assert vertices.shape[0] == 3889
assert vertices.shape[1] == 3
all_paw_vert_idxs = list_back_left + list_front_left + list_back_right + list_front_right
verts_paws = vertices[all_paw_vert_idxs, :]
plane_centroid, plane_normal, error = fit_plane_batch(verts_paws)
print('this loss is not yet for batches!')
points = torch.transpose(points_npx3, 0, 1) # (3, n_points)
points_centroid = torch.mean(points, dim=1)
input_svd = points - points_centroid[:, None]
U_svd, sigma_svd, V_svd = torch.svd(input_svd, compute_uv=True)
plane_normal = U_svd[:, 2]
plane_squaredsumofdists = sigma_svd[2]
error = plane_squaredsumofdists
print('error: ' + str(error.item()))
return error
'''