File size: 7,785 Bytes
753fd9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

import torch





class LossGConMesh(torch.nn.Module):
    def __init__(self , n_verts=3889):
        super(LossGConMesh, self).__init__()
        self.n_verts = n_verts
        self.criterion_class = torch.nn.CrossEntropyLoss(reduction='mean')

    def forward(self, pred_gc, target_gc, has_gc, loss_type_gcmesh='ce'):
        # pred_gc has shape (bs, n_verts, 2)
        # target_gc has shape (bs, n_verts, 3)
        #   with [first: no-contact=0 contact=1     
        #        second: index of closest vertex with opposite label     
        #        third: dist to that closest vertex]
        target_gc_class = target_gc[:, :, 0]
        target_gc_nearoppvert_ind = target_gc[:, :, 1]
        target_gc_nearoppvert_dist = target_gc[:, :, 2]
        # bs = pred_gc.shape[0]
        bs = has_gc.sum()

        if loss_type_gcmesh == 'ce':        # cross entropy
            # import pdb; pdb.set_trace()

            # classification_loss = self.criterion_class(pred_gc.reshape((bs*self.n_verts, 2)), target_gc_class.reshape((bs*self.n_verts)))
            classification_loss = self.criterion_class(pred_gc[has_gc==True, ...].reshape((bs*self.n_verts, 2)), target_gc_class[has_gc==True, ...].reshape((bs*self.n_verts)))
            loss = classification_loss
        else:
            raise ValueError

        return loss






def calculate_plane_errors_batch(vertices, target_gc_class, target_has_gc, has_gc_is_touching, return_error_under_plane=True):            
    # remarks:
    #   visualization of the plane: debug_code/curve_fitting_v2.py
    #   theory: https://www.ltu.se/cms_fs/1.51590!/svd-fitting.pdf
    #   remark: torch.svd is depreciated
    # new plane equation:
    #   a(x−x0)+b(y−y0)+c(z−z0)=0
    #   ax+by+cz=d with  d=ax0+by0+cz0
    #   z = (d-ax-by)/c
    #   here:
    #   a, b, c describe the plane normal 
    #   d can be calculated (from a, b, c, x0, y0, z0)
    #   (x0, y0, z0) are the coordinates of a point on the 
    #     plane, for example points_centroid
    #   (x, y, z) are the coordinates of a query point on the plane 
    # 
    # input:
    #   vertices: (bs, 3889, 3)
    #   target_gc_class: (bs, 3889)
    # 
    bs = vertices.shape[0]
    error_list = []
    error_under_plane_list = []

    for ind_b in range(bs):
        if target_has_gc[ind_b] == 1 and has_gc_is_touching[ind_b] == 1:
            try:
                points_npx3 = vertices[ind_b, target_gc_class[ind_b, :]==1, :]
                points = torch.transpose(points_npx3, 0, 1)       # (3, n_points)
                points_centroid = torch.mean(points, dim=1)
                input_svd = points - points_centroid[:, None] 
                # U_svd, sigma_svd, V_svd = torch.svd(input_svd, compute_uv=True)
                # plane_normal = U_svd[:, 2]
                # _, sigma_svd, _ = torch.svd(input_svd, compute_uv=False)
                # _, sigma_svd, _ = torch.svd(input_svd, compute_uv=True)
                U_svd, sigma_svd, V_svd = torch.svd(input_svd, compute_uv=True)
                plane_squaredsumofdists = sigma_svd[2]
                error_list.append(plane_squaredsumofdists)

                if return_error_under_plane:
                    # plane information
                    # plane_centroid = points_centroid
                    plane_normal = U_svd[:, 2]

                    # non-plane points
                    nonplane_points_npx3 = vertices[ind_b, target_gc_class[ind_b, :]==0, :]     # (n_points_3)
                    nonplane_points = torch.transpose(nonplane_points_npx3, 0, 1)       # (3, n_points)
                    nonplane_points_centered = nonplane_points - points_centroid[:, None] 

                    nonplane_points_projected = torch.matmul(plane_normal[None, :], nonplane_points_centered)   # plane normal already has length 1
                    
                    if nonplane_points_projected.sum() > 0:
                        # bug corrected 07.11.22
                        # error_under_plane = nonplane_points_projected[nonplane_points_projected<0].sum() / 100
                        error_under_plane = - nonplane_points_projected[nonplane_points_projected<0].sum() / 100
                    else:
                        error_under_plane = nonplane_points_projected[nonplane_points_projected>0].sum() / 100
                    error_under_plane_list.append(error_under_plane)
            except:
                print('was not able to calculate plane error for this image')
                error_list.append(torch.zeros((1), dtype=vertices.dtype, device=vertices.device)[0])
                error_under_plane_list.append(torch.zeros((1), dtype=vertices.dtype, device=vertices.device)[0])           
        else:
            error_list.append(torch.zeros((1), dtype=vertices.dtype, device=vertices.device)[0])
            error_under_plane_list.append(torch.zeros((1), dtype=vertices.dtype, device=vertices.device)[0])
    errors = torch.stack(error_list, dim=0)
    errors_under_plane = torch.stack(error_under_plane_list, dim=0)

    if return_error_under_plane:
        return errors, errors_under_plane
    else:
        return errors



# def calculate_vertex_wise_labeling_error():
    # vertexwise_ground_contact













'''

def paws_to_groundplane_error_batch(vertices, return_details=False):
    # list of feet vertices (some of them)
    #   remark: we did annotate left indices and find the right insices using sym_ids_dict
    # REMARK: this loss is not yet for batches!
    import pdb; pdb.set_trace()
    print('this loss is not yet for batches!')
    list_back_left = [1524, 1517, 1512, 1671, 1678, 1664, 1956, 1680, 1685, 1602, 1953, 1569]
    list_front_left = [1331, 1327, 1332, 1764, 1767, 1747, 1779, 1789, 1944, 1339, 1323, 1420]
    list_back_right = [3476, 3469, 3464, 3623, 3630, 3616, 3838, 3632, 3637, 3554, 3835, 3521]
    list_front_right = [3283, 3279, 3284, 3715, 3718, 3698, 3730, 3740, 3826, 3291, 3275, 3372]
    assert vertices.shape[0] == 3889
    assert vertices.shape[1] == 3
    all_paw_vert_idxs = list_back_left + list_front_left + list_back_right + list_front_right
    verts_paws = vertices[all_paw_vert_idxs, :]
    plane_centroid, plane_normal, error = fit_plane_batch(verts_paws)
    if return_details:
        return plane_centroid, plane_normal, error
    else:
        return error

def paws_to_groundplane_error_batch_new(vertices, return_details=False):
    # list of feet vertices (some of them)
    #   remark: we did annotate left indices and find the right insices using sym_ids_dict
    # REMARK: this loss is not yet for batches!
    import pdb; pdb.set_trace()
    print('this loss is not yet for batches!')
    list_back_left = [1524, 1517, 1512, 1671, 1678, 1664, 1956, 1680, 1685, 1602, 1953, 1569]
    list_front_left = [1331, 1327, 1332, 1764, 1767, 1747, 1779, 1789, 1944, 1339, 1323, 1420]
    list_back_right = [3476, 3469, 3464, 3623, 3630, 3616, 3838, 3632, 3637, 3554, 3835, 3521]
    list_front_right = [3283, 3279, 3284, 3715, 3718, 3698, 3730, 3740, 3826, 3291, 3275, 3372]
    assert vertices.shape[0] == 3889
    assert vertices.shape[1] == 3
    all_paw_vert_idxs = list_back_left + list_front_left + list_back_right + list_front_right
    verts_paws = vertices[all_paw_vert_idxs, :]
    plane_centroid, plane_normal, error = fit_plane_batch(verts_paws)
    print('this loss is not yet for batches!')
    points = torch.transpose(points_npx3, 0, 1)       # (3, n_points)
    points_centroid = torch.mean(points, dim=1)
    input_svd = points - points_centroid[:, None] 
    U_svd, sigma_svd, V_svd = torch.svd(input_svd, compute_uv=True)
    plane_normal = U_svd[:, 2]
    plane_squaredsumofdists = sigma_svd[2]
    error = plane_squaredsumofdists
    print('error: ' + str(error.item()))
    return error
'''