Spaces:
Running
on
Zero
Running
on
Zero
import pynvml | |
def get_gpt_id(): | |
pynvml.nvmlInit() | |
gpu_indices = [] | |
device_count = pynvml.nvmlDeviceGetCount() | |
for i in range(device_count): | |
handle = pynvml.nvmlDeviceGetHandleByIndex(i) | |
memory_info = pynvml.nvmlDeviceGetMemoryInfo(handle) | |
perf_state = pynvml.nvmlDeviceGetPowerState(handle) | |
#if perf_state == 8 and memory_info.used < 2000 * 1024 * 1024: | |
if perf_state == 8 : | |
gpu_indices.append(i) | |
assert len(gpu_indices) > 0, "There is no GPU with performance state P8 and low memory usage" | |
pynvml.nvmlShutdown() | |
print(f"usalbe gpu ids: {gpu_indices} , now we use {gpu_indices[0]}") | |
return str(gpu_indices[0]) | |
dev = get_gpt_id() | |
import os | |
os.environ["CUDA_VISIBLE_DEVICES"] = dev | |
import json | |
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
from torch.utils.tensorboard import SummaryWriter | |
import logging | |
import sys | |
import warnings | |
warnings.filterwarnings('ignore') | |
from models.vq.model import RVQVAE | |
def get_logger(out_dir): | |
logger = logging.getLogger('Exp') | |
logger.setLevel(logging.INFO) | |
formatter = logging.Formatter("%(asctime)s %(levelname)s %(message)s") | |
file_path = os.path.join(out_dir, "run.log") | |
file_hdlr = logging.FileHandler(file_path) | |
file_hdlr.setFormatter(formatter) | |
strm_hdlr = logging.StreamHandler(sys.stdout) | |
strm_hdlr.setFormatter(formatter) | |
logger.addHandler(file_hdlr) | |
logger.addHandler(strm_hdlr) | |
return logger | |
class ReConsLoss(nn.Module): | |
def __init__(self, recons_loss, nb_joints): | |
super(ReConsLoss, self).__init__() | |
if recons_loss == 'l1': | |
self.Loss = torch.nn.L1Loss() | |
elif recons_loss == 'l2' : | |
self.Loss = torch.nn.MSELoss() | |
elif recons_loss == 'l1_smooth' : | |
self.Loss = torch.nn.SmoothL1Loss() | |
# 4 global motion associated to root | |
# 12 local motion (3 local xyz, 3 vel xyz, 6 rot6d) | |
# 3 global vel xyz | |
# 4 foot contact | |
self.nb_joints = nb_joints | |
self.motion_dim = (nb_joints - 1) * 12 + 4 + 3 + 4 | |
def forward(self, motion_pred, motion_gt) : | |
loss = self.Loss(motion_pred[..., : self.motion_dim], motion_gt[..., :self.motion_dim]) | |
return loss | |
def forward_vel(self, motion_pred, motion_gt) : | |
loss = self.Loss(motion_pred[..., 4 : (self.nb_joints - 1) * 3 + 4], motion_gt[..., 4 : (self.nb_joints - 1) * 3 + 4]) | |
return loss | |
def my_forward(self,motion_pred,motion_gt,mask) : | |
loss = self.Loss(motion_pred[..., mask], motion_gt[..., mask]) | |
return loss | |
import argparse | |
def get_args_parser(): | |
parser = argparse.ArgumentParser(description='Optimal Transport AutoEncoder training for AIST', | |
add_help=True, | |
formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
## dataloader | |
parser.add_argument('--dataname', type=str, default='kit', help='dataset directory') | |
parser.add_argument('--batch-size', default=128, type=int, help='batch size') | |
parser.add_argument('--window-size', type=int, default=64, help='training motion length') | |
parser.add_argument('--body_part',type=str,default='whole') | |
## optimization | |
parser.add_argument('--total-iter', default=200000, type=int, help='number of total iterations to run') | |
parser.add_argument('--warm-up-iter', default=1000, type=int, help='number of total iterations for warmup') | |
parser.add_argument('--lr', default=2e-4, type=float, help='max learning rate') | |
parser.add_argument('--lr-scheduler', default=[50000, 400000], nargs="+", type=int, help="learning rate schedule (iterations)") | |
parser.add_argument('--gamma', default=0.05, type=float, help="learning rate decay") | |
parser.add_argument('--weight-decay', default=0.0, type=float, help='weight decay') | |
parser.add_argument("--commit", type=float, default=0.02, help="hyper-parameter for the commitment loss") | |
parser.add_argument('--loss-vel', type=float, default=0.1, help='hyper-parameter for the velocity loss') | |
parser.add_argument('--recons-loss', type=str, default='l2', help='reconstruction loss') | |
## vqvae arch | |
parser.add_argument("--code-dim", type=int, default=512, help="embedding dimension") | |
parser.add_argument("--nb-code", type=int, default=512, help="nb of embedding") | |
parser.add_argument("--mu", type=float, default=0.99, help="exponential moving average to update the codebook") | |
parser.add_argument("--down-t", type=int, default=2, help="downsampling rate") | |
parser.add_argument("--stride-t", type=int, default=2, help="stride size") | |
parser.add_argument("--width", type=int, default=512, help="width of the network") | |
parser.add_argument("--depth", type=int, default=3, help="depth of the network") | |
parser.add_argument("--dilation-growth-rate", type=int, default=3, help="dilation growth rate") | |
parser.add_argument("--output-emb-width", type=int, default=512, help="output embedding width") | |
parser.add_argument('--vq-act', type=str, default='relu', choices = ['relu', 'silu', 'gelu'], help='dataset directory') | |
parser.add_argument('--vq-norm', type=str, default=None, help='dataset directory') | |
## quantizer | |
parser.add_argument("--quantizer", type=str, default='ema_reset', choices = ['ema', 'orig', 'ema_reset', 'reset'], help="eps for optimal transport") | |
parser.add_argument('--beta', type=float, default=1.0, help='commitment loss in standard VQ') | |
## resume | |
parser.add_argument("--resume-pth", type=str, default=None, help='resume pth for VQ') | |
parser.add_argument("--resume-gpt", type=str, default=None, help='resume pth for GPT') | |
## output directory | |
parser.add_argument('--out-dir', type=str, default='output_vqfinal/', help='output directory') | |
parser.add_argument('--results-dir', type=str, default='visual_results/', help='output directory') | |
parser.add_argument('--visual-name', type=str, default='baseline', help='output directory') | |
parser.add_argument('--exp-name', type=str, default='exp_debug', help='name of the experiment, will create a file inside out-dir') | |
## other | |
parser.add_argument('--print-iter', default=200, type=int, help='print frequency') | |
parser.add_argument('--eval-iter', default=1000, type=int, help='evaluation frequency') | |
parser.add_argument('--seed', default=123, type=int, help='seed for initializing training.') | |
parser.add_argument('--vis-gt', action='store_true', help='whether visualize GT motions') | |
parser.add_argument('--nb-vis', default=20, type=int, help='nb of visualizations') | |
return parser.parse_args() | |
def update_lr_warm_up(optimizer, nb_iter, warm_up_iter, lr): | |
current_lr = lr * (nb_iter + 1) / (warm_up_iter + 1) | |
for param_group in optimizer.param_groups: | |
param_group["lr"] = current_lr | |
return optimizer, current_lr | |
##### ---- Exp dirs ---- ##### | |
args = get_args_parser() | |
torch.manual_seed(args.seed) | |
args.out_dir = os.path.join(args.out_dir, f'{args.exp_name}_{args.body_part}') | |
os.makedirs(args.out_dir, exist_ok = True) | |
##### ---- Logger ---- ##### | |
logger = get_logger(args.out_dir) | |
writer = SummaryWriter(args.out_dir) | |
logger.info(json.dumps(vars(args), indent=4, sort_keys=True)) | |
if args.dataname == 'kit' : | |
dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt' | |
args.nb_joints = 21 | |
elif args.dataname == 't2m': | |
dataset_opt_path = 'checkpoints/t2m/Comp_v6_KLD005/opt.txt' | |
args.nb_joints = 22 | |
elif args.dataname == 'h3d623': | |
dataset_opt_path = 'checkpoints/t2m/Comp_v6_KLD005/opt.txt' | |
args.nb_joints = 52 | |
##### ---- Dataloader ---- ##### | |
from dataloaders.mix_sep import CustomDataset | |
from utils.config import parse_args | |
dataset_args = parse_args("configs/beat2_rvqvae.yaml") | |
build_cache = not os.path.exists(dataset_args.cache_path) | |
trainSet = CustomDataset(dataset_args,"train",build_cache = build_cache) | |
train_loader = torch.utils.data.DataLoader(trainSet, | |
args.batch_size, | |
shuffle=True, | |
#sampler=sampler, | |
num_workers=8, | |
#collate_fn=collate_fn, | |
drop_last = True) | |
def cycle(iterable): | |
while True: | |
for x in iterable: | |
yield x | |
train_loader_iter = cycle(train_loader) | |
if args.body_part in "upper": | |
joints = [3,6,9,12,13,14,15,16,17,18,19,20,21] | |
upper_body_mask = [] | |
for i in joints: | |
upper_body_mask.extend([i*6, i*6+1, i*6+2, i*6+3, i*6+4, i*6+5]) | |
mask = upper_body_mask | |
rec_mask = list(range(len(mask))) | |
elif args.body_part in "hands": | |
joints = list(range(25,55)) | |
hands_body_mask = [] | |
for i in joints: | |
hands_body_mask.extend([i*6, i*6+1, i*6+2, i*6+3, i*6+4, i*6+5]) | |
mask = hands_body_mask | |
rec_mask = list(range(len(mask))) | |
elif args.body_part in "lower": | |
joints = [0,1,2,4,5,7,8,10,11] | |
lower_body_mask = [] | |
for i in joints: | |
lower_body_mask.extend([i*6, i*6+1, i*6+2, i*6+3, i*6+4, i*6+5]) | |
mask = lower_body_mask | |
rec_mask = list(range(len(mask))) | |
elif args.body_part in "lower_trans": | |
joints = [0,1,2,4,5,7,8,10,11] | |
lower_body_mask = [] | |
for i in joints: | |
lower_body_mask.extend([i*6, i*6+1, i*6+2, i*6+3, i*6+4, i*6+5]) | |
lower_body_mask.extend([330,331,332]) | |
mask = lower_body_mask | |
rec_mask = list(range(len(mask))) | |
##### ---- Network ---- ##### | |
if args.body_part in "upper": | |
dim_pose = 78 | |
elif args.body_part in "hands": | |
dim_pose = 180 | |
elif args.body_part in "lower": | |
dim_pose = 54 | |
elif args.body_part in "lower_trans": | |
dim_pose = 57 | |
elif args.body_part in "whole": | |
dim_pose = 312 | |
args.num_quantizers = 6 | |
args.shared_codebook = False | |
args.quantize_dropout_prob = 0.2 | |
net = RVQVAE(args, | |
dim_pose, | |
args.nb_code, | |
args.code_dim, | |
args.code_dim, | |
args.down_t, | |
args.stride_t, | |
args.width, | |
args.depth, | |
args.dilation_growth_rate, | |
args.vq_act, | |
args.vq_norm) | |
if args.resume_pth : | |
logger.info('loading checkpoint from {}'.format(args.resume_pth)) | |
ckpt = torch.load(args.resume_pth, map_location='cpu') | |
net.load_state_dict(ckpt['net'], strict=True) | |
net.train() | |
net.cuda() | |
##### ---- Optimizer & Scheduler ---- ##### | |
optimizer = optim.AdamW(net.parameters(), lr=args.lr, betas=(0.9, 0.99), weight_decay=args.weight_decay) | |
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_scheduler, gamma=args.gamma) | |
Loss = ReConsLoss(args.recons_loss, args.nb_joints) | |
##### ------ warm-up ------- ##### | |
avg_recons, avg_perplexity, avg_commit = 0., 0., 0. | |
for nb_iter in range(1, args.warm_up_iter): | |
optimizer, current_lr = update_lr_warm_up(optimizer, nb_iter, args.warm_up_iter, args.lr) | |
gt_motion = next(train_loader_iter) | |
gt_motion = gt_motion[...,mask].cuda().float() # (bs, 64, dim) | |
pred_motion, loss_commit, perplexity = net(gt_motion).values() | |
loss_motion = Loss.my_forward(pred_motion, gt_motion,rec_mask) | |
loss_vel = 0#Loss.my_forward(pred_motion, gt_motion,vel_mask) | |
loss = loss_motion + args.commit * loss_commit + args.loss_vel * loss_vel | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
avg_recons += loss_motion.item() | |
avg_perplexity += perplexity.item() | |
avg_commit += loss_commit.item() | |
if nb_iter % args.print_iter == 0 : | |
avg_recons /= args.print_iter | |
avg_perplexity /= args.print_iter | |
avg_commit /= args.print_iter | |
logger.info(f"Warmup. Iter {nb_iter} : lr {current_lr:.5f} \t Commit. {avg_commit:.5f} \t PPL. {avg_perplexity:.2f} \t Recons. {avg_recons:.5f}") | |
avg_recons, avg_perplexity, avg_commit = 0., 0., 0. | |
##### ---- Training ---- ##### | |
avg_recons, avg_perplexity, avg_commit = 0., 0., 0. | |
#best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_vqvae(args.out_dir, val_loader, net, logger, writer, 0, best_fid=1000, best_iter=0, best_div=100, best_top1=0, best_top2=0, best_top3=0, best_matching=100, eval_wrapper=eval_wrapper) | |
args.eval_iter = args.eval_iter * 10 | |
for nb_iter in range(1, args.total_iter + 1): | |
gt_motion = next(train_loader_iter) | |
gt_motion = gt_motion[...,mask].cuda().float() # bs, nb_joints, joints_dim, seq_len | |
pred_motion, loss_commit, perplexity = net(gt_motion) | |
loss_motion = Loss.my_forward(pred_motion, gt_motion,rec_mask) | |
loss_vel = 0 | |
loss = loss_motion + args.commit * loss_commit + args.loss_vel * loss_vel | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
scheduler.step() | |
avg_recons += loss_motion.item() | |
avg_perplexity += perplexity.item() | |
avg_commit += loss_commit.item() | |
if nb_iter % args.print_iter == 0 : | |
avg_recons /= args.print_iter | |
avg_perplexity /= args.print_iter | |
avg_commit /= args.print_iter | |
writer.add_scalar('./Train/L1', avg_recons, nb_iter) | |
writer.add_scalar('./Train/PPL', avg_perplexity, nb_iter) | |
writer.add_scalar('./Train/Commit', avg_commit, nb_iter) | |
logger.info(f"Train. Iter {nb_iter} : \t Commit. {avg_commit:.5f} \t PPL. {avg_perplexity:.2f} \t Recons. {avg_recons:.5f}") | |
avg_recons, avg_perplexity, avg_commit = 0., 0., 0., | |
# if nb_iter % args.eval_iter==0 : | |
# best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_vqvae(args.out_dir, val_loader, net, logger, writer, nb_iter, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, eval_wrapper=eval_wrapper) | |
# eval_trans.my_evaluation_vqvae(args.out_dir, val_loader, net, logger, writer) | |
if nb_iter % args.eval_iter==0 : | |
torch.save({'net' : net.state_dict()}, os.path.join(args.out_dir, f'net_{nb_iter}.pth')) | |
#net.load_state_dict('/mnt/fu06/chenbohong/T2M-GPT/output/VQVAE/net_last.pth') | |
# run command | |