Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,395 Bytes
1da48bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
import pynvml
def get_gpt_id():
pynvml.nvmlInit()
gpu_indices = []
device_count = pynvml.nvmlDeviceGetCount()
for i in range(device_count):
handle = pynvml.nvmlDeviceGetHandleByIndex(i)
memory_info = pynvml.nvmlDeviceGetMemoryInfo(handle)
perf_state = pynvml.nvmlDeviceGetPowerState(handle)
#if perf_state == 8 and memory_info.used < 2000 * 1024 * 1024:
if perf_state == 8 :
gpu_indices.append(i)
assert len(gpu_indices) > 0, "There is no GPU with performance state P8 and low memory usage"
pynvml.nvmlShutdown()
print(f"usalbe gpu ids: {gpu_indices} , now we use {gpu_indices[0]}")
return str(gpu_indices[0])
dev = get_gpt_id()
import os
os.environ["CUDA_VISIBLE_DEVICES"] = dev
import json
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
import logging
import sys
import warnings
warnings.filterwarnings('ignore')
from models.vq.model import RVQVAE
def get_logger(out_dir):
logger = logging.getLogger('Exp')
logger.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s %(levelname)s %(message)s")
file_path = os.path.join(out_dir, "run.log")
file_hdlr = logging.FileHandler(file_path)
file_hdlr.setFormatter(formatter)
strm_hdlr = logging.StreamHandler(sys.stdout)
strm_hdlr.setFormatter(formatter)
logger.addHandler(file_hdlr)
logger.addHandler(strm_hdlr)
return logger
class ReConsLoss(nn.Module):
def __init__(self, recons_loss, nb_joints):
super(ReConsLoss, self).__init__()
if recons_loss == 'l1':
self.Loss = torch.nn.L1Loss()
elif recons_loss == 'l2' :
self.Loss = torch.nn.MSELoss()
elif recons_loss == 'l1_smooth' :
self.Loss = torch.nn.SmoothL1Loss()
# 4 global motion associated to root
# 12 local motion (3 local xyz, 3 vel xyz, 6 rot6d)
# 3 global vel xyz
# 4 foot contact
self.nb_joints = nb_joints
self.motion_dim = (nb_joints - 1) * 12 + 4 + 3 + 4
def forward(self, motion_pred, motion_gt) :
loss = self.Loss(motion_pred[..., : self.motion_dim], motion_gt[..., :self.motion_dim])
return loss
def forward_vel(self, motion_pred, motion_gt) :
loss = self.Loss(motion_pred[..., 4 : (self.nb_joints - 1) * 3 + 4], motion_gt[..., 4 : (self.nb_joints - 1) * 3 + 4])
return loss
def my_forward(self,motion_pred,motion_gt,mask) :
loss = self.Loss(motion_pred[..., mask], motion_gt[..., mask])
return loss
import argparse
def get_args_parser():
parser = argparse.ArgumentParser(description='Optimal Transport AutoEncoder training for AIST',
add_help=True,
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
## dataloader
parser.add_argument('--dataname', type=str, default='kit', help='dataset directory')
parser.add_argument('--batch-size', default=128, type=int, help='batch size')
parser.add_argument('--window-size', type=int, default=64, help='training motion length')
parser.add_argument('--body_part',type=str,default='whole')
## optimization
parser.add_argument('--total-iter', default=200000, type=int, help='number of total iterations to run')
parser.add_argument('--warm-up-iter', default=1000, type=int, help='number of total iterations for warmup')
parser.add_argument('--lr', default=2e-4, type=float, help='max learning rate')
parser.add_argument('--lr-scheduler', default=[50000, 400000], nargs="+", type=int, help="learning rate schedule (iterations)")
parser.add_argument('--gamma', default=0.05, type=float, help="learning rate decay")
parser.add_argument('--weight-decay', default=0.0, type=float, help='weight decay')
parser.add_argument("--commit", type=float, default=0.02, help="hyper-parameter for the commitment loss")
parser.add_argument('--loss-vel', type=float, default=0.1, help='hyper-parameter for the velocity loss')
parser.add_argument('--recons-loss', type=str, default='l2', help='reconstruction loss')
## vqvae arch
parser.add_argument("--code-dim", type=int, default=512, help="embedding dimension")
parser.add_argument("--nb-code", type=int, default=512, help="nb of embedding")
parser.add_argument("--mu", type=float, default=0.99, help="exponential moving average to update the codebook")
parser.add_argument("--down-t", type=int, default=2, help="downsampling rate")
parser.add_argument("--stride-t", type=int, default=2, help="stride size")
parser.add_argument("--width", type=int, default=512, help="width of the network")
parser.add_argument("--depth", type=int, default=3, help="depth of the network")
parser.add_argument("--dilation-growth-rate", type=int, default=3, help="dilation growth rate")
parser.add_argument("--output-emb-width", type=int, default=512, help="output embedding width")
parser.add_argument('--vq-act', type=str, default='relu', choices = ['relu', 'silu', 'gelu'], help='dataset directory')
parser.add_argument('--vq-norm', type=str, default=None, help='dataset directory')
## quantizer
parser.add_argument("--quantizer", type=str, default='ema_reset', choices = ['ema', 'orig', 'ema_reset', 'reset'], help="eps for optimal transport")
parser.add_argument('--beta', type=float, default=1.0, help='commitment loss in standard VQ')
## resume
parser.add_argument("--resume-pth", type=str, default=None, help='resume pth for VQ')
parser.add_argument("--resume-gpt", type=str, default=None, help='resume pth for GPT')
## output directory
parser.add_argument('--out-dir', type=str, default='output_vqfinal/', help='output directory')
parser.add_argument('--results-dir', type=str, default='visual_results/', help='output directory')
parser.add_argument('--visual-name', type=str, default='baseline', help='output directory')
parser.add_argument('--exp-name', type=str, default='exp_debug', help='name of the experiment, will create a file inside out-dir')
## other
parser.add_argument('--print-iter', default=200, type=int, help='print frequency')
parser.add_argument('--eval-iter', default=1000, type=int, help='evaluation frequency')
parser.add_argument('--seed', default=123, type=int, help='seed for initializing training.')
parser.add_argument('--vis-gt', action='store_true', help='whether visualize GT motions')
parser.add_argument('--nb-vis', default=20, type=int, help='nb of visualizations')
return parser.parse_args()
def update_lr_warm_up(optimizer, nb_iter, warm_up_iter, lr):
current_lr = lr * (nb_iter + 1) / (warm_up_iter + 1)
for param_group in optimizer.param_groups:
param_group["lr"] = current_lr
return optimizer, current_lr
##### ---- Exp dirs ---- #####
args = get_args_parser()
torch.manual_seed(args.seed)
args.out_dir = os.path.join(args.out_dir, f'{args.exp_name}_{args.body_part}')
os.makedirs(args.out_dir, exist_ok = True)
##### ---- Logger ---- #####
logger = get_logger(args.out_dir)
writer = SummaryWriter(args.out_dir)
logger.info(json.dumps(vars(args), indent=4, sort_keys=True))
if args.dataname == 'kit' :
dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt'
args.nb_joints = 21
elif args.dataname == 't2m':
dataset_opt_path = 'checkpoints/t2m/Comp_v6_KLD005/opt.txt'
args.nb_joints = 22
elif args.dataname == 'h3d623':
dataset_opt_path = 'checkpoints/t2m/Comp_v6_KLD005/opt.txt'
args.nb_joints = 52
##### ---- Dataloader ---- #####
from dataloaders.mix_sep import CustomDataset
from utils.config import parse_args
dataset_args = parse_args("configs/beat2_rvqvae.yaml")
build_cache = not os.path.exists(dataset_args.cache_path)
trainSet = CustomDataset(dataset_args,"train",build_cache = build_cache)
train_loader = torch.utils.data.DataLoader(trainSet,
args.batch_size,
shuffle=True,
#sampler=sampler,
num_workers=8,
#collate_fn=collate_fn,
drop_last = True)
def cycle(iterable):
while True:
for x in iterable:
yield x
train_loader_iter = cycle(train_loader)
if args.body_part in "upper":
joints = [3,6,9,12,13,14,15,16,17,18,19,20,21]
upper_body_mask = []
for i in joints:
upper_body_mask.extend([i*6, i*6+1, i*6+2, i*6+3, i*6+4, i*6+5])
mask = upper_body_mask
rec_mask = list(range(len(mask)))
elif args.body_part in "hands":
joints = list(range(25,55))
hands_body_mask = []
for i in joints:
hands_body_mask.extend([i*6, i*6+1, i*6+2, i*6+3, i*6+4, i*6+5])
mask = hands_body_mask
rec_mask = list(range(len(mask)))
elif args.body_part in "lower":
joints = [0,1,2,4,5,7,8,10,11]
lower_body_mask = []
for i in joints:
lower_body_mask.extend([i*6, i*6+1, i*6+2, i*6+3, i*6+4, i*6+5])
mask = lower_body_mask
rec_mask = list(range(len(mask)))
elif args.body_part in "lower_trans":
joints = [0,1,2,4,5,7,8,10,11]
lower_body_mask = []
for i in joints:
lower_body_mask.extend([i*6, i*6+1, i*6+2, i*6+3, i*6+4, i*6+5])
lower_body_mask.extend([330,331,332])
mask = lower_body_mask
rec_mask = list(range(len(mask)))
##### ---- Network ---- #####
if args.body_part in "upper":
dim_pose = 78
elif args.body_part in "hands":
dim_pose = 180
elif args.body_part in "lower":
dim_pose = 54
elif args.body_part in "lower_trans":
dim_pose = 57
elif args.body_part in "whole":
dim_pose = 312
args.num_quantizers = 6
args.shared_codebook = False
args.quantize_dropout_prob = 0.2
net = RVQVAE(args,
dim_pose,
args.nb_code,
args.code_dim,
args.code_dim,
args.down_t,
args.stride_t,
args.width,
args.depth,
args.dilation_growth_rate,
args.vq_act,
args.vq_norm)
if args.resume_pth :
logger.info('loading checkpoint from {}'.format(args.resume_pth))
ckpt = torch.load(args.resume_pth, map_location='cpu')
net.load_state_dict(ckpt['net'], strict=True)
net.train()
net.cuda()
##### ---- Optimizer & Scheduler ---- #####
optimizer = optim.AdamW(net.parameters(), lr=args.lr, betas=(0.9, 0.99), weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_scheduler, gamma=args.gamma)
Loss = ReConsLoss(args.recons_loss, args.nb_joints)
##### ------ warm-up ------- #####
avg_recons, avg_perplexity, avg_commit = 0., 0., 0.
for nb_iter in range(1, args.warm_up_iter):
optimizer, current_lr = update_lr_warm_up(optimizer, nb_iter, args.warm_up_iter, args.lr)
gt_motion = next(train_loader_iter)
gt_motion = gt_motion[...,mask].cuda().float() # (bs, 64, dim)
pred_motion, loss_commit, perplexity = net(gt_motion).values()
loss_motion = Loss.my_forward(pred_motion, gt_motion,rec_mask)
loss_vel = 0#Loss.my_forward(pred_motion, gt_motion,vel_mask)
loss = loss_motion + args.commit * loss_commit + args.loss_vel * loss_vel
optimizer.zero_grad()
loss.backward()
optimizer.step()
avg_recons += loss_motion.item()
avg_perplexity += perplexity.item()
avg_commit += loss_commit.item()
if nb_iter % args.print_iter == 0 :
avg_recons /= args.print_iter
avg_perplexity /= args.print_iter
avg_commit /= args.print_iter
logger.info(f"Warmup. Iter {nb_iter} : lr {current_lr:.5f} \t Commit. {avg_commit:.5f} \t PPL. {avg_perplexity:.2f} \t Recons. {avg_recons:.5f}")
avg_recons, avg_perplexity, avg_commit = 0., 0., 0.
##### ---- Training ---- #####
avg_recons, avg_perplexity, avg_commit = 0., 0., 0.
#best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_vqvae(args.out_dir, val_loader, net, logger, writer, 0, best_fid=1000, best_iter=0, best_div=100, best_top1=0, best_top2=0, best_top3=0, best_matching=100, eval_wrapper=eval_wrapper)
args.eval_iter = args.eval_iter * 10
for nb_iter in range(1, args.total_iter + 1):
gt_motion = next(train_loader_iter)
gt_motion = gt_motion[...,mask].cuda().float() # bs, nb_joints, joints_dim, seq_len
pred_motion, loss_commit, perplexity = net(gt_motion)
loss_motion = Loss.my_forward(pred_motion, gt_motion,rec_mask)
loss_vel = 0
loss = loss_motion + args.commit * loss_commit + args.loss_vel * loss_vel
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
avg_recons += loss_motion.item()
avg_perplexity += perplexity.item()
avg_commit += loss_commit.item()
if nb_iter % args.print_iter == 0 :
avg_recons /= args.print_iter
avg_perplexity /= args.print_iter
avg_commit /= args.print_iter
writer.add_scalar('./Train/L1', avg_recons, nb_iter)
writer.add_scalar('./Train/PPL', avg_perplexity, nb_iter)
writer.add_scalar('./Train/Commit', avg_commit, nb_iter)
logger.info(f"Train. Iter {nb_iter} : \t Commit. {avg_commit:.5f} \t PPL. {avg_perplexity:.2f} \t Recons. {avg_recons:.5f}")
avg_recons, avg_perplexity, avg_commit = 0., 0., 0.,
# if nb_iter % args.eval_iter==0 :
# best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_vqvae(args.out_dir, val_loader, net, logger, writer, nb_iter, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, eval_wrapper=eval_wrapper)
# eval_trans.my_evaluation_vqvae(args.out_dir, val_loader, net, logger, writer)
if nb_iter % args.eval_iter==0 :
torch.save({'net' : net.state_dict()}, os.path.join(args.out_dir, f'net_{nb_iter}.pth'))
#net.load_state_dict('/mnt/fu06/chenbohong/T2M-GPT/output/VQVAE/net_last.pth')
# run command
|