File size: 14,395 Bytes
1da48bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import pynvml

def get_gpt_id():
    pynvml.nvmlInit()
    gpu_indices = []
    device_count = pynvml.nvmlDeviceGetCount()
    for i in range(device_count):
        handle = pynvml.nvmlDeviceGetHandleByIndex(i)
        memory_info = pynvml.nvmlDeviceGetMemoryInfo(handle)
        perf_state = pynvml.nvmlDeviceGetPowerState(handle)
        #if perf_state == 8 and memory_info.used < 2000 * 1024 * 1024:
        if perf_state == 8 :
            gpu_indices.append(i)
    assert len(gpu_indices) > 0, "There is no GPU with performance state P8 and low memory usage"
    pynvml.nvmlShutdown()
    print(f"usalbe gpu ids: {gpu_indices} , now we use {gpu_indices[0]}")
    return str(gpu_indices[0])
dev = get_gpt_id()
import os
os.environ["CUDA_VISIBLE_DEVICES"] = dev
import json

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
import logging
import sys



import warnings
warnings.filterwarnings('ignore')
from models.vq.model import RVQVAE

def get_logger(out_dir):
    logger = logging.getLogger('Exp')
    logger.setLevel(logging.INFO)
    formatter = logging.Formatter("%(asctime)s %(levelname)s %(message)s")

    file_path = os.path.join(out_dir, "run.log")
    file_hdlr = logging.FileHandler(file_path)
    file_hdlr.setFormatter(formatter)

    strm_hdlr = logging.StreamHandler(sys.stdout)
    strm_hdlr.setFormatter(formatter)

    logger.addHandler(file_hdlr)
    logger.addHandler(strm_hdlr)
    return logger


class ReConsLoss(nn.Module):
    def __init__(self, recons_loss, nb_joints):
        super(ReConsLoss, self).__init__()
        
        if recons_loss == 'l1': 
            self.Loss = torch.nn.L1Loss()
        elif recons_loss == 'l2' : 
            self.Loss = torch.nn.MSELoss()
        elif recons_loss == 'l1_smooth' : 
            self.Loss = torch.nn.SmoothL1Loss()
        
        # 4 global motion associated to root
        # 12 local motion (3 local xyz, 3 vel xyz, 6 rot6d)
        # 3 global vel xyz
        # 4 foot contact
        self.nb_joints = nb_joints
        self.motion_dim = (nb_joints - 1) * 12 + 4 + 3 + 4
        
    def forward(self, motion_pred, motion_gt) : 
        loss = self.Loss(motion_pred[..., : self.motion_dim], motion_gt[..., :self.motion_dim])
        return loss
    
    def forward_vel(self, motion_pred, motion_gt) : 
        loss = self.Loss(motion_pred[..., 4 : (self.nb_joints - 1) * 3 + 4], motion_gt[..., 4 : (self.nb_joints - 1) * 3 + 4])
        return loss
    
    def my_forward(self,motion_pred,motion_gt,mask) :
        loss = self.Loss(motion_pred[..., mask], motion_gt[..., mask])
        return loss



import argparse

def get_args_parser():
    parser = argparse.ArgumentParser(description='Optimal Transport AutoEncoder training for AIST',
                                     add_help=True,
                                     formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    ## dataloader  
    parser.add_argument('--dataname', type=str, default='kit', help='dataset directory')
    parser.add_argument('--batch-size', default=128, type=int, help='batch size')
    parser.add_argument('--window-size', type=int, default=64, help='training motion length')
    parser.add_argument('--body_part',type=str,default='whole')
    ## optimization
    parser.add_argument('--total-iter', default=200000, type=int, help='number of total iterations to run')
    parser.add_argument('--warm-up-iter', default=1000, type=int, help='number of total iterations for warmup')
    parser.add_argument('--lr', default=2e-4, type=float, help='max learning rate')
    parser.add_argument('--lr-scheduler', default=[50000, 400000], nargs="+", type=int, help="learning rate schedule (iterations)")
    parser.add_argument('--gamma', default=0.05, type=float, help="learning rate decay")

    parser.add_argument('--weight-decay', default=0.0, type=float, help='weight decay')
    parser.add_argument("--commit", type=float, default=0.02, help="hyper-parameter for the commitment loss")
    parser.add_argument('--loss-vel', type=float, default=0.1, help='hyper-parameter for the velocity loss')
    parser.add_argument('--recons-loss', type=str, default='l2', help='reconstruction loss')
    
    ## vqvae arch
    parser.add_argument("--code-dim", type=int, default=512, help="embedding dimension")
    parser.add_argument("--nb-code", type=int, default=512, help="nb of embedding")
    parser.add_argument("--mu", type=float, default=0.99, help="exponential moving average to update the codebook")
    parser.add_argument("--down-t", type=int, default=2, help="downsampling rate")
    parser.add_argument("--stride-t", type=int, default=2, help="stride size")
    parser.add_argument("--width", type=int, default=512, help="width of the network")
    parser.add_argument("--depth", type=int, default=3, help="depth of the network")
    parser.add_argument("--dilation-growth-rate", type=int, default=3, help="dilation growth rate")
    parser.add_argument("--output-emb-width", type=int, default=512, help="output embedding width")
    parser.add_argument('--vq-act', type=str, default='relu', choices = ['relu', 'silu', 'gelu'], help='dataset directory')
    parser.add_argument('--vq-norm', type=str, default=None, help='dataset directory')
    
    ## quantizer
    parser.add_argument("--quantizer", type=str, default='ema_reset', choices = ['ema', 'orig', 'ema_reset', 'reset'], help="eps for optimal transport")
    parser.add_argument('--beta', type=float, default=1.0, help='commitment loss in standard VQ')

    ## resume
    parser.add_argument("--resume-pth", type=str, default=None, help='resume pth for VQ')
    parser.add_argument("--resume-gpt", type=str, default=None, help='resume pth for GPT')
    
    
    ## output directory 
    parser.add_argument('--out-dir', type=str, default='output_vqfinal/', help='output directory')
    parser.add_argument('--results-dir', type=str, default='visual_results/', help='output directory')
    parser.add_argument('--visual-name', type=str, default='baseline', help='output directory')
    parser.add_argument('--exp-name', type=str, default='exp_debug', help='name of the experiment, will create a file inside out-dir')
    ## other
    parser.add_argument('--print-iter', default=200, type=int, help='print frequency')
    parser.add_argument('--eval-iter', default=1000, type=int, help='evaluation frequency')
    parser.add_argument('--seed', default=123, type=int, help='seed for initializing training.')
    
    parser.add_argument('--vis-gt', action='store_true', help='whether visualize GT motions')
    parser.add_argument('--nb-vis', default=20, type=int, help='nb of visualizations')
    
    
    return parser.parse_args()

def update_lr_warm_up(optimizer, nb_iter, warm_up_iter, lr):

    current_lr = lr * (nb_iter + 1) / (warm_up_iter + 1)
    for param_group in optimizer.param_groups:
        param_group["lr"] = current_lr

    return optimizer, current_lr

##### ---- Exp dirs ---- #####
args = get_args_parser()
torch.manual_seed(args.seed)

args.out_dir = os.path.join(args.out_dir, f'{args.exp_name}_{args.body_part}')
os.makedirs(args.out_dir, exist_ok = True)

##### ---- Logger ---- #####
logger = get_logger(args.out_dir)
writer = SummaryWriter(args.out_dir)
logger.info(json.dumps(vars(args), indent=4, sort_keys=True))


if args.dataname == 'kit' : 
    dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt'  
    args.nb_joints = 21
    
elif args.dataname == 't2m':
    dataset_opt_path = 'checkpoints/t2m/Comp_v6_KLD005/opt.txt'
    args.nb_joints = 22

elif args.dataname == 'h3d623':
    dataset_opt_path = 'checkpoints/t2m/Comp_v6_KLD005/opt.txt'
    args.nb_joints = 52


##### ---- Dataloader ---- #####
from dataloaders.mix_sep import CustomDataset
from utils.config import parse_args

dataset_args = parse_args("configs/beat2_rvqvae.yaml")
build_cache = not os.path.exists(dataset_args.cache_path)

trainSet = CustomDataset(dataset_args,"train",build_cache = build_cache)
train_loader = torch.utils.data.DataLoader(trainSet,
                                              args.batch_size,
                                              shuffle=True,
                                              #sampler=sampler,
                                              num_workers=8,
                                              #collate_fn=collate_fn,
                                              drop_last = True)


def cycle(iterable):
    while True:
        for x in iterable:
            yield x

train_loader_iter = cycle(train_loader)



if args.body_part in "upper":
    joints = [3,6,9,12,13,14,15,16,17,18,19,20,21]
    upper_body_mask = []
    for i in joints:
        upper_body_mask.extend([i*6, i*6+1, i*6+2, i*6+3, i*6+4, i*6+5])
    mask = upper_body_mask
    rec_mask = list(range(len(mask)))

    
elif args.body_part in "hands":

    joints = list(range(25,55))
    hands_body_mask = []
    for i in joints:
        hands_body_mask.extend([i*6, i*6+1, i*6+2, i*6+3, i*6+4, i*6+5])
    mask = hands_body_mask
    rec_mask = list(range(len(mask)))


elif args.body_part in "lower":
    joints = [0,1,2,4,5,7,8,10,11]
    lower_body_mask = []
    for i in joints:
        lower_body_mask.extend([i*6, i*6+1, i*6+2, i*6+3, i*6+4, i*6+5])
    mask = lower_body_mask
    rec_mask = list(range(len(mask)))

elif args.body_part in "lower_trans":
    joints = [0,1,2,4,5,7,8,10,11]
    lower_body_mask = []
    for i in joints:
        lower_body_mask.extend([i*6, i*6+1, i*6+2, i*6+3, i*6+4, i*6+5])
    lower_body_mask.extend([330,331,332])
    mask = lower_body_mask
    rec_mask = list(range(len(mask)))




##### ---- Network ---- #####
if args.body_part in "upper":
    dim_pose = 78   
elif args.body_part in "hands":
    dim_pose = 180
elif args.body_part in "lower":
    dim_pose = 54
elif args.body_part in "lower_trans":
    dim_pose = 57
elif args.body_part in "whole":
    dim_pose = 312


args.num_quantizers = 6
args.shared_codebook =  False
args.quantize_dropout_prob = 0.2
net = RVQVAE(args,
            dim_pose,
            args.nb_code,
            args.code_dim,
            args.code_dim,
            args.down_t,
            args.stride_t,
            args.width,
            args.depth,
            args.dilation_growth_rate,
            args.vq_act,
            args.vq_norm)


if args.resume_pth : 
    logger.info('loading checkpoint from {}'.format(args.resume_pth))
    ckpt = torch.load(args.resume_pth, map_location='cpu')
    net.load_state_dict(ckpt['net'], strict=True)
net.train()
net.cuda()

##### ---- Optimizer & Scheduler ---- #####
optimizer = optim.AdamW(net.parameters(), lr=args.lr, betas=(0.9, 0.99), weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_scheduler, gamma=args.gamma)


Loss = ReConsLoss(args.recons_loss, args.nb_joints)

##### ------ warm-up ------- #####
avg_recons, avg_perplexity, avg_commit = 0., 0., 0.

for nb_iter in range(1, args.warm_up_iter):
    
    optimizer, current_lr = update_lr_warm_up(optimizer, nb_iter, args.warm_up_iter, args.lr)
    
    gt_motion = next(train_loader_iter)
    gt_motion = gt_motion[...,mask].cuda().float() # (bs, 64, dim)

    pred_motion, loss_commit, perplexity = net(gt_motion).values()
    loss_motion = Loss.my_forward(pred_motion, gt_motion,rec_mask)
    loss_vel = 0#Loss.my_forward(pred_motion, gt_motion,vel_mask)
    
    loss = loss_motion + args.commit * loss_commit + args.loss_vel * loss_vel
    
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    avg_recons += loss_motion.item()
    avg_perplexity += perplexity.item()
    avg_commit += loss_commit.item()
    
    if nb_iter % args.print_iter ==  0 :
        avg_recons /= args.print_iter
        avg_perplexity /= args.print_iter
        avg_commit /= args.print_iter
        
        logger.info(f"Warmup. Iter {nb_iter} :  lr {current_lr:.5f} \t Commit. {avg_commit:.5f} \t PPL. {avg_perplexity:.2f} \t Recons.  {avg_recons:.5f}")
        
        avg_recons, avg_perplexity, avg_commit = 0., 0., 0.

##### ---- Training ---- #####
avg_recons, avg_perplexity, avg_commit = 0., 0., 0.
#best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_vqvae(args.out_dir, val_loader, net, logger, writer, 0, best_fid=1000, best_iter=0, best_div=100, best_top1=0, best_top2=0, best_top3=0, best_matching=100, eval_wrapper=eval_wrapper)
args.eval_iter = args.eval_iter * 10
for nb_iter in range(1, args.total_iter + 1):
    
    gt_motion = next(train_loader_iter)
    gt_motion = gt_motion[...,mask].cuda().float() # bs, nb_joints, joints_dim, seq_len
    
    pred_motion, loss_commit, perplexity = net(gt_motion)
    loss_motion = Loss.my_forward(pred_motion, gt_motion,rec_mask)
    loss_vel = 0
    
    loss = loss_motion + args.commit * loss_commit + args.loss_vel * loss_vel
    
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    scheduler.step()
    
    avg_recons += loss_motion.item()
    avg_perplexity += perplexity.item()
    avg_commit += loss_commit.item()
    
    if nb_iter % args.print_iter ==  0 :
        avg_recons /= args.print_iter
        avg_perplexity /= args.print_iter
        avg_commit /= args.print_iter
        
        writer.add_scalar('./Train/L1', avg_recons, nb_iter)
        writer.add_scalar('./Train/PPL', avg_perplexity, nb_iter)
        writer.add_scalar('./Train/Commit', avg_commit, nb_iter)
        
        logger.info(f"Train. Iter {nb_iter} : \t Commit. {avg_commit:.5f} \t PPL. {avg_perplexity:.2f} \t Recons.  {avg_recons:.5f}")
        
        avg_recons, avg_perplexity, avg_commit = 0., 0., 0.,

    # if nb_iter % args.eval_iter==0 :
    #     best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_vqvae(args.out_dir, val_loader, net, logger, writer, nb_iter, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, eval_wrapper=eval_wrapper)
    # eval_trans.my_evaluation_vqvae(args.out_dir, val_loader, net, logger, writer)
    if nb_iter % args.eval_iter==0 :
        torch.save({'net' : net.state_dict()}, os.path.join(args.out_dir, f'net_{nb_iter}.pth'))
        #net.load_state_dict('/mnt/fu06/chenbohong/T2M-GPT/output/VQVAE/net_last.pth')
        
# run command