File size: 2,116 Bytes
56ded97
 
 
3702a15
 
 
56ded97
3702a15
56ded97
 
 
 
 
 
 
 
 
3702a15
 
 
 
 
 
95662cd
56ded97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3702a15
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from transformers import pipeline, Conversation, AutoTokenizer, AutoModelForCausalLM
from langchain.llms import HuggingFacePipeline
from langchain.prompts import PromptTemplate
from langchain_community.llms import HuggingFaceHub
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler

from langchain.chains import LLMChain

#1: "meta-llama/Llama-2-13b-chat-hf",
#2: "BramVanroy/Llama-2-13b-chat-dutch"
my_config = {'model_name': "meta-llama/Llama-2-13b-chat-hf", #"./Bram", #BramVanroy/Llama-2-13b-chat-dutch", 
             'do_sample': True, 'temperature': 0.1, 
             'repetition_penalty': 1.1, 'max_new_tokens': 500, }

print(f"Selected model: {my_config['model_name']}")
print(f"Parameters are: {my_config}")

question = "Who won the FIFA World Cup in the year 1994? "
template = """Question: {question}
Answer: Let's think step by step."""

prompt = PromptTemplate.from_template(template)

def generate_with_llama_chat(my_config):
    print('tokenizer')
    tokenizer = AutoTokenizer.from_pretrained(my_config['model_name'])
    print('causal')
    model = AutoModelForCausalLM.from_pretrained(my_config['model_name'])
    print('Pipeline')
    chatbot = pipeline("text-generation",model=my_config['model_name'], 
                       tokenizer=tokenizer,
                       do_sample=my_config['do_sample'], 
                       temperature=my_config['temperature'], 
                       repetition_penalty=my_config['repetition_penalty'],
                       #max_length=my_config['max_length'],
                       max_new_tokens=my_config['max_new_tokens'], 
                       model_kwargs={"device_map": "auto","load_in_8bit": True})
    return chatbot

llama_chat = generate_with_llama_chat(my_config)

# Set up callback manager to print output word by word
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])

llm = HuggingFacePipeline(pipeline=llama_chat, callback_manager=callback_manager)


llm_chain = LLMChain(prompt=prompt, llm=llm)

print(llm_chain.invoke(question))