Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,50 @@
|
|
|
|
|
|
|
|
1 |
from langchain_community.llms import HuggingFaceHub
|
2 |
from langchain.callbacks.manager import CallbackManager
|
3 |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
|
|
4 |
from langchain.chains import LLMChain
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
question = "Who won the FIFA World Cup in the year 1994? "
|
9 |
template = """Question: {question}
|
10 |
Answer: Let's think step by step."""
|
11 |
|
12 |
prompt = PromptTemplate.from_template(template)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
llm = HuggingFaceHub(
|
15 |
-
repo_id="BramVanroy/Llama-2-13b-chat-dutch", model_kwargs={"temperature": 0.5, "max_length": 64}
|
16 |
-
)
|
17 |
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
18 |
|
19 |
print(llm_chain.invoke(question))
|
|
|
1 |
+
from transformers import pipeline, Conversation, AutoTokenizer, AutoModelForCausalLM
|
2 |
+
from langchain.llms import HuggingFacePipeline
|
3 |
+
from langchain.prompts import PromptTemplate
|
4 |
from langchain_community.llms import HuggingFaceHub
|
5 |
from langchain.callbacks.manager import CallbackManager
|
6 |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
7 |
+
|
8 |
from langchain.chains import LLMChain
|
9 |
+
|
10 |
+
#1: "meta-llama/Llama-2-13b-chat-hf",
|
11 |
+
#2: "BramVanroy/Llama-2-13b-chat-dutch"
|
12 |
+
my_config = {'model_name': "meta-llama/Llama-2-13b-chat-hf", #"./Bram", #BramVanroy/Llama-2-13b-chat-dutch",
|
13 |
+
'do_sample': True, 'temperature': 0.1,
|
14 |
+
'repetition_penalty': 1.1, 'max_new_tokens': 500, }
|
15 |
+
|
16 |
+
print(f"Selected model: {my_config['model_name']}")
|
17 |
+
print(f"Parameters are: {my_config}")
|
18 |
|
19 |
question = "Who won the FIFA World Cup in the year 1994? "
|
20 |
template = """Question: {question}
|
21 |
Answer: Let's think step by step."""
|
22 |
|
23 |
prompt = PromptTemplate.from_template(template)
|
24 |
+
def generate_with_llama_chat(my_config):
|
25 |
+
print('tokenizer')
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained(my_config['model_name'])
|
27 |
+
print('causal')
|
28 |
+
model = AutoModelForCausalLM.from_pretrained(my_config['model_name'])
|
29 |
+
print('Pipeline')
|
30 |
+
chatbot = pipeline("text-generation",model=my_config['model_name'],
|
31 |
+
tokenizer=tokenizer,
|
32 |
+
do_sample=my_config['do_sample'],
|
33 |
+
temperature=my_config['temperature'],
|
34 |
+
repetition_penalty=my_config['repetition_penalty'],
|
35 |
+
#max_length=my_config['max_length'],
|
36 |
+
max_new_tokens=my_config['max_new_tokens'],
|
37 |
+
model_kwargs={"device_map": "auto","load_in_8bit": True})
|
38 |
+
return chatbot
|
39 |
+
|
40 |
+
llama_chat = generate_with_llama_chat(my_config)
|
41 |
+
|
42 |
+
# Set up callback manager to print output word by word
|
43 |
+
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
|
44 |
+
|
45 |
+
llm = HuggingFacePipeline(pipeline=llama_chat, callback_manager=callback_manager)
|
46 |
+
|
47 |
|
|
|
|
|
|
|
48 |
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
49 |
|
50 |
print(llm_chain.invoke(question))
|