|
import spaces |
|
import os |
|
import tempfile |
|
from typing import Any |
|
import torch |
|
import numpy as np |
|
from PIL import Image |
|
import gradio as gr |
|
import trimesh |
|
from transparent_background import Remover |
|
from pathlib import Path |
|
import subprocess |
|
import uuid |
|
|
|
|
|
HF_TOKEN = os.environ.get("HF_TOKEN") |
|
if not HF_TOKEN: |
|
raise ValueError( |
|
"HF_TOKEN environment variable must be set to access gated models." |
|
) |
|
|
|
|
|
def install_cuda_toolkit(): |
|
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run" |
|
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL) |
|
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE]) |
|
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE]) |
|
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"]) |
|
|
|
os.environ["CUDA_HOME"] = "/usr/local/cuda" |
|
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"]) |
|
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % ( |
|
os.environ["CUDA_HOME"], |
|
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"], |
|
) |
|
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6" |
|
|
|
install_cuda_toolkit() |
|
|
|
os.system("USE_CUDA=1 pip install -vv --no-build-isolation ./texture_baker ./uv_unwrapper") |
|
import spar3d.utils as spar3d_utils |
|
from spar3d.system import SPAR3D |
|
|
|
COND_WIDTH = 512 |
|
COND_HEIGHT = 512 |
|
COND_DISTANCE = 2.2 |
|
COND_FOVY = 0.591627 |
|
BACKGROUND_COLOR = [0.5, 0.5, 0.5] |
|
OUTPUT_DIR = "./output" |
|
os.makedirs(OUTPUT_DIR, exist_ok=True) |
|
|
|
device = spar3d_utils.get_device() |
|
bg_remover = Remover() |
|
|
|
|
|
spar3d_model = SPAR3D.from_pretrained( |
|
"stabilityai/stable-point-aware-3d", |
|
config_name="config.yaml", |
|
weight_name="model.safetensors", |
|
).eval().to(device) |
|
|
|
|
|
c2w_cond = spar3d_utils.default_cond_c2w(COND_DISTANCE) |
|
intrinsic, intrinsic_normed_cond = spar3d_utils.create_intrinsic_from_fov_rad( |
|
COND_FOVY, COND_HEIGHT, COND_WIDTH |
|
) |
|
|
|
def create_rgba_image(rgb_image: Image.Image, mask: np.ndarray = None) -> Image.Image: |
|
rgba_image = rgb_image.convert('RGBA') |
|
if mask is not None: |
|
if len(mask.shape) > 2: |
|
mask = mask.squeeze() |
|
alpha = Image.fromarray((mask * 255).astype(np.uint8)) |
|
rgba_image.putalpha(alpha) |
|
return rgba_image |
|
|
|
def create_batch(input_image: Image.Image) -> dict[str, Any]: |
|
resized_image = input_image.resize((COND_WIDTH, COND_HEIGHT)) |
|
img_array = np.array(resized_image).astype(np.float32) / 255.0 |
|
|
|
if img_array.shape[-1] == 4: |
|
rgb = img_array[..., :3] |
|
mask = img_array[..., 3:4] |
|
else: |
|
rgb = img_array |
|
mask = np.ones((*img_array.shape[:2], 1), dtype=np.float32) |
|
|
|
rgb = torch.from_numpy(rgb).float() |
|
mask = torch.from_numpy(mask).float() |
|
bg_tensor = torch.tensor(BACKGROUND_COLOR).view(1, 1, 3) |
|
rgb_cond = torch.lerp(bg_tensor, rgb, mask) |
|
rgb_cond = rgb_cond.unsqueeze(0) |
|
mask = mask.unsqueeze(0) |
|
|
|
batch = { |
|
"rgb_cond": rgb_cond, |
|
"mask_cond": mask, |
|
"c2w_cond": c2w_cond.unsqueeze(0), |
|
"intrinsic_cond": intrinsic.unsqueeze(0), |
|
"intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0), |
|
} |
|
|
|
return batch |
|
|
|
def forward_model(batch, system, guidance_scale=3.0, seed=0, device="cuda"): |
|
batch_size = batch["rgb_cond"].shape[0] |
|
assert batch_size == 1, f"Expected batch size 1, got {batch_size}" |
|
|
|
try: |
|
cond_tokens = system.forward_pdiff_cond(batch) |
|
except Exception as e: |
|
print("\n[ERROR] Failed in forward_pdiff_cond:") |
|
print(e) |
|
print("\nInput tensor properties:") |
|
print("rgb_cond dtype:", batch["rgb_cond"].dtype) |
|
print("rgb_cond device:", batch["rgb_cond"].device) |
|
print("rgb_cond requires_grad:", batch["rgb_cond"].requires_grad) |
|
raise |
|
|
|
sample_iter = system.sampler.sample_batch_progressive( |
|
batch_size, |
|
cond_tokens, |
|
guidance_scale=guidance_scale, |
|
device=device |
|
) |
|
|
|
for x in sample_iter: |
|
samples = x["xstart"] |
|
|
|
pc_cond = samples.permute(0, 2, 1).float() |
|
pc_cond = spar3d_utils.normalize_pc_bbox(pc_cond) |
|
pc_cond = pc_cond[:, torch.randperm(pc_cond.shape[1])[:512]] |
|
return pc_cond |
|
|
|
@spaces.GPU |
|
@torch.inference_mode() |
|
def generate_and_process_3d(image: Image.Image) -> str: |
|
seed = np.random.randint(0, np.iinfo(np.int32).max) |
|
|
|
try: |
|
rgb_image = image.convert('RGB') |
|
no_bg_image = bg_remover.process(rgb_image) |
|
rgba_image = no_bg_image.convert('RGBA') |
|
|
|
processed_image = spar3d_utils.foreground_crop( |
|
rgba_image, |
|
crop_ratio=1.3, |
|
newsize=(COND_WIDTH, COND_HEIGHT), |
|
no_crop=False |
|
) |
|
|
|
batch = create_batch(processed_image) |
|
batch = {k: v.to(device) for k, v in batch.items()} |
|
pc_cond = forward_model( |
|
batch, |
|
spar3d_model, |
|
guidance_scale=3.0, |
|
seed=seed, |
|
device=device |
|
) |
|
batch["pc_cond"] = pc_cond |
|
|
|
with torch.no_grad(): |
|
with torch.autocast(device_type='cuda' if torch.cuda.is_available() else 'cpu', dtype=torch.bfloat16): |
|
trimesh_mesh, _ = spar3d_model.generate_mesh( |
|
batch, |
|
1024, |
|
remesh="none", |
|
vertex_count=-1, |
|
estimate_illumination=True |
|
) |
|
trimesh_mesh = trimesh_mesh[0] |
|
|
|
unique_id = str(uuid.uuid4()) |
|
filename = f'model_{unique_id}.glb' |
|
output_path = os.path.join(OUTPUT_DIR, filename) |
|
trimesh_mesh.export(output_path, file_type="glb", include_normals=True) |
|
public_url = f"https://rgndgn-i3d.hf.space/gradio_api/file={Path(output_path).resolve()}" |
|
|
|
return public_url |
|
|
|
except Exception as e: |
|
print(f"Error during generation: {str(e)}") |
|
import traceback |
|
traceback.print_exc() |
|
return None |
|
|
|
|
|
with gr.Blocks() as demo: |
|
input_img = gr.Image( |
|
type="pil", |
|
label=None, |
|
show_label=False, |
|
sources="upload", |
|
image_mode="RGBA", |
|
width=40, |
|
elem_id="hidden-upload" |
|
) |
|
|
|
|
|
model_url = gr.Textbox( |
|
label="Model URL", |
|
elem_id="model-url-output", |
|
show_copy_button=True, |
|
) |
|
|
|
input_img.upload( |
|
fn=generate_and_process_3d, |
|
inputs=[input_img], |
|
outputs=[model_url], |
|
api_name="generate" |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue().launch( |
|
server_name="0.0.0.0", |
|
server_port=7860, |
|
share=True, |
|
ssr_mode=False, |
|
allowed_paths=[Path(OUTPUT_DIR).resolve()] |
|
) |