i3d / gradio_app.py
rgndgn's picture
final
22093b0 verified
import spaces
import os
import tempfile
from typing import Any
import torch
import numpy as np
from PIL import Image
import gradio as gr
import trimesh
from transparent_background import Remover
from pathlib import Path
import subprocess
import uuid
# --- HF_TOKEN INTEGRATION ---
HF_TOKEN = os.environ.get("HF_TOKEN")
if not HF_TOKEN:
raise ValueError(
"HF_TOKEN environment variable must be set to access gated models."
)
# ----------------------------
def install_cuda_toolkit():
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run"
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
os.environ["CUDA_HOME"],
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
)
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
install_cuda_toolkit()
os.system("USE_CUDA=1 pip install -vv --no-build-isolation ./texture_baker ./uv_unwrapper")
import spar3d.utils as spar3d_utils
from spar3d.system import SPAR3D
COND_WIDTH = 512
COND_HEIGHT = 512
COND_DISTANCE = 2.2
COND_FOVY = 0.591627
BACKGROUND_COLOR = [0.5, 0.5, 0.5]
OUTPUT_DIR = "./output"
os.makedirs(OUTPUT_DIR, exist_ok=True)
device = spar3d_utils.get_device()
bg_remover = Remover()
# --- HF_TOKEN is not neeeded ---- just check that HF_TOKEN exists---
spar3d_model = SPAR3D.from_pretrained(
"stabilityai/stable-point-aware-3d",
config_name="config.yaml",
weight_name="model.safetensors",
).eval().to(device)
# ----------------------------
c2w_cond = spar3d_utils.default_cond_c2w(COND_DISTANCE)
intrinsic, intrinsic_normed_cond = spar3d_utils.create_intrinsic_from_fov_rad(
COND_FOVY, COND_HEIGHT, COND_WIDTH
)
def create_rgba_image(rgb_image: Image.Image, mask: np.ndarray = None) -> Image.Image:
rgba_image = rgb_image.convert('RGBA')
if mask is not None:
if len(mask.shape) > 2:
mask = mask.squeeze()
alpha = Image.fromarray((mask * 255).astype(np.uint8))
rgba_image.putalpha(alpha)
return rgba_image
def create_batch(input_image: Image.Image) -> dict[str, Any]:
resized_image = input_image.resize((COND_WIDTH, COND_HEIGHT))
img_array = np.array(resized_image).astype(np.float32) / 255.0
if img_array.shape[-1] == 4:
rgb = img_array[..., :3]
mask = img_array[..., 3:4]
else:
rgb = img_array
mask = np.ones((*img_array.shape[:2], 1), dtype=np.float32)
rgb = torch.from_numpy(rgb).float()
mask = torch.from_numpy(mask).float()
bg_tensor = torch.tensor(BACKGROUND_COLOR).view(1, 1, 3)
rgb_cond = torch.lerp(bg_tensor, rgb, mask)
rgb_cond = rgb_cond.unsqueeze(0)
mask = mask.unsqueeze(0)
batch = {
"rgb_cond": rgb_cond,
"mask_cond": mask,
"c2w_cond": c2w_cond.unsqueeze(0),
"intrinsic_cond": intrinsic.unsqueeze(0),
"intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0),
}
return batch
def forward_model(batch, system, guidance_scale=3.0, seed=0, device="cuda"):
batch_size = batch["rgb_cond"].shape[0]
assert batch_size == 1, f"Expected batch size 1, got {batch_size}"
try:
cond_tokens = system.forward_pdiff_cond(batch)
except Exception as e:
print("\n[ERROR] Failed in forward_pdiff_cond:")
print(e)
print("\nInput tensor properties:")
print("rgb_cond dtype:", batch["rgb_cond"].dtype)
print("rgb_cond device:", batch["rgb_cond"].device)
print("rgb_cond requires_grad:", batch["rgb_cond"].requires_grad)
raise
sample_iter = system.sampler.sample_batch_progressive(
batch_size,
cond_tokens,
guidance_scale=guidance_scale,
device=device
)
for x in sample_iter:
samples = x["xstart"]
pc_cond = samples.permute(0, 2, 1).float()
pc_cond = spar3d_utils.normalize_pc_bbox(pc_cond)
pc_cond = pc_cond[:, torch.randperm(pc_cond.shape[1])[:512]]
return pc_cond
@spaces.GPU
@torch.inference_mode()
def generate_and_process_3d(image: Image.Image) -> str:
seed = np.random.randint(0, np.iinfo(np.int32).max)
try:
rgb_image = image.convert('RGB')
no_bg_image = bg_remover.process(rgb_image)
rgba_image = no_bg_image.convert('RGBA')
processed_image = spar3d_utils.foreground_crop(
rgba_image,
crop_ratio=1.3,
newsize=(COND_WIDTH, COND_HEIGHT),
no_crop=False
)
batch = create_batch(processed_image)
batch = {k: v.to(device) for k, v in batch.items()}
pc_cond = forward_model(
batch,
spar3d_model,
guidance_scale=3.0,
seed=seed,
device=device
)
batch["pc_cond"] = pc_cond
with torch.no_grad():
with torch.autocast(device_type='cuda' if torch.cuda.is_available() else 'cpu', dtype=torch.bfloat16):
trimesh_mesh, _ = spar3d_model.generate_mesh(
batch,
1024,
remesh="none",
vertex_count=-1,
estimate_illumination=True
)
trimesh_mesh = trimesh_mesh[0]
unique_id = str(uuid.uuid4())
filename = f'model_{unique_id}.glb'
output_path = os.path.join(OUTPUT_DIR, filename)
trimesh_mesh.export(output_path, file_type="glb", include_normals=True)
public_url = f"https://rgndgn-i3d.hf.space/gradio_api/file={Path(output_path).resolve()}"
return public_url
except Exception as e:
print(f"Error during generation: {str(e)}")
import traceback
traceback.print_exc()
return None
# Create Gradio interface
with gr.Blocks() as demo:
input_img = gr.Image(
type="pil",
label=None, # Remove the label
show_label=False, # Further remove label
sources="upload",
image_mode="RGBA",
width=40,
elem_id="hidden-upload" # Add an ID for CSS targeting
)
# Make textbox visible but hide it with CSS
model_url = gr.Textbox(
label="Model URL",
elem_id="model-url-output", # Add this for CSS targeting
show_copy_button=True,
)
input_img.upload(
fn=generate_and_process_3d,
inputs=[input_img],
outputs=[model_url],
api_name="generate"
)
if __name__ == "__main__":
demo.queue().launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
ssr_mode=False,
allowed_paths=[Path(OUTPUT_DIR).resolve()]
)