File size: 7,131 Bytes
efccc85 a22b6d9 efccc85 a22b6d9 efccc85 7fefbab efccc85 7dafc7a a22b6d9 efccc85 7fefbab bee753a efccc85 7fefbab efccc85 7fefbab efccc85 a22b6d9 efccc85 a22b6d9 efccc85 a22b6d9 efccc85 a22b6d9 efccc85 a22b6d9 efccc85 a22b6d9 efccc85 a22b6d9 efccc85 22093b0 efccc85 a22b6d9 efccc85 a22b6d9 efccc85 22093b0 efccc85 a9af299 22093b0 a22b6d9 efccc85 a22b6d9 efccc85 a22b6d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import spaces
import os
import tempfile
from typing import Any
import torch
import numpy as np
from PIL import Image
import gradio as gr
import trimesh
from transparent_background import Remover
from pathlib import Path
import subprocess
import uuid
# --- HF_TOKEN INTEGRATION ---
HF_TOKEN = os.environ.get("HF_TOKEN")
if not HF_TOKEN:
raise ValueError(
"HF_TOKEN environment variable must be set to access gated models."
)
# ----------------------------
def install_cuda_toolkit():
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run"
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
os.environ["CUDA_HOME"],
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
)
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
install_cuda_toolkit()
os.system("USE_CUDA=1 pip install -vv --no-build-isolation ./texture_baker ./uv_unwrapper")
import spar3d.utils as spar3d_utils
from spar3d.system import SPAR3D
COND_WIDTH = 512
COND_HEIGHT = 512
COND_DISTANCE = 2.2
COND_FOVY = 0.591627
BACKGROUND_COLOR = [0.5, 0.5, 0.5]
OUTPUT_DIR = "./output"
os.makedirs(OUTPUT_DIR, exist_ok=True)
device = spar3d_utils.get_device()
bg_remover = Remover()
# --- HF_TOKEN is not neeeded ---- just check that HF_TOKEN exists---
spar3d_model = SPAR3D.from_pretrained(
"stabilityai/stable-point-aware-3d",
config_name="config.yaml",
weight_name="model.safetensors",
).eval().to(device)
# ----------------------------
c2w_cond = spar3d_utils.default_cond_c2w(COND_DISTANCE)
intrinsic, intrinsic_normed_cond = spar3d_utils.create_intrinsic_from_fov_rad(
COND_FOVY, COND_HEIGHT, COND_WIDTH
)
def create_rgba_image(rgb_image: Image.Image, mask: np.ndarray = None) -> Image.Image:
rgba_image = rgb_image.convert('RGBA')
if mask is not None:
if len(mask.shape) > 2:
mask = mask.squeeze()
alpha = Image.fromarray((mask * 255).astype(np.uint8))
rgba_image.putalpha(alpha)
return rgba_image
def create_batch(input_image: Image.Image) -> dict[str, Any]:
resized_image = input_image.resize((COND_WIDTH, COND_HEIGHT))
img_array = np.array(resized_image).astype(np.float32) / 255.0
if img_array.shape[-1] == 4:
rgb = img_array[..., :3]
mask = img_array[..., 3:4]
else:
rgb = img_array
mask = np.ones((*img_array.shape[:2], 1), dtype=np.float32)
rgb = torch.from_numpy(rgb).float()
mask = torch.from_numpy(mask).float()
bg_tensor = torch.tensor(BACKGROUND_COLOR).view(1, 1, 3)
rgb_cond = torch.lerp(bg_tensor, rgb, mask)
rgb_cond = rgb_cond.unsqueeze(0)
mask = mask.unsqueeze(0)
batch = {
"rgb_cond": rgb_cond,
"mask_cond": mask,
"c2w_cond": c2w_cond.unsqueeze(0),
"intrinsic_cond": intrinsic.unsqueeze(0),
"intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0),
}
return batch
def forward_model(batch, system, guidance_scale=3.0, seed=0, device="cuda"):
batch_size = batch["rgb_cond"].shape[0]
assert batch_size == 1, f"Expected batch size 1, got {batch_size}"
try:
cond_tokens = system.forward_pdiff_cond(batch)
except Exception as e:
print("\n[ERROR] Failed in forward_pdiff_cond:")
print(e)
print("\nInput tensor properties:")
print("rgb_cond dtype:", batch["rgb_cond"].dtype)
print("rgb_cond device:", batch["rgb_cond"].device)
print("rgb_cond requires_grad:", batch["rgb_cond"].requires_grad)
raise
sample_iter = system.sampler.sample_batch_progressive(
batch_size,
cond_tokens,
guidance_scale=guidance_scale,
device=device
)
for x in sample_iter:
samples = x["xstart"]
pc_cond = samples.permute(0, 2, 1).float()
pc_cond = spar3d_utils.normalize_pc_bbox(pc_cond)
pc_cond = pc_cond[:, torch.randperm(pc_cond.shape[1])[:512]]
return pc_cond
@spaces.GPU
@torch.inference_mode()
def generate_and_process_3d(image: Image.Image) -> str:
seed = np.random.randint(0, np.iinfo(np.int32).max)
try:
rgb_image = image.convert('RGB')
no_bg_image = bg_remover.process(rgb_image)
rgba_image = no_bg_image.convert('RGBA')
processed_image = spar3d_utils.foreground_crop(
rgba_image,
crop_ratio=1.3,
newsize=(COND_WIDTH, COND_HEIGHT),
no_crop=False
)
batch = create_batch(processed_image)
batch = {k: v.to(device) for k, v in batch.items()}
pc_cond = forward_model(
batch,
spar3d_model,
guidance_scale=3.0,
seed=seed,
device=device
)
batch["pc_cond"] = pc_cond
with torch.no_grad():
with torch.autocast(device_type='cuda' if torch.cuda.is_available() else 'cpu', dtype=torch.bfloat16):
trimesh_mesh, _ = spar3d_model.generate_mesh(
batch,
1024,
remesh="none",
vertex_count=-1,
estimate_illumination=True
)
trimesh_mesh = trimesh_mesh[0]
unique_id = str(uuid.uuid4())
filename = f'model_{unique_id}.glb'
output_path = os.path.join(OUTPUT_DIR, filename)
trimesh_mesh.export(output_path, file_type="glb", include_normals=True)
public_url = f"https://rgndgn-i3d.hf.space/gradio_api/file={Path(output_path).resolve()}"
return public_url
except Exception as e:
print(f"Error during generation: {str(e)}")
import traceback
traceback.print_exc()
return None
# Create Gradio interface
with gr.Blocks() as demo:
input_img = gr.Image(
type="pil",
label=None, # Remove the label
show_label=False, # Further remove label
sources="upload",
image_mode="RGBA",
width=40,
elem_id="hidden-upload" # Add an ID for CSS targeting
)
# Make textbox visible but hide it with CSS
model_url = gr.Textbox(
label="Model URL",
elem_id="model-url-output", # Add this for CSS targeting
show_copy_button=True,
)
input_img.upload(
fn=generate_and_process_3d,
inputs=[input_img],
outputs=[model_url],
api_name="generate"
)
if __name__ == "__main__":
demo.queue().launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
ssr_mode=False,
allowed_paths=[Path(OUTPUT_DIR).resolve()]
) |