File size: 7,131 Bytes
efccc85
 
 
 
 
 
 
 
 
 
a22b6d9
efccc85
a22b6d9
efccc85
7fefbab
 
 
 
 
 
 
 
efccc85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dafc7a
a22b6d9
efccc85
 
 
7fefbab
bee753a
efccc85
 
 
7fefbab
efccc85
7fefbab
efccc85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a22b6d9
efccc85
 
a22b6d9
efccc85
 
 
a22b6d9
 
 
 
 
 
efccc85
 
a22b6d9
 
 
 
 
efccc85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a22b6d9
efccc85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a22b6d9
efccc85
 
 
 
 
 
a22b6d9
 
 
efccc85
22093b0
efccc85
a22b6d9
efccc85
 
 
 
 
 
 
a22b6d9
efccc85
22093b0
 
 
 
 
 
 
 
 
efccc85
a9af299
22093b0
 
 
 
 
a22b6d9
efccc85
 
 
a22b6d9
efccc85
 
 
 
a22b6d9
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import spaces
import os
import tempfile
from typing import Any
import torch
import numpy as np
from PIL import Image
import gradio as gr
import trimesh
from transparent_background import Remover
from pathlib import Path
import subprocess
import uuid

# --- HF_TOKEN INTEGRATION ---
HF_TOKEN = os.environ.get("HF_TOKEN")
if not HF_TOKEN:
    raise ValueError(
        "HF_TOKEN environment variable must be set to access gated models."
    )
# ----------------------------

def install_cuda_toolkit():
    CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run"
    CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
    subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
    subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
    subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])

    os.environ["CUDA_HOME"] = "/usr/local/cuda"
    os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
    os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
        os.environ["CUDA_HOME"],
        "" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
    )
    os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"

install_cuda_toolkit()

os.system("USE_CUDA=1 pip install -vv --no-build-isolation ./texture_baker ./uv_unwrapper")
import spar3d.utils as spar3d_utils
from spar3d.system import SPAR3D

COND_WIDTH = 512
COND_HEIGHT = 512
COND_DISTANCE = 2.2
COND_FOVY = 0.591627
BACKGROUND_COLOR = [0.5, 0.5, 0.5]
OUTPUT_DIR = "./output"
os.makedirs(OUTPUT_DIR, exist_ok=True)

device = spar3d_utils.get_device()
bg_remover = Remover()

# --- HF_TOKEN is not neeeded ---- just check that HF_TOKEN exists---
spar3d_model = SPAR3D.from_pretrained(
    "stabilityai/stable-point-aware-3d",
    config_name="config.yaml",
    weight_name="model.safetensors",
).eval().to(device)
# ----------------------------

c2w_cond = spar3d_utils.default_cond_c2w(COND_DISTANCE)
intrinsic, intrinsic_normed_cond = spar3d_utils.create_intrinsic_from_fov_rad(
    COND_FOVY, COND_HEIGHT, COND_WIDTH
)

def create_rgba_image(rgb_image: Image.Image, mask: np.ndarray = None) -> Image.Image:
    rgba_image = rgb_image.convert('RGBA')
    if mask is not None:
        if len(mask.shape) > 2:
            mask = mask.squeeze()
        alpha = Image.fromarray((mask * 255).astype(np.uint8))
        rgba_image.putalpha(alpha)
    return rgba_image

def create_batch(input_image: Image.Image) -> dict[str, Any]:
    resized_image = input_image.resize((COND_WIDTH, COND_HEIGHT))
    img_array = np.array(resized_image).astype(np.float32) / 255.0

    if img_array.shape[-1] == 4:
        rgb = img_array[..., :3]
        mask = img_array[..., 3:4]
    else:
        rgb = img_array
        mask = np.ones((*img_array.shape[:2], 1), dtype=np.float32)
    
    rgb = torch.from_numpy(rgb).float()
    mask = torch.from_numpy(mask).float()
    bg_tensor = torch.tensor(BACKGROUND_COLOR).view(1, 1, 3)
    rgb_cond = torch.lerp(bg_tensor, rgb, mask)
    rgb_cond = rgb_cond.unsqueeze(0)
    mask = mask.unsqueeze(0)
    
    batch = {
        "rgb_cond": rgb_cond,
        "mask_cond": mask,
        "c2w_cond": c2w_cond.unsqueeze(0),
        "intrinsic_cond": intrinsic.unsqueeze(0),
        "intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0),
    }
    
    return batch

def forward_model(batch, system, guidance_scale=3.0, seed=0, device="cuda"):
    batch_size = batch["rgb_cond"].shape[0]
    assert batch_size == 1, f"Expected batch size 1, got {batch_size}"
    
    try:
        cond_tokens = system.forward_pdiff_cond(batch)
    except Exception as e:
        print("\n[ERROR] Failed in forward_pdiff_cond:")
        print(e)
        print("\nInput tensor properties:")
        print("rgb_cond dtype:", batch["rgb_cond"].dtype)
        print("rgb_cond device:", batch["rgb_cond"].device)
        print("rgb_cond requires_grad:", batch["rgb_cond"].requires_grad)
        raise
    
    sample_iter = system.sampler.sample_batch_progressive(
        batch_size,
        cond_tokens,
        guidance_scale=guidance_scale,
        device=device
    )
    
    for x in sample_iter:
        samples = x["xstart"]
    
    pc_cond = samples.permute(0, 2, 1).float()
    pc_cond = spar3d_utils.normalize_pc_bbox(pc_cond)
    pc_cond = pc_cond[:, torch.randperm(pc_cond.shape[1])[:512]]
    return pc_cond

@spaces.GPU
@torch.inference_mode()
def generate_and_process_3d(image: Image.Image) -> str:
    seed = np.random.randint(0, np.iinfo(np.int32).max)
    
    try:
        rgb_image = image.convert('RGB')
        no_bg_image = bg_remover.process(rgb_image)
        rgba_image = no_bg_image.convert('RGBA')
        
        processed_image = spar3d_utils.foreground_crop(
            rgba_image,
            crop_ratio=1.3,
            newsize=(COND_WIDTH, COND_HEIGHT),
            no_crop=False
        )
        
        batch = create_batch(processed_image)
        batch = {k: v.to(device) for k, v in batch.items()}
        pc_cond = forward_model(
            batch,
            spar3d_model,
            guidance_scale=3.0,
            seed=seed,
            device=device
        )
        batch["pc_cond"] = pc_cond

        with torch.no_grad():
            with torch.autocast(device_type='cuda' if torch.cuda.is_available() else 'cpu', dtype=torch.bfloat16):
                trimesh_mesh, _ = spar3d_model.generate_mesh(
                    batch,
                    1024,
                    remesh="none",
                    vertex_count=-1,
                    estimate_illumination=True
                )
                trimesh_mesh = trimesh_mesh[0]

        unique_id = str(uuid.uuid4())
        filename = f'model_{unique_id}.glb'
        output_path = os.path.join(OUTPUT_DIR, filename)
        trimesh_mesh.export(output_path, file_type="glb", include_normals=True)
        public_url = f"https://rgndgn-i3d.hf.space/gradio_api/file={Path(output_path).resolve()}"
        
        return public_url
        
    except Exception as e:
        print(f"Error during generation: {str(e)}")
        import traceback
        traceback.print_exc()
        return None

# Create Gradio interface
with gr.Blocks() as demo:
    input_img = gr.Image(
        type="pil",
        label=None,  # Remove the label
        show_label=False, # Further remove label
        sources="upload",
        image_mode="RGBA",
        width=40,
        elem_id="hidden-upload" # Add an ID for CSS targeting
    )
    
    # Make textbox visible but hide it with CSS
    model_url = gr.Textbox(
        label="Model URL",
        elem_id="model-url-output",  # Add this for CSS targeting
        show_copy_button=True,
    )
    
    input_img.upload(
        fn=generate_and_process_3d,
        inputs=[input_img],
        outputs=[model_url],
        api_name="generate"
    )
    
if __name__ == "__main__":
    demo.queue().launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True,
        ssr_mode=False,
        allowed_paths=[Path(OUTPUT_DIR).resolve()]
    )