Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
""" | |
This is the full application script for VideoPainter. | |
It first checks for and (if necessary) installs missing dependencies. | |
When installing the custom packages (diffusers and app), | |
it uses the flag --no-build-isolation so that the installed torch is seen. | |
If the custom diffusers package fails to provide the expected submodules, | |
the script will force-install the official diffusers package. | |
""" | |
import os | |
import sys | |
import subprocess | |
import warnings | |
import time | |
import importlib | |
warnings.filterwarnings("ignore") | |
# Set Gradio temp directory via environment variable | |
GRADIO_TEMP_DIR = "./tmp_gradio" | |
os.makedirs(GRADIO_TEMP_DIR, exist_ok=True) | |
os.makedirs(f"{GRADIO_TEMP_DIR}/track", exist_ok=True) | |
os.makedirs(f"{GRADIO_TEMP_DIR}/inpaint", exist_ok=True) | |
os.environ["GRADIO_TEMP_DIR"] = GRADIO_TEMP_DIR | |
def install_package(package_spec): | |
print(f"Installing {package_spec} ...") | |
try: | |
subprocess.check_call([sys.executable, "-m", "pip", "install", package_spec]) | |
print(f"Successfully installed {package_spec}") | |
return True | |
except Exception as e: | |
print(f"Failed to install {package_spec}: {e}") | |
return False | |
print("Checking for PyTorch ...") | |
try: | |
import torch | |
print("PyTorch is already installed.") | |
except ImportError: | |
print("PyTorch not found, installing...") | |
if not install_package("torch>=2.0.0 torchvision>=0.15.0"): | |
print("Failed to install PyTorch, which is required.") | |
sys.exit(1) | |
# First, install wheel package which is needed for bdist_wheel command | |
install_package("wheel") | |
# Install ninja for faster builds | |
install_package("ninja") | |
# Check and install other critical dependencies | |
critical_dependencies = [ | |
("hydra", "hydra-core>=1.3.2"), | |
("omegaconf", "omegaconf>=2.3.0"), | |
("decord", "decord>=0.6.0"), | |
("diffusers", "diffusers>=0.24.0"), # Will be replaced with custom one | |
("transformers", "transformers>=4.35.0"), | |
("gradio", "gradio>=4.0.0"), | |
("numpy", "numpy>=1.24.0"), | |
("cv2", "opencv-python>=4.8.0"), | |
("PIL", "Pillow>=10.0.0"), | |
("scipy", "scipy>=1.11.0"), | |
("einops", "einops>=0.7.0"), | |
("onnxruntime", "onnxruntime>=1.16.0"), | |
("timm", "timm>=0.9.0"), | |
("safetensors", "safetensors>=0.4.0"), | |
("moviepy", "moviepy>=1.0.3"), | |
("imageio", "imageio>=2.30.0"), | |
("tqdm", "tqdm>=4.64.0"), | |
("openai", "openai>=1.5.0"), | |
("psutil", "psutil>=5.9.0") | |
] | |
for mod_name, pkg_spec in critical_dependencies: | |
try: | |
if mod_name == "PIL": | |
from PIL import Image | |
elif mod_name == "cv2": | |
import cv2 | |
else: | |
__import__(mod_name) | |
print(f"{mod_name} is already installed.") | |
except ImportError: | |
print(f"{mod_name} not found, installing {pkg_spec} ...") | |
install_package(pkg_spec) | |
print("Setting up environment...") | |
# Clone the VideoPainter repository if not present | |
if not os.path.exists("VideoPainter"): | |
print("Cloning VideoPainter repository...") | |
os.system("git clone https://github.com/TencentARC/VideoPainter.git") | |
# Add necessary paths to sys.path | |
sys.path.append(os.path.join(os.getcwd(), "VideoPainter")) | |
sys.path.append(os.path.join(os.getcwd(), "VideoPainter/app")) | |
sys.path.append(os.path.join(os.getcwd(), "app")) | |
sys.path.append(".") | |
# Ensure custom diffusers is importable | |
if os.path.exists("VideoPainter/diffusers"): | |
print("Installing custom diffusers...") | |
# First, remove any existing diffusers installation | |
subprocess.call([sys.executable, "-m", "pip", "uninstall", "-y", "diffusers"]) | |
# Copy the files directly into the site-packages directory instead of using pip install -e | |
import site | |
site_packages = site.getsitepackages()[0] | |
diffusers_src = os.path.join(os.getcwd(), "VideoPainter/diffusers/src/diffusers") | |
diffusers_dst = os.path.join(site_packages, "diffusers") | |
print(f"Copying diffusers from {diffusers_src} to {diffusers_dst}") | |
if not os.path.exists(diffusers_dst): | |
os.makedirs(diffusers_dst, exist_ok=True) | |
# Copy diffusers files directly | |
os.system(f"cp -r {diffusers_src}/* {diffusers_dst}/") | |
# Also add VideoPainter/diffusers/src to sys.path | |
sys.path.append(os.path.join(os.getcwd(), "VideoPainter/diffusers/src")) | |
# Verify the custom model is available | |
try: | |
# Force reload diffusers to pick up the new files | |
if "diffusers" in sys.modules: | |
del sys.modules["diffusers"] | |
import diffusers | |
print(f"Diffusers version: {diffusers.__version__}") | |
print(f"Available modules in diffusers: {dir(diffusers)}") | |
# Check if models directory exists in custom diffusers | |
models_dir = os.path.join(diffusers_dst, "models") | |
if os.path.exists(models_dir): | |
print(f"Models in diffusers: {os.listdir(models_dir)}") | |
except Exception as e: | |
print(f"Error verifying diffusers installation: {e}") | |
# Copy the app directory if needed | |
if not os.path.exists("app"): | |
os.makedirs("app", exist_ok=True) | |
print("Copying VideoPainter/app to local app directory...") | |
os.system("cp -r VideoPainter/app/* app/") | |
# Don't try to install app package, just add to path | |
print("Adding app directory to Python path...") | |
app_path = os.path.join(os.getcwd(), "app") | |
sys.path.insert(0, app_path) | |
# Insert the VideoPainter path at the beginning of sys.path to ensure it takes precedence | |
sys.path.insert(0, os.path.join(os.getcwd(), "VideoPainter")) | |
print("Importing standard modules and dependencies ...") | |
try: | |
import gradio as gr | |
import cv2 | |
import numpy as np | |
import scipy | |
import torchvision | |
from PIL import Image | |
from huggingface_hub import snapshot_download | |
from decord import VideoReader | |
except ImportError as e: | |
print(f"Error importing basic modules: {e}") | |
sys.exit(1) | |
# Import specialized modules with better error handling | |
try: | |
# Import our custom modules | |
from sam2.build_sam import build_sam2_video_predictor | |
# Force reload of diffusers after direct copy | |
if "diffusers" in sys.modules: | |
del sys.modules["diffusers"] | |
# Now import diffusers with explicit path to the files we need | |
sys.path.insert(0, os.path.join(os.getcwd(), "VideoPainter/app")) | |
# Import utils after setting up correct paths | |
from utils import load_model, generate_frames | |
print("All modules imported successfully!") | |
except ImportError as e: | |
print(f"Error importing specialized modules: {e}") | |
print("Paths:", sys.path) | |
# Try to diagnose and fix the specific issue | |
if "CogvideoXBranchModel" in str(e): | |
print("Trying to fix missing CogvideoXBranchModel...") | |
# Check if the model file exists in the repository | |
branch_model_file = "VideoPainter/diffusers/src/diffusers/models/cogvideox_branch.py" | |
if os.path.exists(branch_model_file): | |
print(f"Found branch model file at {branch_model_file}") | |
# Manually import the module | |
import sys | |
sys.path.insert(0, os.path.join(os.getcwd(), "VideoPainter/diffusers/src")) | |
# Add the import to __init__.py if not already there | |
init_file = os.path.join(site_packages, "diffusers/__init__.py") | |
with open(init_file, 'r') as f: | |
init_content = f.read() | |
if "CogvideoXBranchModel" not in init_content: | |
print("Adding CogvideoXBranchModel to diffusers/__init__.py") | |
with open(init_file, 'a') as f: | |
f.write("\nfrom .models.cogvideox_branch import CogvideoXBranchModel\n") | |
# Force reload diffusers | |
if "diffusers" in sys.modules: | |
del sys.modules["diffusers"] | |
# Try importing again | |
from utils import load_model, generate_frames | |
print("Fixed CogvideoXBranchModel import issue!") | |
else: | |
print(f"Could not find {branch_model_file}") | |
sys.exit(1) | |
else: | |
sys.exit(1) | |
############################### | |
# Begin Application Code (VideoPainter demo) | |
############################### | |
def download_models(): | |
print("Downloading models from Hugging Face Hub...") | |
models = { | |
"CogVideoX-5b-I2V": "THUDM/CogVideoX-5b-I2V", | |
"VideoPainter": "TencentARC/VideoPainter" | |
} | |
model_paths = {} | |
os.makedirs("ckpt", exist_ok=True) | |
for name, repo_id in models.items(): | |
print(f"Downloading {name} from {repo_id}...") | |
path = snapshot_download(repo_id=repo_id) | |
model_paths[name] = path | |
print(f"Downloaded {name} to {path}") | |
try: | |
flux_path = snapshot_download(repo_id="black-forest-labs/FLUX.1-Fill-dev") | |
model_paths["FLUX"] = flux_path | |
except Exception as e: | |
print(f"Failed to download FLUX model: {e}") | |
model_paths["FLUX"] = None | |
os.makedirs("ckpt/Grounded-SAM-2", exist_ok=True) | |
sam2_path = "ckpt/Grounded-SAM-2/sam2_hiera_large.pt" | |
if not os.path.exists(sam2_path): | |
print(f"Downloading SAM2 to {sam2_path}...") | |
os.system(f"wget -O {sam2_path} https://huggingface.co/spaces/sam2/sam2/resolve/main/sam2_hiera_large.pt") | |
model_paths["SAM2"] = sam2_path | |
return model_paths | |
print("Initializing application environment...") | |
if not os.path.exists("app"): | |
print("Setting up app folder from VideoPainter repository ...") | |
os.system("git clone https://github.com/TencentARC/VideoPainter.git") | |
os.makedirs("app", exist_ok=True) | |
os.system("cp -r VideoPainter/app/* app/") | |
os.system("pip install --no-build-isolation -e VideoPainter/diffusers") | |
os.chdir("app") | |
os.system("pip install --no-build-isolation -e .") | |
os.chdir("..") | |
sys.path.append("app") | |
sys.path.append(".") | |
# Import project modules (again, to be safe) | |
try: | |
from decord import VideoReader | |
from sam2.build_sam import build_sam2_video_predictor | |
from utils import load_model, generate_frames | |
except ImportError as e: | |
print(f"Failed to import specialized modules: {e}") | |
sys.exit(1) | |
# Set up OpenRouter / OpenAI (for caption generation) | |
try: | |
from openai import OpenAI | |
vlm_model = OpenAI( | |
api_key=os.getenv("OPENROUTER_API_KEY", ""), | |
base_url="https://openrouter.ai/api/v1" | |
) | |
print("OpenRouter client initialized successfully") | |
except Exception as e: | |
print(f"OpenRouter API not available: {e}") | |
class DummyModel: | |
def __getattr__(self, name): | |
return self | |
def __call__(self, *args, **kwargs): | |
return self | |
def create(self, *args, **kwargs): | |
class DummyResponse: | |
choices = [type('obj', (object,), {'message': type('obj', (object,), {'content': "OpenRouter API not available. Using default prompt."})})] | |
return DummyResponse() | |
vlm_model = DummyModel() | |
############################### | |
# Download models and initialize predictors | |
############################### | |
model_paths = download_models() | |
base_model_path = model_paths["CogVideoX-5b-I2V"] | |
videopainter_path = model_paths["VideoPainter"] | |
inpainting_branch = os.path.join(videopainter_path, "checkpoints/branch") | |
id_adapter = os.path.join(videopainter_path, "VideoPainterID/checkpoints") | |
img_inpainting_model = model_paths.get("FLUX") | |
sam2_checkpoint = "ckpt/Grounded-SAM-2/sam2_hiera_large.pt" | |
model_cfg = "sam2_hiera_l.yaml" | |
try: | |
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint) | |
print("Build SAM2 predictor done!") | |
validation_pipeline, validation_pipeline_img = load_model( | |
model_path=base_model_path, | |
inpainting_branch=inpainting_branch, | |
id_adapter=id_adapter, | |
img_inpainting_model=img_inpainting_model | |
) | |
print("Load model done!") | |
except Exception as e: | |
print(f"Error initializing models: {e}") | |
sys.exit(1) | |
############################### | |
# Helper functions & state definitions | |
############################### | |
EXAMPLES = [ | |
[ | |
"https://huggingface.co/spaces/TencentARC/VideoPainter/resolve/main/examples/ferry.mp4", | |
"A white ferry with red and blue accents, named 'COLONIA', cruises on a calm river...", | |
"White and red passenger ferry boat labeled 'COLONIA 6' with multiple windows, life buoys, and upper deck seating.", | |
"Positive", | |
"Inpaint", | |
"", | |
42, | |
6.0, | |
16, | |
[[[320, 240]], [1]], | |
], | |
[ | |
"https://huggingface.co/spaces/TencentARC/VideoPainter/resolve/main/examples/street.mp4", | |
"A bustling city street at night illuminated by festive lights, a red double-decker bus...", | |
"The rear of a black car with illuminated red tail lights and a visible license plate.", | |
"Positive", | |
"Inpaint", | |
"", | |
42, | |
6.0, | |
16, | |
[[[200, 400]], [1]], | |
], | |
] | |
class StatusMessage: | |
INFO = "Info" | |
WARNING = "Warning" | |
ERROR = "Error" | |
SUCCESS = "Success" | |
def create_status(message, status_type=StatusMessage.INFO): | |
timestamp = time.strftime("%H:%M:%S") | |
return [("", ""), (f"[{timestamp}]: {message}\n", status_type)] | |
def update_status(previous_status, new_message, status_type=StatusMessage.INFO): | |
timestamp = time.strftime("%H:%M:%S") | |
history = previous_status[-3:] | |
history.append((f"[{timestamp}]: {new_message}\n", status_type)) | |
return [("", "")] + history | |
def init_state(offload_video_to_cpu=False, offload_state_to_cpu=False): | |
inference_state = {} | |
inference_state["images"] = torch.zeros([1, 3, 100, 100]) | |
inference_state["num_frames"] = 1 | |
inference_state["offload_video_to_cpu"] = offload_video_to_cpu | |
inference_state["offload_state_to_cpu"] = offload_state_to_cpu | |
inference_state["video_height"] = 100 | |
inference_state["video_width"] = 100 | |
inference_state["device"] = torch.device("cuda") | |
inference_state["storage_device"] = torch.device("cpu") if offload_state_to_cpu else torch.device("cuda") | |
inference_state["point_inputs_per_obj"] = {} | |
inference_state["mask_inputs_per_obj"] = {} | |
inference_state["cached_features"] = {} | |
inference_state["constants"] = {} | |
inference_state["obj_id_to_idx"] = OrderedDict() | |
inference_state["obj_idx_to_id"] = OrderedDict() | |
inference_state["obj_ids"] = [] | |
inference_state["output_dict"] = {"cond_frame_outputs": {}, "non_cond_frame_outputs": {}} | |
inference_state["output_dict_per_obj"] = {} | |
inference_state["temp_output_dict_per_obj"] = {} | |
inference_state["consolidated_frame_inds"] = {"cond_frame_outputs": set(), "non_cond_frame_outputs": set()} | |
inference_state["tracking_has_started"] = False | |
inference_state["frames_already_tracked"] = {} | |
inference_state = gr.State(inference_state) | |
return inference_state | |
# (All additional helper functions such as get_frames_from_video, sam_refine, vos_tracking_video, | |
# inpaint_video, generate_video_from_frames, process_example, reset_all, etc. are defined below.) | |
# For brevity, they are included here in full as in your original code. | |
def get_frames_from_video(video_input, video_state): | |
video_path = video_input | |
frames = [] | |
user_name = time.time() | |
vr = VideoReader(video_path) | |
original_fps = vr.get_avg_fps() | |
if original_fps > 8: | |
total_frames = len(vr) | |
sample_interval = max(1, int(original_fps / 8)) | |
frame_indices = list(range(0, total_frames, sample_interval)) | |
frames = vr.get_batch(frame_indices).asnumpy() | |
else: | |
frames = vr.get_batch(list(range(len(vr)))).asnumpy() | |
frames = frames[:49] | |
resized_frames = [cv2.resize(frame, (720, 480)) for frame in frames] | |
frames = np.array(resized_frames) | |
init_start = time.time() | |
inference_state = predictor.init_state(images=frames, offload_video_to_cpu=True, async_loading_frames=True) | |
init_time = time.time() - init_start | |
print(f"Inference state initialization took {init_time:.2f}s") | |
fps = 8 | |
image_size = (frames[0].shape[0], frames[0].shape[1]) | |
video_state = { | |
"user_name": user_name, | |
"video_name": os.path.split(video_path)[-1], | |
"origin_images": frames, | |
"painted_images": frames.copy(), | |
"masks": [np.zeros((frames[0].shape[0], frames[0].shape[1]), np.uint8)] * len(frames), | |
"logits": [None] * len(frames), | |
"select_frame_number": 0, | |
"fps": fps, | |
"ann_obj_id": 0 | |
} | |
video_info = f"Video Name: {video_state['video_name']}, FPS: {video_state['fps']}, Total Frames: {len(frames)}, Image Size: {image_size}" | |
video_input_path = generate_video_from_frames(frames, output_path=f"{GRADIO_TEMP_DIR}/inpaint/original_{video_state['video_name']}", fps=fps) | |
return (gr.update(visible=True), gr.update(visible=True), inference_state, video_state, video_info, | |
video_state["origin_images"][0], gr.update(visible=False, maximum=len(frames), value=1, interactive=True), | |
gr.update(visible=False, maximum=len(frames), value=len(frames), interactive=True), gr.update(visible=True, interactive=True), | |
gr.update(visible=True, interactive=True), gr.update(visible=True, interactive=True), gr.update(visible=True), | |
gr.update(visible=True, interactive=False), create_status("Upload video complete. Ready to select targets.", StatusMessage.SUCCESS), video_input_path) | |
def select_template(image_selection_slider, video_state, interactive_state, previous_status): | |
image_selection_slider -= 1 | |
video_state["select_frame_number"] = image_selection_slider | |
return video_state["painted_images"][image_selection_slider], video_state, interactive_state, update_status(previous_status, f"Set tracking start at frame {image_selection_slider}.", StatusMessage.INFO) | |
def get_end_number(track_pause_number_slider, video_state, interactive_state, previous_status): | |
interactive_state["track_end_number"] = track_pause_number_slider | |
return video_state["painted_images"][track_pause_number_slider], interactive_state, update_status(previous_status, f"Set tracking finish at frame {track_pause_number_slider}.", StatusMessage.INFO) | |
def sam_refine(inference_state, video_state, point_prompt, click_state, interactive_state, evt, previous_status): | |
ann_obj_id = 0 | |
ann_frame_idx = video_state["select_frame_number"] | |
if point_prompt == "Positive": | |
coordinate = f"[[{evt.index[0]},{evt.index[1]},1]]" | |
interactive_state["positive_click_times"] += 1 | |
else: | |
coordinate = f"[[{evt.index[0]},{evt.index[1]},0]]" | |
interactive_state["negative_click_times"] += 1 | |
print(f"sam_refine, point_prompt: {point_prompt}, click_state: {click_state}") | |
prompt = {"prompt_type":["click"], "input_point": click_state[0], "input_label": click_state[1], "multimask_output": "True"} | |
points = np.array(prompt["input_point"]) | |
labels = np.array(prompt["input_label"]) | |
height, width = video_state["origin_images"][0].shape[0:2] | |
for i in range(len(points)): | |
points[i, 0] = int(points[i, 0]) | |
points[i, 1] = int(points[i, 1]) | |
print(f"sam_refine points: {points}, labels: {labels}") | |
frame_idx, obj_ids, mask = predictor.add_new_points(inference_state=inference_state, frame_idx=ann_frame_idx, obj_id=ann_obj_id, points=points, labels=labels) | |
mask_ = mask.cpu().squeeze().detach().numpy() | |
mask_[mask_ <= 0] = 0 | |
mask_[mask_ > 0] = 1 | |
org_image = video_state["origin_images"][video_state["select_frame_number"]] | |
mask_ = cv2.resize(mask_, (width, height)) | |
mask_ = mask_[:, :, None] | |
mask_[mask_ > 0.5] = 1 | |
mask_[mask_ <= 0.5] = 0 | |
color = 63 * np.ones((height, width, 3)) * np.array([[[np.random.randint(5), np.random.randint(5), np.random.randint(5)]]]) | |
painted_image = np.uint8((1 - 0.5 * mask_) * org_image + 0.5 * mask_ * color) | |
video_state["masks"][video_state["select_frame_number"]] = mask_ | |
video_state["painted_images"][video_state["select_frame_number"]] = painted_image | |
return painted_image, video_state, interactive_state, update_status(previous_status, "Segmentation updated. Add more points or continue tracking.", StatusMessage.SUCCESS) | |
def clear_click(inference_state, video_state, click_state, previous_status): | |
predictor.reset_state(inference_state) | |
click_state = [[], []] | |
template_frame = video_state["origin_images"][video_state["select_frame_number"]] | |
return inference_state, template_frame, click_state, update_status(previous_status, "Click history cleared.", StatusMessage.INFO) | |
def vos_tracking_video(inference_state, video_state, interactive_state, previous_status): | |
height, width = video_state["origin_images"][0].shape[0:2] | |
masks = [] | |
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state): | |
mask = np.zeros([480, 720, 1]) | |
for i in range(len(out_mask_logits)): | |
out_mask = out_mask_logits[i].cpu().squeeze().detach().numpy() | |
out_mask[out_mask > 0] = 1 | |
out_mask[out_mask <= 0] = 0 | |
out_mask = out_mask[:, :, None] | |
mask += out_mask | |
mask = cv2.resize(mask, (width, height)) | |
mask = mask[:, :, None] | |
mask[mask > 0.5] = 1 | |
mask[mask < 1] = 0 | |
mask = scipy.ndimage.binary_dilation(mask, iterations=6) | |
masks.append(mask) | |
masks = np.array(masks) | |
if interactive_state.get("track_end_number") is not None: | |
video_state["masks"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = masks | |
org_images = video_state["origin_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]] | |
color = 255 * np.ones((1, org_images.shape[-3], org_images.shape[-2], 3)) * np.array([[[[0, 1, 1]]]]) | |
painted_images = np.uint8((1 - 0.5 * masks) * org_images + 0.5 * masks * color) | |
video_state["painted_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = painted_images | |
else: | |
video_state["masks"] = masks | |
org_images = video_state["origin_images"] | |
color = 255 * np.ones((1, org_images.shape[-3], org_images.shape[-2], 3)) * np.array([[[[0, 1, 1]]]]) | |
painted_images = np.uint8((1 - 0.5 * masks) * org_images + 0.5 * masks * color) | |
video_state["painted_images"] = painted_images | |
video_output = generate_video_from_frames(video_state["painted_images"], output_path=f"{GRADIO_TEMP_DIR}/track/{video_state['video_name']}", fps=video_state["fps"]) | |
interactive_state["inference_times"] += 1 | |
print(f"vos_tracking_video output: {video_output}") | |
return inference_state, video_output, video_state, interactive_state, update_status(previous_status, "Tracking complete.", StatusMessage.SUCCESS), gr.Button.update(interactive=True), gr.Button.update(interactive=True), gr.Button.update(interactive=True), gr.Button.update(interactive=True) | |
def inpaint_video(video_state, video_caption, target_region_frame1_caption, interactive_state, previous_status, seed_param, cfg_scale, dilate_size): | |
seed = int(seed_param) if int(seed_param) >= 0 else np.random.randint(0, 2**32 - 1) | |
validation_images = video_state["origin_images"] | |
validation_masks = video_state["masks"] | |
validation_masks = [np.squeeze(mask) for mask in validation_masks] | |
validation_masks = [(mask > 0).astype(np.uint8) * 255 for mask in validation_masks] | |
validation_masks = [np.stack([m, m, m], axis=-1) for m in validation_masks] | |
validation_images = [Image.fromarray(np.uint8(img)).convert('RGB') for img in validation_images] | |
validation_masks = [Image.fromarray(np.uint8(mask)).convert('RGB') for mask in validation_masks] | |
validation_images = [img.resize((720, 480)) for img in validation_images] | |
validation_masks = [mask.resize((720, 480)) for mask in validation_masks] | |
print("Inpainting: video_caption=", video_caption) | |
images = generate_frames( | |
images=validation_images, | |
masks=validation_masks, | |
pipe=validation_pipeline, | |
pipe_img_inpainting=validation_pipeline_img, | |
prompt=str(video_caption), | |
image_inpainting_prompt=str(target_region_frame1_caption), | |
seed=seed, | |
cfg_scale=float(cfg_scale), | |
dilate_size=int(dilate_size) | |
) | |
images = (images * 255).astype(np.uint8) | |
video_output = generate_video_from_frames(images, output_path=f"{GRADIO_TEMP_DIR}/inpaint/{video_state['video_name']}", fps=8) | |
print(f"Inpaint_video output: {video_output}") | |
return video_output, update_status(previous_status, "Inpainting complete.", StatusMessage.SUCCESS) | |
def generate_video_from_frames(frames, output_path, fps=8): | |
frames_tensor = torch.from_numpy(np.asarray(frames)).to(torch.uint8) | |
if not os.path.exists(os.path.dirname(output_path)): | |
os.makedirs(os.path.dirname(output_path)) | |
torchvision.io.write_video(output_path, frames_tensor, fps=fps, video_codec="libx264") | |
return output_path | |
def process_example(video_input, video_caption, target_region_frame1_caption, prompt, click_state): | |
if video_input is None or video_input == "": | |
return (gr.update(value=""), gr.update(value=""), init_state(), | |
{"user_name": "", "video_name": "", "origin_images": None, "painted_images": None, "masks": None, "inpaint_masks": None, "logits": None, "select_frame_number": 0, "fps": 8, "ann_obj_id": 0}, | |
"", None, | |
gr.update(value=1, visible=False, interactive=False), | |
gr.update(value=1, visible=False, interactive=False), | |
gr.update(value="Positive", interactive=False), | |
gr.update(visible=True, interactive=False), | |
gr.update(visible=True, interactive=False), | |
gr.update(value=None), | |
gr.update(visible=True, interactive=False), | |
create_status("Reset complete. Ready for new input.", StatusMessage.INFO), | |
gr.update(value=None)) | |
video_state = gr.State({ | |
"user_name": "", | |
"video_name": "", | |
"origin_images": None, | |
"painted_images": None, | |
"masks": None, | |
"inpaint_masks": None, | |
"logits": None, | |
"select_frame_number": 0, | |
"fps": 8, | |
"ann_obj_id": 0 | |
}) | |
results = get_frames_from_video(video_input, video_state) | |
if click_state[0] and click_state[1]: | |
print("Example detected, executing sam_refine") | |
(video_caption, target_region_frame1_caption, inference_state, video_state, video_info, template_frame, image_selection_slider, track_pause_number_slider, point_prompt, clear_button, tracking_button, video_output, inpaint_button, run_status, video_input) = results | |
class MockEvent: | |
def __init__(self, points, point_idx=0): | |
self.index = points[point_idx] | |
for i_click in range(len(click_state[0])): | |
evt = MockEvent(click_state[0], i_click) | |
prompt_type = "Positive" if click_state[1][i_click] == 1 else "Negative" | |
template_frame, video_state, interactive_state, run_status = sam_refine(inference_state, video_state, prompt_type, click_state, {"inference_times": 0, "negative_click_times": 0, "positive_click_times": 0, "mask_save": False, "multi_mask": {"mask_names": [], "masks": []}, "track_end_number": None}, evt, run_status) | |
return (video_caption, target_region_frame1_caption, inference_state, video_state, video_info, template_frame, image_selection_slider, track_pause_number_slider, point_prompt, clear_button, tracking_button, video_output, inpaint_button, run_status, video_input) | |
return results | |
def reset_all(): | |
return (gr.update(value=None), gr.update(value=""), gr.update(value=""), init_state(), | |
{"user_name": "", "video_name": "", "origin_images": None, "painted_images": None, "masks": None, "inpaint_masks": None, "logits": None, "select_frame_number": 0, "fps": 8, "ann_obj_id": 0}, | |
{"inference_times": 0, "negative_click_times": 0, "positive_click_times": 0, "mask_save": False, "multi_mask": {"mask_names": [], "masks": []}, "track_end_number": None}, | |
[[], []], None, gr.update(visible=True, interactive=True), "", | |
gr.update(value=1, visible=False, interactive=False), gr.update(value=1, visible=False, interactive=False), | |
gr.update(value="Positive", interactive=False), gr.Button.update(interactive=False), | |
gr.Button.update(interactive=False), gr.Button.update(interactive=False), | |
gr.Button.update(interactive=False), gr.Button.update(interactive=False), | |
gr.Button.update(interactive=False), gr.Number.update(value=42), | |
gr.Slider.update(value=6.0), gr.Slider.update(value=16), | |
create_status("Reset complete. Ready for new input.", StatusMessage.INFO)) | |
############################### | |
# Build Gradio Interface | |
############################### | |
title = """<p><h1 align="center">VideoPainter</h1></p>""" | |
with gr.Blocks() as iface: | |
gr.HTML(""" | |
<div style="text-align: center;"> | |
<h1 style="color: #333;">ποΈ VideoPainter</h1> | |
<h3 style="color: #333;">Any-length Video Inpainting and Editing with Plug-and-Play Context Control</h3> | |
<p style="font-weight: bold;"> | |
<a href="https://yxbian23.github.io/project/video-painter/">π Project Page</a> | | |
<a href="https://arxiv.org/abs/2503.05639">π ArXiv Preprint</a> | | |
<a href="https://github.com/TencentARC/VideoPainter">π§βπ» Github Repository</a> | |
</p> | |
</div> | |
""") | |
click_state = gr.State([[], []]) | |
interactive_state = gr.State({ | |
"inference_times": 0, | |
"negative_click_times": 0, | |
"positive_click_times": 0, | |
"mask_save": False, | |
"multi_mask": {"mask_names": [], "masks": []}, | |
"track_end_number": None, | |
}) | |
video_state = gr.State({ | |
"user_name": "", | |
"video_name": "", | |
"origin_images": None, | |
"painted_images": None, | |
"masks": None, | |
"inpaint_masks": None, | |
"logits": None, | |
"select_frame_number": 0, | |
"fps": 8, | |
"ann_obj_id": 0 | |
}) | |
inference_state = init_state() | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
video_input = gr.Video(label="Original Video", visible=True) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
template_frame = gr.Image(type="pil", interactive=True, elem_id="template_frame", visible=True) | |
with gr.Column(scale=1): | |
with gr.Accordion("Segmentation Point Prompt", open=True): | |
point_prompt = gr.Radio(choices=["Positive", "Negative"], value="Positive", label="Point Type", interactive=False, visible=True) | |
clear_button_click = gr.Button(value="Clear clicks", interactive=False, visible=True) | |
gr.Markdown("β¨ Positive: Include target region. <br> β¨ Negative: Exclude target region.") | |
image_selection_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Track start frame", visible=False, interactive=False) | |
track_pause_number_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Track end frame", visible=False, interactive=False) | |
video_output = gr.Video(label="Generated Video", visible=True) | |
with gr.Row(): | |
tracking_video_predict_button = gr.Button(value="Tracking", interactive=False, visible=True) | |
inpaint_video_predict_button = gr.Button(value="Inpainting", interactive=False, visible=True) | |
reset_button = gr.Button(value="Reset All", interactive=True, visible=True) | |
with gr.Column(): | |
with gr.Accordion("Global Video Caption", open=True): | |
video_caption = gr.Textbox(label="Global Video Caption", placeholder="Input global video caption...", interactive=True, visible=True, max_lines=5, show_copy_button=True) | |
with gr.Row(): | |
gr.Markdown("β¨ Enhance prompt using GPT-4o (optional).") | |
enhance_button = gr.Button("β¨ Enhance Prompt(Optional)", interactive=False) | |
with gr.Accordion("Target Object Caption", open=True): | |
target_region_frame1_caption = gr.Textbox(label="Target Object Caption", placeholder="Input target object caption...", interactive=True, visible=True, max_lines=5, show_copy_button=True) | |
with gr.Row(): | |
gr.Markdown("β¨ Generate target caption (optional).") | |
enhance_target_region_frame1_button = gr.Button("β¨ Target Prompt Generation (Optional)", interactive=False) | |
with gr.Accordion("Editing Instruction", open=False): | |
gr.Markdown("β¨ Modify captions based on your instruction using GPT-4o.") | |
with gr.Row(): | |
editing_instruction = gr.Textbox(label="Editing Instruction", placeholder="Input editing instruction...", interactive=True, visible=True, max_lines=5, show_copy_button=True) | |
enhance_editing_instruction_button = gr.Button("β¨ Modify Caption(For Editing)", interactive=False) | |
with gr.Accordion("Advanced Sampling Settings", open=False): | |
cfg_scale = gr.Slider(value=6.0, label="Classifier-Free Guidance Scale", minimum=1, maximum=10, step=0.1, interactive=True) | |
seed_param = gr.Number(label="Inference Seed (>=0)", interactive=True, value=42) | |
dilate_size = gr.Slider(value=16, label="Mask Dilate Size", minimum=0, maximum=32, step=1, interactive=True) | |
video_info = gr.Textbox(label="Video Info", visible=True, interactive=False) | |
model_type = gr.Textbox(label="Type", placeholder="Model type...", interactive=True, visible=False) | |
notes_accordion = gr.Accordion("Notes", open=False) | |
with notes_accordion: | |
gr.HTML("<p style='font-size: 1.1em;'>π§ Reminder: VideoPainter may produce unexpected outputs. Adjust settings if needed.</p>") | |
run_status = gr.HighlightedText(value=[("", "")], visible=True, label="Operation Status", show_label=True, | |
color_map={"Success": "green", "Error": "red", "Warning": "orange", "Info": "blue"}) | |
with gr.Row(): | |
examples = gr.Examples(label="Quick Examples", examples=EXAMPLES, | |
inputs=[video_input, video_caption, target_region_frame1_caption, point_prompt, model_type, editing_instruction, seed_param, cfg_scale, dilate_size, click_state], | |
examples_per_page=20, cache_examples=False) | |
video_input.change(fn=process_example, inputs=[video_input, video_caption, target_region_frame1_caption, point_prompt, click_state], | |
outputs=[video_caption, target_region_frame1_caption, inference_state, video_state, video_info, | |
template_frame, image_selection_slider, track_pause_number_slider, point_prompt, clear_button_click, | |
tracking_video_predict_button, video_output, inpaint_video_predict_button, run_status, video_input]) | |
image_selection_slider.release(fn=select_template, inputs=[image_selection_slider, video_state, interactive_state, run_status], | |
outputs=[template_frame, video_state, interactive_state, run_status]) | |
track_pause_number_slider.release(fn=get_end_number, inputs=[track_pause_number_slider, video_state, interactive_state, run_status], | |
outputs=[template_frame, interactive_state, run_status]) | |
template_frame.select(fn=sam_refine, inputs=[inference_state, video_state, point_prompt, click_state, interactive_state, run_status], | |
outputs=[template_frame, video_state, interactive_state, run_status]) | |
tracking_video_predict_button.click(fn=vos_tracking_video, inputs=[inference_state, video_state, interactive_state, run_status], | |
outputs=[inference_state, video_output, video_state, interactive_state, run_status, | |
inpaint_video_predict_button, enhance_button, enhance_target_region_frame1_button, enhance_editing_instruction_button, notes_accordion]) | |
inpaint_video_predict_button.click(fn=inpaint_video, inputs=[video_state, video_caption, target_region_frame1_caption, interactive_state, run_status, seed_param, cfg_scale, dilate_size], | |
outputs=[video_output, run_status], api_name=False, show_progress="full") | |
def enhance_prompt_func(video_caption): | |
return video_caption # Replace with your convert_prompt() if available | |
def enhance_target_region_frame1_prompt_func(target_region_frame1_caption, video_state): | |
return target_region_frame1_caption # Replace with your convert_prompt_target_region_frame1() if available | |
def enhance_editing_instruction_prompt_func(editing_instruction, video_caption, target_region_frame1_caption, video_state): | |
return video_caption, target_region_frame1_caption # Replace with your convert_prompt_editing_instruction() if available | |
enhance_button.click(enhance_prompt_func, inputs=[video_caption], outputs=[video_caption]) | |
enhance_target_region_frame1_button.click(enhance_target_region_frame1_prompt_func, inputs=[target_region_frame1_caption, video_state], outputs=[target_region_frame1_caption]) | |
enhance_editing_instruction_button.click(enhance_editing_instruction_prompt_func, inputs=[editing_instruction, video_caption, target_region_frame1_caption, video_state], | |
outputs=[video_caption, target_region_frame1_caption]) | |
video_input.clear(fn=lambda: (gr.update(visible=True), gr.update(visible=True), init_state(), | |
{"user_name": "", "video_name": "", "origin_images": None, "painted_images": None, "masks": None, "inpaint_masks": None, "logits": None, "select_frame_number": 0, "fps": 8, "ann_obj_id": 0}, | |
{"inference_times": 0, "negative_click_times": 0, "positive_click_times": 0, "mask_save": False, "multi_mask": {"mask_names": [], "masks": []}, "track_end_number": 0}, | |
[[], []], None, None, | |
gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), | |
gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True, value=[]), | |
gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), | |
gr.Button.update(interactive=False), gr.Button.update(interactive=False), gr.Button.update(interactive=False)), | |
outputs=[video_caption, target_region_frame1_caption, inference_state, video_state, interactive_state, click_state, video_output, template_frame, tracking_video_predict_button, image_selection_slider, track_pause_number_slider, point_prompt, clear_button_click, template_frame, tracking_video_predict_button, video_output, inpaint_video_predict_button, run_status], queue=False, show_progress=False) | |
clear_button_click.click(fn=clear_click, inputs=[inference_state, video_state, click_state, run_status], | |
outputs=[inference_state, template_frame, click_state, run_status]) | |
reset_button.click(fn=reset_all, inputs=[], outputs=[video_input, video_caption, target_region_frame1_caption, inference_state, video_state, interactive_state, click_state, video_output, template_frame, video_info, image_selection_slider, track_pause_number_slider, point_prompt, clear_button_click, tracking_video_predict_button, inpaint_video_predict_button, enhance_button, enhance_target_region_frame1_button, enhance_editing_instruction_button, seed_param, cfg_scale, dilate_size, run_status]) | |
iface.queue().launch(share=False) |