Spaces:
Runtime error
Runtime error
File size: 41,088 Bytes
0b3b09b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 |
#!/usr/bin/env python
"""
This is the full application script for VideoPainter.
It first checks for and (if necessary) installs missing dependencies.
When installing the custom packages (diffusers and app),
it uses the flag --no-build-isolation so that the installed torch is seen.
If the custom diffusers package fails to provide the expected submodules,
the script will force-install the official diffusers package.
"""
import os
import sys
import subprocess
import warnings
import time
import importlib
warnings.filterwarnings("ignore")
# Set Gradio temp directory via environment variable
GRADIO_TEMP_DIR = "./tmp_gradio"
os.makedirs(GRADIO_TEMP_DIR, exist_ok=True)
os.makedirs(f"{GRADIO_TEMP_DIR}/track", exist_ok=True)
os.makedirs(f"{GRADIO_TEMP_DIR}/inpaint", exist_ok=True)
os.environ["GRADIO_TEMP_DIR"] = GRADIO_TEMP_DIR
def install_package(package_spec):
print(f"Installing {package_spec} ...")
try:
subprocess.check_call([sys.executable, "-m", "pip", "install", package_spec])
print(f"Successfully installed {package_spec}")
return True
except Exception as e:
print(f"Failed to install {package_spec}: {e}")
return False
print("Checking for PyTorch ...")
try:
import torch
print("PyTorch is already installed.")
except ImportError:
print("PyTorch not found, installing...")
if not install_package("torch>=2.0.0 torchvision>=0.15.0"):
print("Failed to install PyTorch, which is required.")
sys.exit(1)
# First, install wheel package which is needed for bdist_wheel command
install_package("wheel")
# Install ninja for faster builds
install_package("ninja")
# Check and install other critical dependencies
critical_dependencies = [
("hydra", "hydra-core>=1.3.2"),
("omegaconf", "omegaconf>=2.3.0"),
("decord", "decord>=0.6.0"),
("diffusers", "diffusers>=0.24.0"), # Will be replaced with custom one
("transformers", "transformers>=4.35.0"),
("gradio", "gradio>=4.0.0"),
("numpy", "numpy>=1.24.0"),
("cv2", "opencv-python>=4.8.0"),
("PIL", "Pillow>=10.0.0"),
("scipy", "scipy>=1.11.0"),
("einops", "einops>=0.7.0"),
("onnxruntime", "onnxruntime>=1.16.0"),
("timm", "timm>=0.9.0"),
("safetensors", "safetensors>=0.4.0"),
("moviepy", "moviepy>=1.0.3"),
("imageio", "imageio>=2.30.0"),
("tqdm", "tqdm>=4.64.0"),
("openai", "openai>=1.5.0"),
("psutil", "psutil>=5.9.0")
]
for mod_name, pkg_spec in critical_dependencies:
try:
if mod_name == "PIL":
from PIL import Image
elif mod_name == "cv2":
import cv2
else:
__import__(mod_name)
print(f"{mod_name} is already installed.")
except ImportError:
print(f"{mod_name} not found, installing {pkg_spec} ...")
install_package(pkg_spec)
print("Setting up environment...")
# Clone the VideoPainter repository if not present
if not os.path.exists("VideoPainter"):
print("Cloning VideoPainter repository...")
os.system("git clone https://github.com/TencentARC/VideoPainter.git")
# Add necessary paths to sys.path
sys.path.append(os.path.join(os.getcwd(), "VideoPainter"))
sys.path.append(os.path.join(os.getcwd(), "VideoPainter/app"))
sys.path.append(os.path.join(os.getcwd(), "app"))
sys.path.append(".")
# Ensure custom diffusers is importable
if os.path.exists("VideoPainter/diffusers"):
print("Installing custom diffusers...")
# First, remove any existing diffusers installation
subprocess.call([sys.executable, "-m", "pip", "uninstall", "-y", "diffusers"])
# Copy the files directly into the site-packages directory instead of using pip install -e
import site
site_packages = site.getsitepackages()[0]
diffusers_src = os.path.join(os.getcwd(), "VideoPainter/diffusers/src/diffusers")
diffusers_dst = os.path.join(site_packages, "diffusers")
print(f"Copying diffusers from {diffusers_src} to {diffusers_dst}")
if not os.path.exists(diffusers_dst):
os.makedirs(diffusers_dst, exist_ok=True)
# Copy diffusers files directly
os.system(f"cp -r {diffusers_src}/* {diffusers_dst}/")
# Also add VideoPainter/diffusers/src to sys.path
sys.path.append(os.path.join(os.getcwd(), "VideoPainter/diffusers/src"))
# Verify the custom model is available
try:
# Force reload diffusers to pick up the new files
if "diffusers" in sys.modules:
del sys.modules["diffusers"]
import diffusers
print(f"Diffusers version: {diffusers.__version__}")
print(f"Available modules in diffusers: {dir(diffusers)}")
# Check if models directory exists in custom diffusers
models_dir = os.path.join(diffusers_dst, "models")
if os.path.exists(models_dir):
print(f"Models in diffusers: {os.listdir(models_dir)}")
except Exception as e:
print(f"Error verifying diffusers installation: {e}")
# Copy the app directory if needed
if not os.path.exists("app"):
os.makedirs("app", exist_ok=True)
print("Copying VideoPainter/app to local app directory...")
os.system("cp -r VideoPainter/app/* app/")
# Don't try to install app package, just add to path
print("Adding app directory to Python path...")
app_path = os.path.join(os.getcwd(), "app")
sys.path.insert(0, app_path)
# Insert the VideoPainter path at the beginning of sys.path to ensure it takes precedence
sys.path.insert(0, os.path.join(os.getcwd(), "VideoPainter"))
print("Importing standard modules and dependencies ...")
try:
import gradio as gr
import cv2
import numpy as np
import scipy
import torchvision
from PIL import Image
from huggingface_hub import snapshot_download
from decord import VideoReader
except ImportError as e:
print(f"Error importing basic modules: {e}")
sys.exit(1)
# Import specialized modules with better error handling
try:
# Import our custom modules
from sam2.build_sam import build_sam2_video_predictor
# Force reload of diffusers after direct copy
if "diffusers" in sys.modules:
del sys.modules["diffusers"]
# Now import diffusers with explicit path to the files we need
sys.path.insert(0, os.path.join(os.getcwd(), "VideoPainter/app"))
# Import utils after setting up correct paths
from utils import load_model, generate_frames
print("All modules imported successfully!")
except ImportError as e:
print(f"Error importing specialized modules: {e}")
print("Paths:", sys.path)
# Try to diagnose and fix the specific issue
if "CogvideoXBranchModel" in str(e):
print("Trying to fix missing CogvideoXBranchModel...")
# Check if the model file exists in the repository
branch_model_file = "VideoPainter/diffusers/src/diffusers/models/cogvideox_branch.py"
if os.path.exists(branch_model_file):
print(f"Found branch model file at {branch_model_file}")
# Manually import the module
import sys
sys.path.insert(0, os.path.join(os.getcwd(), "VideoPainter/diffusers/src"))
# Add the import to __init__.py if not already there
init_file = os.path.join(site_packages, "diffusers/__init__.py")
with open(init_file, 'r') as f:
init_content = f.read()
if "CogvideoXBranchModel" not in init_content:
print("Adding CogvideoXBranchModel to diffusers/__init__.py")
with open(init_file, 'a') as f:
f.write("\nfrom .models.cogvideox_branch import CogvideoXBranchModel\n")
# Force reload diffusers
if "diffusers" in sys.modules:
del sys.modules["diffusers"]
# Try importing again
from utils import load_model, generate_frames
print("Fixed CogvideoXBranchModel import issue!")
else:
print(f"Could not find {branch_model_file}")
sys.exit(1)
else:
sys.exit(1)
###############################
# Begin Application Code (VideoPainter demo)
###############################
def download_models():
print("Downloading models from Hugging Face Hub...")
models = {
"CogVideoX-5b-I2V": "THUDM/CogVideoX-5b-I2V",
"VideoPainter": "TencentARC/VideoPainter"
}
model_paths = {}
os.makedirs("ckpt", exist_ok=True)
for name, repo_id in models.items():
print(f"Downloading {name} from {repo_id}...")
path = snapshot_download(repo_id=repo_id)
model_paths[name] = path
print(f"Downloaded {name} to {path}")
try:
flux_path = snapshot_download(repo_id="black-forest-labs/FLUX.1-Fill-dev")
model_paths["FLUX"] = flux_path
except Exception as e:
print(f"Failed to download FLUX model: {e}")
model_paths["FLUX"] = None
os.makedirs("ckpt/Grounded-SAM-2", exist_ok=True)
sam2_path = "ckpt/Grounded-SAM-2/sam2_hiera_large.pt"
if not os.path.exists(sam2_path):
print(f"Downloading SAM2 to {sam2_path}...")
os.system(f"wget -O {sam2_path} https://huggingface.co/spaces/sam2/sam2/resolve/main/sam2_hiera_large.pt")
model_paths["SAM2"] = sam2_path
return model_paths
print("Initializing application environment...")
if not os.path.exists("app"):
print("Setting up app folder from VideoPainter repository ...")
os.system("git clone https://github.com/TencentARC/VideoPainter.git")
os.makedirs("app", exist_ok=True)
os.system("cp -r VideoPainter/app/* app/")
os.system("pip install --no-build-isolation -e VideoPainter/diffusers")
os.chdir("app")
os.system("pip install --no-build-isolation -e .")
os.chdir("..")
sys.path.append("app")
sys.path.append(".")
# Import project modules (again, to be safe)
try:
from decord import VideoReader
from sam2.build_sam import build_sam2_video_predictor
from utils import load_model, generate_frames
except ImportError as e:
print(f"Failed to import specialized modules: {e}")
sys.exit(1)
# Set up OpenRouter / OpenAI (for caption generation)
try:
from openai import OpenAI
vlm_model = OpenAI(
api_key=os.getenv("OPENROUTER_API_KEY", ""),
base_url="https://openrouter.ai/api/v1"
)
print("OpenRouter client initialized successfully")
except Exception as e:
print(f"OpenRouter API not available: {e}")
class DummyModel:
def __getattr__(self, name):
return self
def __call__(self, *args, **kwargs):
return self
def create(self, *args, **kwargs):
class DummyResponse:
choices = [type('obj', (object,), {'message': type('obj', (object,), {'content': "OpenRouter API not available. Using default prompt."})})]
return DummyResponse()
vlm_model = DummyModel()
###############################
# Download models and initialize predictors
###############################
model_paths = download_models()
base_model_path = model_paths["CogVideoX-5b-I2V"]
videopainter_path = model_paths["VideoPainter"]
inpainting_branch = os.path.join(videopainter_path, "checkpoints/branch")
id_adapter = os.path.join(videopainter_path, "VideoPainterID/checkpoints")
img_inpainting_model = model_paths.get("FLUX")
sam2_checkpoint = "ckpt/Grounded-SAM-2/sam2_hiera_large.pt"
model_cfg = "sam2_hiera_l.yaml"
try:
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
print("Build SAM2 predictor done!")
validation_pipeline, validation_pipeline_img = load_model(
model_path=base_model_path,
inpainting_branch=inpainting_branch,
id_adapter=id_adapter,
img_inpainting_model=img_inpainting_model
)
print("Load model done!")
except Exception as e:
print(f"Error initializing models: {e}")
sys.exit(1)
###############################
# Helper functions & state definitions
###############################
EXAMPLES = [
[
"https://huggingface.co/spaces/TencentARC/VideoPainter/resolve/main/examples/ferry.mp4",
"A white ferry with red and blue accents, named 'COLONIA', cruises on a calm river...",
"White and red passenger ferry boat labeled 'COLONIA 6' with multiple windows, life buoys, and upper deck seating.",
"Positive",
"Inpaint",
"",
42,
6.0,
16,
[[[320, 240]], [1]],
],
[
"https://huggingface.co/spaces/TencentARC/VideoPainter/resolve/main/examples/street.mp4",
"A bustling city street at night illuminated by festive lights, a red double-decker bus...",
"The rear of a black car with illuminated red tail lights and a visible license plate.",
"Positive",
"Inpaint",
"",
42,
6.0,
16,
[[[200, 400]], [1]],
],
]
class StatusMessage:
INFO = "Info"
WARNING = "Warning"
ERROR = "Error"
SUCCESS = "Success"
def create_status(message, status_type=StatusMessage.INFO):
timestamp = time.strftime("%H:%M:%S")
return [("", ""), (f"[{timestamp}]: {message}\n", status_type)]
def update_status(previous_status, new_message, status_type=StatusMessage.INFO):
timestamp = time.strftime("%H:%M:%S")
history = previous_status[-3:]
history.append((f"[{timestamp}]: {new_message}\n", status_type))
return [("", "")] + history
def init_state(offload_video_to_cpu=False, offload_state_to_cpu=False):
inference_state = {}
inference_state["images"] = torch.zeros([1, 3, 100, 100])
inference_state["num_frames"] = 1
inference_state["offload_video_to_cpu"] = offload_video_to_cpu
inference_state["offload_state_to_cpu"] = offload_state_to_cpu
inference_state["video_height"] = 100
inference_state["video_width"] = 100
inference_state["device"] = torch.device("cuda")
inference_state["storage_device"] = torch.device("cpu") if offload_state_to_cpu else torch.device("cuda")
inference_state["point_inputs_per_obj"] = {}
inference_state["mask_inputs_per_obj"] = {}
inference_state["cached_features"] = {}
inference_state["constants"] = {}
inference_state["obj_id_to_idx"] = OrderedDict()
inference_state["obj_idx_to_id"] = OrderedDict()
inference_state["obj_ids"] = []
inference_state["output_dict"] = {"cond_frame_outputs": {}, "non_cond_frame_outputs": {}}
inference_state["output_dict_per_obj"] = {}
inference_state["temp_output_dict_per_obj"] = {}
inference_state["consolidated_frame_inds"] = {"cond_frame_outputs": set(), "non_cond_frame_outputs": set()}
inference_state["tracking_has_started"] = False
inference_state["frames_already_tracked"] = {}
inference_state = gr.State(inference_state)
return inference_state
# (All additional helper functions such as get_frames_from_video, sam_refine, vos_tracking_video,
# inpaint_video, generate_video_from_frames, process_example, reset_all, etc. are defined below.)
# For brevity, they are included here in full as in your original code.
def get_frames_from_video(video_input, video_state):
video_path = video_input
frames = []
user_name = time.time()
vr = VideoReader(video_path)
original_fps = vr.get_avg_fps()
if original_fps > 8:
total_frames = len(vr)
sample_interval = max(1, int(original_fps / 8))
frame_indices = list(range(0, total_frames, sample_interval))
frames = vr.get_batch(frame_indices).asnumpy()
else:
frames = vr.get_batch(list(range(len(vr)))).asnumpy()
frames = frames[:49]
resized_frames = [cv2.resize(frame, (720, 480)) for frame in frames]
frames = np.array(resized_frames)
init_start = time.time()
inference_state = predictor.init_state(images=frames, offload_video_to_cpu=True, async_loading_frames=True)
init_time = time.time() - init_start
print(f"Inference state initialization took {init_time:.2f}s")
fps = 8
image_size = (frames[0].shape[0], frames[0].shape[1])
video_state = {
"user_name": user_name,
"video_name": os.path.split(video_path)[-1],
"origin_images": frames,
"painted_images": frames.copy(),
"masks": [np.zeros((frames[0].shape[0], frames[0].shape[1]), np.uint8)] * len(frames),
"logits": [None] * len(frames),
"select_frame_number": 0,
"fps": fps,
"ann_obj_id": 0
}
video_info = f"Video Name: {video_state['video_name']}, FPS: {video_state['fps']}, Total Frames: {len(frames)}, Image Size: {image_size}"
video_input_path = generate_video_from_frames(frames, output_path=f"{GRADIO_TEMP_DIR}/inpaint/original_{video_state['video_name']}", fps=fps)
return (gr.update(visible=True), gr.update(visible=True), inference_state, video_state, video_info,
video_state["origin_images"][0], gr.update(visible=False, maximum=len(frames), value=1, interactive=True),
gr.update(visible=False, maximum=len(frames), value=len(frames), interactive=True), gr.update(visible=True, interactive=True),
gr.update(visible=True, interactive=True), gr.update(visible=True, interactive=True), gr.update(visible=True),
gr.update(visible=True, interactive=False), create_status("Upload video complete. Ready to select targets.", StatusMessage.SUCCESS), video_input_path)
def select_template(image_selection_slider, video_state, interactive_state, previous_status):
image_selection_slider -= 1
video_state["select_frame_number"] = image_selection_slider
return video_state["painted_images"][image_selection_slider], video_state, interactive_state, update_status(previous_status, f"Set tracking start at frame {image_selection_slider}.", StatusMessage.INFO)
def get_end_number(track_pause_number_slider, video_state, interactive_state, previous_status):
interactive_state["track_end_number"] = track_pause_number_slider
return video_state["painted_images"][track_pause_number_slider], interactive_state, update_status(previous_status, f"Set tracking finish at frame {track_pause_number_slider}.", StatusMessage.INFO)
def sam_refine(inference_state, video_state, point_prompt, click_state, interactive_state, evt, previous_status):
ann_obj_id = 0
ann_frame_idx = video_state["select_frame_number"]
if point_prompt == "Positive":
coordinate = f"[[{evt.index[0]},{evt.index[1]},1]]"
interactive_state["positive_click_times"] += 1
else:
coordinate = f"[[{evt.index[0]},{evt.index[1]},0]]"
interactive_state["negative_click_times"] += 1
print(f"sam_refine, point_prompt: {point_prompt}, click_state: {click_state}")
prompt = {"prompt_type":["click"], "input_point": click_state[0], "input_label": click_state[1], "multimask_output": "True"}
points = np.array(prompt["input_point"])
labels = np.array(prompt["input_label"])
height, width = video_state["origin_images"][0].shape[0:2]
for i in range(len(points)):
points[i, 0] = int(points[i, 0])
points[i, 1] = int(points[i, 1])
print(f"sam_refine points: {points}, labels: {labels}")
frame_idx, obj_ids, mask = predictor.add_new_points(inference_state=inference_state, frame_idx=ann_frame_idx, obj_id=ann_obj_id, points=points, labels=labels)
mask_ = mask.cpu().squeeze().detach().numpy()
mask_[mask_ <= 0] = 0
mask_[mask_ > 0] = 1
org_image = video_state["origin_images"][video_state["select_frame_number"]]
mask_ = cv2.resize(mask_, (width, height))
mask_ = mask_[:, :, None]
mask_[mask_ > 0.5] = 1
mask_[mask_ <= 0.5] = 0
color = 63 * np.ones((height, width, 3)) * np.array([[[np.random.randint(5), np.random.randint(5), np.random.randint(5)]]])
painted_image = np.uint8((1 - 0.5 * mask_) * org_image + 0.5 * mask_ * color)
video_state["masks"][video_state["select_frame_number"]] = mask_
video_state["painted_images"][video_state["select_frame_number"]] = painted_image
return painted_image, video_state, interactive_state, update_status(previous_status, "Segmentation updated. Add more points or continue tracking.", StatusMessage.SUCCESS)
def clear_click(inference_state, video_state, click_state, previous_status):
predictor.reset_state(inference_state)
click_state = [[], []]
template_frame = video_state["origin_images"][video_state["select_frame_number"]]
return inference_state, template_frame, click_state, update_status(previous_status, "Click history cleared.", StatusMessage.INFO)
def vos_tracking_video(inference_state, video_state, interactive_state, previous_status):
height, width = video_state["origin_images"][0].shape[0:2]
masks = []
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state):
mask = np.zeros([480, 720, 1])
for i in range(len(out_mask_logits)):
out_mask = out_mask_logits[i].cpu().squeeze().detach().numpy()
out_mask[out_mask > 0] = 1
out_mask[out_mask <= 0] = 0
out_mask = out_mask[:, :, None]
mask += out_mask
mask = cv2.resize(mask, (width, height))
mask = mask[:, :, None]
mask[mask > 0.5] = 1
mask[mask < 1] = 0
mask = scipy.ndimage.binary_dilation(mask, iterations=6)
masks.append(mask)
masks = np.array(masks)
if interactive_state.get("track_end_number") is not None:
video_state["masks"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = masks
org_images = video_state["origin_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]]
color = 255 * np.ones((1, org_images.shape[-3], org_images.shape[-2], 3)) * np.array([[[[0, 1, 1]]]])
painted_images = np.uint8((1 - 0.5 * masks) * org_images + 0.5 * masks * color)
video_state["painted_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = painted_images
else:
video_state["masks"] = masks
org_images = video_state["origin_images"]
color = 255 * np.ones((1, org_images.shape[-3], org_images.shape[-2], 3)) * np.array([[[[0, 1, 1]]]])
painted_images = np.uint8((1 - 0.5 * masks) * org_images + 0.5 * masks * color)
video_state["painted_images"] = painted_images
video_output = generate_video_from_frames(video_state["painted_images"], output_path=f"{GRADIO_TEMP_DIR}/track/{video_state['video_name']}", fps=video_state["fps"])
interactive_state["inference_times"] += 1
print(f"vos_tracking_video output: {video_output}")
return inference_state, video_output, video_state, interactive_state, update_status(previous_status, "Tracking complete.", StatusMessage.SUCCESS), gr.Button.update(interactive=True), gr.Button.update(interactive=True), gr.Button.update(interactive=True), gr.Button.update(interactive=True)
def inpaint_video(video_state, video_caption, target_region_frame1_caption, interactive_state, previous_status, seed_param, cfg_scale, dilate_size):
seed = int(seed_param) if int(seed_param) >= 0 else np.random.randint(0, 2**32 - 1)
validation_images = video_state["origin_images"]
validation_masks = video_state["masks"]
validation_masks = [np.squeeze(mask) for mask in validation_masks]
validation_masks = [(mask > 0).astype(np.uint8) * 255 for mask in validation_masks]
validation_masks = [np.stack([m, m, m], axis=-1) for m in validation_masks]
validation_images = [Image.fromarray(np.uint8(img)).convert('RGB') for img in validation_images]
validation_masks = [Image.fromarray(np.uint8(mask)).convert('RGB') for mask in validation_masks]
validation_images = [img.resize((720, 480)) for img in validation_images]
validation_masks = [mask.resize((720, 480)) for mask in validation_masks]
print("Inpainting: video_caption=", video_caption)
images = generate_frames(
images=validation_images,
masks=validation_masks,
pipe=validation_pipeline,
pipe_img_inpainting=validation_pipeline_img,
prompt=str(video_caption),
image_inpainting_prompt=str(target_region_frame1_caption),
seed=seed,
cfg_scale=float(cfg_scale),
dilate_size=int(dilate_size)
)
images = (images * 255).astype(np.uint8)
video_output = generate_video_from_frames(images, output_path=f"{GRADIO_TEMP_DIR}/inpaint/{video_state['video_name']}", fps=8)
print(f"Inpaint_video output: {video_output}")
return video_output, update_status(previous_status, "Inpainting complete.", StatusMessage.SUCCESS)
def generate_video_from_frames(frames, output_path, fps=8):
frames_tensor = torch.from_numpy(np.asarray(frames)).to(torch.uint8)
if not os.path.exists(os.path.dirname(output_path)):
os.makedirs(os.path.dirname(output_path))
torchvision.io.write_video(output_path, frames_tensor, fps=fps, video_codec="libx264")
return output_path
def process_example(video_input, video_caption, target_region_frame1_caption, prompt, click_state):
if video_input is None or video_input == "":
return (gr.update(value=""), gr.update(value=""), init_state(),
{"user_name": "", "video_name": "", "origin_images": None, "painted_images": None, "masks": None, "inpaint_masks": None, "logits": None, "select_frame_number": 0, "fps": 8, "ann_obj_id": 0},
"", None,
gr.update(value=1, visible=False, interactive=False),
gr.update(value=1, visible=False, interactive=False),
gr.update(value="Positive", interactive=False),
gr.update(visible=True, interactive=False),
gr.update(visible=True, interactive=False),
gr.update(value=None),
gr.update(visible=True, interactive=False),
create_status("Reset complete. Ready for new input.", StatusMessage.INFO),
gr.update(value=None))
video_state = gr.State({
"user_name": "",
"video_name": "",
"origin_images": None,
"painted_images": None,
"masks": None,
"inpaint_masks": None,
"logits": None,
"select_frame_number": 0,
"fps": 8,
"ann_obj_id": 0
})
results = get_frames_from_video(video_input, video_state)
if click_state[0] and click_state[1]:
print("Example detected, executing sam_refine")
(video_caption, target_region_frame1_caption, inference_state, video_state, video_info, template_frame, image_selection_slider, track_pause_number_slider, point_prompt, clear_button, tracking_button, video_output, inpaint_button, run_status, video_input) = results
class MockEvent:
def __init__(self, points, point_idx=0):
self.index = points[point_idx]
for i_click in range(len(click_state[0])):
evt = MockEvent(click_state[0], i_click)
prompt_type = "Positive" if click_state[1][i_click] == 1 else "Negative"
template_frame, video_state, interactive_state, run_status = sam_refine(inference_state, video_state, prompt_type, click_state, {"inference_times": 0, "negative_click_times": 0, "positive_click_times": 0, "mask_save": False, "multi_mask": {"mask_names": [], "masks": []}, "track_end_number": None}, evt, run_status)
return (video_caption, target_region_frame1_caption, inference_state, video_state, video_info, template_frame, image_selection_slider, track_pause_number_slider, point_prompt, clear_button, tracking_button, video_output, inpaint_button, run_status, video_input)
return results
def reset_all():
return (gr.update(value=None), gr.update(value=""), gr.update(value=""), init_state(),
{"user_name": "", "video_name": "", "origin_images": None, "painted_images": None, "masks": None, "inpaint_masks": None, "logits": None, "select_frame_number": 0, "fps": 8, "ann_obj_id": 0},
{"inference_times": 0, "negative_click_times": 0, "positive_click_times": 0, "mask_save": False, "multi_mask": {"mask_names": [], "masks": []}, "track_end_number": None},
[[], []], None, gr.update(visible=True, interactive=True), "",
gr.update(value=1, visible=False, interactive=False), gr.update(value=1, visible=False, interactive=False),
gr.update(value="Positive", interactive=False), gr.Button.update(interactive=False),
gr.Button.update(interactive=False), gr.Button.update(interactive=False),
gr.Button.update(interactive=False), gr.Button.update(interactive=False),
gr.Button.update(interactive=False), gr.Number.update(value=42),
gr.Slider.update(value=6.0), gr.Slider.update(value=16),
create_status("Reset complete. Ready for new input.", StatusMessage.INFO))
###############################
# Build Gradio Interface
###############################
title = """<p><h1 align="center">VideoPainter</h1></p>"""
with gr.Blocks() as iface:
gr.HTML("""
<div style="text-align: center;">
<h1 style="color: #333;">ποΈ VideoPainter</h1>
<h3 style="color: #333;">Any-length Video Inpainting and Editing with Plug-and-Play Context Control</h3>
<p style="font-weight: bold;">
<a href="https://yxbian23.github.io/project/video-painter/">π Project Page</a> |
<a href="https://arxiv.org/abs/2503.05639">π ArXiv Preprint</a> |
<a href="https://github.com/TencentARC/VideoPainter">π§βπ» Github Repository</a>
</p>
</div>
""")
click_state = gr.State([[], []])
interactive_state = gr.State({
"inference_times": 0,
"negative_click_times": 0,
"positive_click_times": 0,
"mask_save": False,
"multi_mask": {"mask_names": [], "masks": []},
"track_end_number": None,
})
video_state = gr.State({
"user_name": "",
"video_name": "",
"origin_images": None,
"painted_images": None,
"masks": None,
"inpaint_masks": None,
"logits": None,
"select_frame_number": 0,
"fps": 8,
"ann_obj_id": 0
})
inference_state = init_state()
with gr.Row():
with gr.Column():
with gr.Row():
video_input = gr.Video(label="Original Video", visible=True)
with gr.Row():
with gr.Column(scale=3):
template_frame = gr.Image(type="pil", interactive=True, elem_id="template_frame", visible=True)
with gr.Column(scale=1):
with gr.Accordion("Segmentation Point Prompt", open=True):
point_prompt = gr.Radio(choices=["Positive", "Negative"], value="Positive", label="Point Type", interactive=False, visible=True)
clear_button_click = gr.Button(value="Clear clicks", interactive=False, visible=True)
gr.Markdown("β¨ Positive: Include target region. <br> β¨ Negative: Exclude target region.")
image_selection_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Track start frame", visible=False, interactive=False)
track_pause_number_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Track end frame", visible=False, interactive=False)
video_output = gr.Video(label="Generated Video", visible=True)
with gr.Row():
tracking_video_predict_button = gr.Button(value="Tracking", interactive=False, visible=True)
inpaint_video_predict_button = gr.Button(value="Inpainting", interactive=False, visible=True)
reset_button = gr.Button(value="Reset All", interactive=True, visible=True)
with gr.Column():
with gr.Accordion("Global Video Caption", open=True):
video_caption = gr.Textbox(label="Global Video Caption", placeholder="Input global video caption...", interactive=True, visible=True, max_lines=5, show_copy_button=True)
with gr.Row():
gr.Markdown("β¨ Enhance prompt using GPT-4o (optional).")
enhance_button = gr.Button("β¨ Enhance Prompt(Optional)", interactive=False)
with gr.Accordion("Target Object Caption", open=True):
target_region_frame1_caption = gr.Textbox(label="Target Object Caption", placeholder="Input target object caption...", interactive=True, visible=True, max_lines=5, show_copy_button=True)
with gr.Row():
gr.Markdown("β¨ Generate target caption (optional).")
enhance_target_region_frame1_button = gr.Button("β¨ Target Prompt Generation (Optional)", interactive=False)
with gr.Accordion("Editing Instruction", open=False):
gr.Markdown("β¨ Modify captions based on your instruction using GPT-4o.")
with gr.Row():
editing_instruction = gr.Textbox(label="Editing Instruction", placeholder="Input editing instruction...", interactive=True, visible=True, max_lines=5, show_copy_button=True)
enhance_editing_instruction_button = gr.Button("β¨ Modify Caption(For Editing)", interactive=False)
with gr.Accordion("Advanced Sampling Settings", open=False):
cfg_scale = gr.Slider(value=6.0, label="Classifier-Free Guidance Scale", minimum=1, maximum=10, step=0.1, interactive=True)
seed_param = gr.Number(label="Inference Seed (>=0)", interactive=True, value=42)
dilate_size = gr.Slider(value=16, label="Mask Dilate Size", minimum=0, maximum=32, step=1, interactive=True)
video_info = gr.Textbox(label="Video Info", visible=True, interactive=False)
model_type = gr.Textbox(label="Type", placeholder="Model type...", interactive=True, visible=False)
notes_accordion = gr.Accordion("Notes", open=False)
with notes_accordion:
gr.HTML("<p style='font-size: 1.1em;'>π§ Reminder: VideoPainter may produce unexpected outputs. Adjust settings if needed.</p>")
run_status = gr.HighlightedText(value=[("", "")], visible=True, label="Operation Status", show_label=True,
color_map={"Success": "green", "Error": "red", "Warning": "orange", "Info": "blue"})
with gr.Row():
examples = gr.Examples(label="Quick Examples", examples=EXAMPLES,
inputs=[video_input, video_caption, target_region_frame1_caption, point_prompt, model_type, editing_instruction, seed_param, cfg_scale, dilate_size, click_state],
examples_per_page=20, cache_examples=False)
video_input.change(fn=process_example, inputs=[video_input, video_caption, target_region_frame1_caption, point_prompt, click_state],
outputs=[video_caption, target_region_frame1_caption, inference_state, video_state, video_info,
template_frame, image_selection_slider, track_pause_number_slider, point_prompt, clear_button_click,
tracking_video_predict_button, video_output, inpaint_video_predict_button, run_status, video_input])
image_selection_slider.release(fn=select_template, inputs=[image_selection_slider, video_state, interactive_state, run_status],
outputs=[template_frame, video_state, interactive_state, run_status])
track_pause_number_slider.release(fn=get_end_number, inputs=[track_pause_number_slider, video_state, interactive_state, run_status],
outputs=[template_frame, interactive_state, run_status])
template_frame.select(fn=sam_refine, inputs=[inference_state, video_state, point_prompt, click_state, interactive_state, run_status],
outputs=[template_frame, video_state, interactive_state, run_status])
tracking_video_predict_button.click(fn=vos_tracking_video, inputs=[inference_state, video_state, interactive_state, run_status],
outputs=[inference_state, video_output, video_state, interactive_state, run_status,
inpaint_video_predict_button, enhance_button, enhance_target_region_frame1_button, enhance_editing_instruction_button, notes_accordion])
inpaint_video_predict_button.click(fn=inpaint_video, inputs=[video_state, video_caption, target_region_frame1_caption, interactive_state, run_status, seed_param, cfg_scale, dilate_size],
outputs=[video_output, run_status], api_name=False, show_progress="full")
def enhance_prompt_func(video_caption):
return video_caption # Replace with your convert_prompt() if available
def enhance_target_region_frame1_prompt_func(target_region_frame1_caption, video_state):
return target_region_frame1_caption # Replace with your convert_prompt_target_region_frame1() if available
def enhance_editing_instruction_prompt_func(editing_instruction, video_caption, target_region_frame1_caption, video_state):
return video_caption, target_region_frame1_caption # Replace with your convert_prompt_editing_instruction() if available
enhance_button.click(enhance_prompt_func, inputs=[video_caption], outputs=[video_caption])
enhance_target_region_frame1_button.click(enhance_target_region_frame1_prompt_func, inputs=[target_region_frame1_caption, video_state], outputs=[target_region_frame1_caption])
enhance_editing_instruction_button.click(enhance_editing_instruction_prompt_func, inputs=[editing_instruction, video_caption, target_region_frame1_caption, video_state],
outputs=[video_caption, target_region_frame1_caption])
video_input.clear(fn=lambda: (gr.update(visible=True), gr.update(visible=True), init_state(),
{"user_name": "", "video_name": "", "origin_images": None, "painted_images": None, "masks": None, "inpaint_masks": None, "logits": None, "select_frame_number": 0, "fps": 8, "ann_obj_id": 0},
{"inference_times": 0, "negative_click_times": 0, "positive_click_times": 0, "mask_save": False, "multi_mask": {"mask_names": [], "masks": []}, "track_end_number": 0},
[[], []], None, None,
gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True),
gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True, value=[]),
gr.update(visible=True), gr.update(visible=True), gr.update(visible=True),
gr.Button.update(interactive=False), gr.Button.update(interactive=False), gr.Button.update(interactive=False)),
outputs=[video_caption, target_region_frame1_caption, inference_state, video_state, interactive_state, click_state, video_output, template_frame, tracking_video_predict_button, image_selection_slider, track_pause_number_slider, point_prompt, clear_button_click, template_frame, tracking_video_predict_button, video_output, inpaint_video_predict_button, run_status], queue=False, show_progress=False)
clear_button_click.click(fn=clear_click, inputs=[inference_state, video_state, click_state, run_status],
outputs=[inference_state, template_frame, click_state, run_status])
reset_button.click(fn=reset_all, inputs=[], outputs=[video_input, video_caption, target_region_frame1_caption, inference_state, video_state, interactive_state, click_state, video_output, template_frame, video_info, image_selection_slider, track_pause_number_slider, point_prompt, clear_button_click, tracking_video_predict_button, inpaint_video_predict_button, enhance_button, enhance_target_region_frame1_button, enhance_editing_instruction_button, seed_param, cfg_scale, dilate_size, run_status])
iface.queue().launch(share=False) |