Spaces:
Running
Running
File size: 8,669 Bytes
6e44ce9 9576521 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import streamlit as st
import pandas as pd
import os
import re
import preprocessor as p
import joblib
import base64
project_description = """
# Hotel Data Analysis Project
## Overview
I have completed a hotel data analysis project using an instant web scraper.
This project involved scraping hotel data and hotel reviews separately, cleaning the data,
concatenating it, and performing sentiment analysis on the DataFrame.
Additionally, I clustered the hotel reviews, applied sentiment analysis, and passed
those clusters to an LLM (Language Model) to extract strengths and weaknesses of hotels.
## Steps
### 1. Scraping Hotel Data
- Utilized an instant web scraper to collect hotel data.
- Scraped hotel data separately from hotel reviews.
### 2. Data Collection
- Collected hotel data and hotel reviews data separately for each hotel.
### 3. Data Cleaning
- Cleaned the collected data to remove any inconsistencies or errors.
- Applied preprocessing techniques to prepare the data for analysis.
### 4. Data Concatenation
- Concatenated the cleaned hotel data and hotel reviews data to create a unified dataset for analysis.
### 5. Sentiment Analysis
- Performed sentiment analysis on the concatenated DataFrame.
- Utilized the results to understand the overall sentiment of hotel reviews.
### 6. Clustering Hotel Reviews
- Clustered the hotel reviews based on their content to identify patterns and similarities.
### 7. Extracting Strengths and Weaknesses
- Passed the clustered reviews to an LLM (Language Model) to extract strengths and weaknesses of hotels.
- Used the extracted information to gain insights into customer perceptions.
## Conclusion
This project demonstrates the use of web scraping, data cleaning, sentiment analysis, and clustering techniques to analyze hotel data.
The extracted strengths and weaknesses provide valuable insights for hotel management to improve customer satisfaction and service quality.
"""
def create_download_link(df, filename):
csv = df.to_csv(index=False)
b64 = base64.b64encode(csv.encode()).decode()
href = f'<a href="data:file/csv;base64,{b64}" download="{filename}.csv">Download CSV file</a>'
return href
# Path to the directory containing CSV files
directory_path = r'hotel reviews'
# Get a list of CSV files in the directory
csv_files = [file for file in os.listdir(directory_path) if file.endswith('.csv')]
# Function to concatenate selected columns
def concatenate_columns(df, selected_columns):
concatenated_data = df[selected_columns[0]].tolist() + df[selected_columns[1]].tolist()
return pd.DataFrame({'ConcatenatedData': concatenated_data})
# Function to display selected dataset
def display_selected_dataset(selected_dataset):
dataset_path = os.path.join(directory_path, selected_dataset)
selected_df = pd.read_csv(dataset_path)
st.subheader(f'Dataset: {selected_dataset}')
st.write(selected_df)
def clean_tweets(series):
REPLACE_NO_SPACE = re.compile("[.;:!\'?,\"()\[\]]")
REPLACE_WITH_SPACE = re.compile("(<br\s*/><br\s*/>)|(\-)|(\/)")
tempArr = []
for line in series:
# Check if the value is NaN
if pd.isnull(line):
tempArr.append("")
continue
# Send to tweet_processor
tmpL = p.clean(line)
# Remove punctuation
tmpL = REPLACE_NO_SPACE.sub("", tmpL.lower())
# Replace specific characters with spaces
tmpL = REPLACE_WITH_SPACE.sub(" ", tmpL)
# Remove extra spaces
tmpL = " ".join(tmpL.split())
tempArr.append(tmpL)
return tempArr
# Streamlit app
def main():
# Create a menu bar
menu = st.sidebar.selectbox(
'Navigation',
['Home', 'collected hotel data', 'Display Hotel Data', 'Display hotel reviews Datasets', 'CSV Column Concatenation and Sentiment Analysis']
)
if menu == 'Home':
st.markdown(project_description)
elif menu == 'collected hotel data':
# Display DataFrame
df = pd.read_csv('chennai hotes.csv')
df1 = pd.read_csv('stream.csv')
st.subheader('Collected chennai hotes Data')
st.write(df)
st.subheader('preprocess applyed data')
st.write(df1)
elif menu == 'Display Hotel Data':
# Display hotel data
df = pd.read_csv('stream.csv')
css = """
<style>
.hotel-container {
border: 1px solid #ddd;
border-radius: 5px;
padding: 10px;
margin-bottom: 20px;
}
.hotel-image {
max-width: 100%;
border-radius: 5px;
margin-bottom: 10px;
}
.hotel-details {
font-size: 16px;
}
</style>
"""
st.markdown(css, unsafe_allow_html=True)
for index, row in df.iterrows():
st.markdown(f"""
<div class="hotel-container">
<img class="hotel-image" src="{row['hotel image']}">
<div class="hotel-details">
<h2>{row['Hotel Name']}</h2>
<p><strong>Rating:</strong> {row['rating']}</p>
<p><strong>Location:</strong> {row['location']} ({row['nearest places']})</p>
<p><strong>Website:</strong> <a href="{row['hotel website']}">Website link</a></p>
<p><strong>Number of Reviews:</strong> {row['number of reviewss 2']}</p>
<p><strong>Room Type:</strong> {row['room type']}</p>
<p><strong>Price:</strong> {row['price']}</p>
<p><strong>Strengths:</strong> {row['Strengths']}</p>
<p><strong>Weaknesses:</strong> {row['Weaknesses']}</p>
</div>
</div>
""", unsafe_allow_html=True)
elif menu == 'Display hotel reviews Datasets':
selected_dataset = st.selectbox('Select Dataset', csv_files)
if selected_dataset:
display_selected_dataset(selected_dataset)
elif menu == 'CSV Column Concatenation and Sentiment Analysis':
st.title('CSV Column Concatenation and Sentiment Analysis')
new_names = {
'a3332d346a': 'Reviewer Name',
'afac1f68d9': 'Reviewer Country',
'abf093bdfe': 'Room Type',
'abf093bdfe 2': 'Length of Stay',
'abf093bdfe 3': 'Review Date',
'abf093bdfe 4': 'Traveler Type',
'abf093bdfe 5': 'Second Review Date',
'f6431b446c': 'Overall Rating',
'a53cbfa6de': 'Positive Comments',
'a53cbfa6de 2': 'Negative Comments',
'a3332d346a 2': 'Hotel Response',
'a53cbfa6de 3': 'Hotel Response1'
}
# File upload
uploaded_file = st.file_uploader('Upload CSV file', type=['csv'])
if uploaded_file is not None:
df = pd.read_csv(uploaded_file)
df.rename(columns=new_names, inplace=True)
# Show original DataFrame
st.subheader('Original DataFrame:')
st.write(df)
# Select columns
selected_columns = st.multiselect('Select columns to concatenate', df.columns)
if st.button('Concatenate columns'):
if len(selected_columns) == 2:
# Concatenate columns
new_df = concatenate_columns(df, selected_columns)
# Remove null values
new_df = new_df.dropna()
# Drop duplicates
new_df = new_df.drop_duplicates()
# Reset the index
new_df = new_df.reset_index(drop=True)
# Clean tweets
new_df['CleanedData'] = clean_tweets(new_df['ConcatenatedData'])
# Load the saved model
loaded_model = joblib.load('sentiment_analysis_model.pkl')
# Apply sentiment analysis
new_df['Sentiment'] = loaded_model.predict(new_df['CleanedData'])
# Display concatenated, cleaned, and sentiment analyzed DataFrame
st.subheader('Concatenated, Cleaned, and Sentiment Analyzed DataFrame:')
st.write(new_df)
# Create download link
st.markdown(create_download_link(new_df, 'concatenated_sentiment_analyzed_data'), unsafe_allow_html=True)
else:
st.warning('Please select exactly two columns to concatenate.')
# Run the app
if __name__ == '__main__':
main()
|