Spaces:
Running
Running
redfernstech
commited on
Commit
•
9576521
1
Parent(s):
ae6a156
Update app.py
Browse files
app.py
CHANGED
@@ -1,89 +1,237 @@
|
|
1 |
import streamlit as st
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
import preprocessor as p
|
6 |
+
import joblib
|
7 |
+
import base64
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
project_description = """
|
12 |
+
# Hotel Data Analysis Project
|
13 |
+
|
14 |
+
## Overview
|
15 |
+
|
16 |
+
I have completed a hotel data analysis project using an instant web scraper.
|
17 |
+
This project involved scraping hotel data and hotel reviews separately, cleaning the data,
|
18 |
+
concatenating it, and performing sentiment analysis on the DataFrame.
|
19 |
+
Additionally, I clustered the hotel reviews, applied sentiment analysis, and passed
|
20 |
+
those clusters to an LLM (Language Model) to extract strengths and weaknesses of hotels.
|
21 |
+
|
22 |
+
## Steps
|
23 |
+
|
24 |
+
### 1. Scraping Hotel Data
|
25 |
+
|
26 |
+
- Utilized an instant web scraper to collect hotel data.
|
27 |
+
- Scraped hotel data separately from hotel reviews.
|
28 |
+
|
29 |
+
### 2. Data Collection
|
30 |
+
|
31 |
+
- Collected hotel data and hotel reviews data separately for each hotel.
|
32 |
+
|
33 |
+
### 3. Data Cleaning
|
34 |
+
|
35 |
+
- Cleaned the collected data to remove any inconsistencies or errors.
|
36 |
+
- Applied preprocessing techniques to prepare the data for analysis.
|
37 |
+
|
38 |
+
### 4. Data Concatenation
|
39 |
+
|
40 |
+
- Concatenated the cleaned hotel data and hotel reviews data to create a unified dataset for analysis.
|
41 |
+
|
42 |
+
### 5. Sentiment Analysis
|
43 |
+
|
44 |
+
- Performed sentiment analysis on the concatenated DataFrame.
|
45 |
+
- Utilized the results to understand the overall sentiment of hotel reviews.
|
46 |
+
|
47 |
+
### 6. Clustering Hotel Reviews
|
48 |
+
|
49 |
+
- Clustered the hotel reviews based on their content to identify patterns and similarities.
|
50 |
+
|
51 |
+
### 7. Extracting Strengths and Weaknesses
|
52 |
+
|
53 |
+
- Passed the clustered reviews to an LLM (Language Model) to extract strengths and weaknesses of hotels.
|
54 |
+
- Used the extracted information to gain insights into customer perceptions.
|
55 |
+
|
56 |
+
## Conclusion
|
57 |
+
|
58 |
+
This project demonstrates the use of web scraping, data cleaning, sentiment analysis, and clustering techniques to analyze hotel data.
|
59 |
+
The extracted strengths and weaknesses provide valuable insights for hotel management to improve customer satisfaction and service quality.
|
60 |
+
"""
|
61 |
+
def create_download_link(df, filename):
|
62 |
+
csv = df.to_csv(index=False)
|
63 |
+
b64 = base64.b64encode(csv.encode()).decode()
|
64 |
+
href = f'<a href="data:file/csv;base64,{b64}" download="{filename}.csv">Download CSV file</a>'
|
65 |
+
return href
|
66 |
+
|
67 |
+
# Path to the directory containing CSV files
|
68 |
+
directory_path = r'hotel reviews'
|
69 |
+
|
70 |
+
# Get a list of CSV files in the directory
|
71 |
+
csv_files = [file for file in os.listdir(directory_path) if file.endswith('.csv')]
|
72 |
+
|
73 |
+
# Function to concatenate selected columns
|
74 |
+
def concatenate_columns(df, selected_columns):
|
75 |
+
concatenated_data = df[selected_columns[0]].tolist() + df[selected_columns[1]].tolist()
|
76 |
+
return pd.DataFrame({'ConcatenatedData': concatenated_data})
|
77 |
+
|
78 |
+
# Function to display selected dataset
|
79 |
+
def display_selected_dataset(selected_dataset):
|
80 |
+
dataset_path = os.path.join(directory_path, selected_dataset)
|
81 |
+
selected_df = pd.read_csv(dataset_path)
|
82 |
+
st.subheader(f'Dataset: {selected_dataset}')
|
83 |
+
st.write(selected_df)
|
84 |
+
def clean_tweets(series):
|
85 |
+
REPLACE_NO_SPACE = re.compile("[.;:!\'?,\"()\[\]]")
|
86 |
+
REPLACE_WITH_SPACE = re.compile("(<br\s*/><br\s*/>)|(\-)|(\/)")
|
87 |
+
tempArr = []
|
88 |
+
for line in series:
|
89 |
+
# Check if the value is NaN
|
90 |
+
if pd.isnull(line):
|
91 |
+
tempArr.append("")
|
92 |
+
continue
|
93 |
+
# Send to tweet_processor
|
94 |
+
tmpL = p.clean(line)
|
95 |
+
# Remove punctuation
|
96 |
+
tmpL = REPLACE_NO_SPACE.sub("", tmpL.lower())
|
97 |
+
# Replace specific characters with spaces
|
98 |
+
tmpL = REPLACE_WITH_SPACE.sub(" ", tmpL)
|
99 |
+
# Remove extra spaces
|
100 |
+
tmpL = " ".join(tmpL.split())
|
101 |
+
tempArr.append(tmpL)
|
102 |
+
return tempArr
|
103 |
+
|
104 |
+
# Streamlit app
|
105 |
+
def main():
|
106 |
+
|
107 |
+
|
108 |
+
# Create a menu bar
|
109 |
+
menu = st.sidebar.selectbox(
|
110 |
+
'Navigation',
|
111 |
+
['Home', 'collected hotel data', 'Display Hotel Data', 'Display hotel reviews Datasets', 'CSV Column Concatenation and Sentiment Analysis']
|
112 |
+
)
|
113 |
+
|
114 |
+
if menu == 'Home':
|
115 |
+
st.markdown(project_description)
|
116 |
+
|
117 |
+
elif menu == 'collected hotel data':
|
118 |
+
# Display DataFrame
|
119 |
+
df = pd.read_csv('chennai hotes.csv')
|
120 |
+
df1 = pd.read_csv('stream.csv')
|
121 |
+
st.subheader('Collected chennai hotes Data')
|
122 |
+
st.write(df)
|
123 |
+
st.subheader('preprocess applyed data')
|
124 |
+
st.write(df1)
|
125 |
+
|
126 |
+
elif menu == 'Display Hotel Data':
|
127 |
+
# Display hotel data
|
128 |
+
df = pd.read_csv('stream.csv')
|
129 |
+
css = """
|
130 |
+
<style>
|
131 |
+
.hotel-container {
|
132 |
+
border: 1px solid #ddd;
|
133 |
+
border-radius: 5px;
|
134 |
+
padding: 10px;
|
135 |
+
margin-bottom: 20px;
|
136 |
+
}
|
137 |
+
.hotel-image {
|
138 |
+
max-width: 100%;
|
139 |
+
border-radius: 5px;
|
140 |
+
margin-bottom: 10px;
|
141 |
+
}
|
142 |
+
.hotel-details {
|
143 |
+
font-size: 16px;
|
144 |
+
}
|
145 |
+
</style>
|
146 |
+
"""
|
147 |
+
st.markdown(css, unsafe_allow_html=True)
|
148 |
+
for index, row in df.iterrows():
|
149 |
+
st.markdown(f"""
|
150 |
+
<div class="hotel-container">
|
151 |
+
<img class="hotel-image" src="{row['hotel image']}">
|
152 |
+
<div class="hotel-details">
|
153 |
+
<h2>{row['Hotel Name']}</h2>
|
154 |
+
<p><strong>Rating:</strong> {row['rating']}</p>
|
155 |
+
<p><strong>Location:</strong> {row['location']} ({row['nearest places']})</p>
|
156 |
+
<p><strong>Website:</strong> <a href="{row['hotel website']}">Website link</a></p>
|
157 |
+
<p><strong>Number of Reviews:</strong> {row['number of reviewss 2']}</p>
|
158 |
+
<p><strong>Room Type:</strong> {row['room type']}</p>
|
159 |
+
<p><strong>Price:</strong> {row['price']}</p>
|
160 |
+
<p><strong>Strengths:</strong> {row['Strengths']}</p>
|
161 |
+
<p><strong>Weaknesses:</strong> {row['Weaknesses']}</p>
|
162 |
+
</div>
|
163 |
+
</div>
|
164 |
+
""", unsafe_allow_html=True)
|
165 |
+
|
166 |
+
|
167 |
+
elif menu == 'Display hotel reviews Datasets':
|
168 |
+
selected_dataset = st.selectbox('Select Dataset', csv_files)
|
169 |
+
if selected_dataset:
|
170 |
+
display_selected_dataset(selected_dataset)
|
171 |
+
|
172 |
+
elif menu == 'CSV Column Concatenation and Sentiment Analysis':
|
173 |
+
st.title('CSV Column Concatenation and Sentiment Analysis')
|
174 |
+
|
175 |
+
new_names = {
|
176 |
+
'a3332d346a': 'Reviewer Name',
|
177 |
+
'afac1f68d9': 'Reviewer Country',
|
178 |
+
'abf093bdfe': 'Room Type',
|
179 |
+
'abf093bdfe 2': 'Length of Stay',
|
180 |
+
'abf093bdfe 3': 'Review Date',
|
181 |
+
'abf093bdfe 4': 'Traveler Type',
|
182 |
+
'abf093bdfe 5': 'Second Review Date',
|
183 |
+
'f6431b446c': 'Overall Rating',
|
184 |
+
'a53cbfa6de': 'Positive Comments',
|
185 |
+
'a53cbfa6de 2': 'Negative Comments',
|
186 |
+
'a3332d346a 2': 'Hotel Response',
|
187 |
+
'a53cbfa6de 3': 'Hotel Response1'
|
188 |
+
}
|
189 |
+
|
190 |
+
# File upload
|
191 |
+
uploaded_file = st.file_uploader('Upload CSV file', type=['csv'])
|
192 |
+
if uploaded_file is not None:
|
193 |
+
df = pd.read_csv(uploaded_file)
|
194 |
+
df.rename(columns=new_names, inplace=True)
|
195 |
+
|
196 |
+
# Show original DataFrame
|
197 |
+
st.subheader('Original DataFrame:')
|
198 |
+
st.write(df)
|
199 |
+
|
200 |
+
# Select columns
|
201 |
+
selected_columns = st.multiselect('Select columns to concatenate', df.columns)
|
202 |
+
|
203 |
+
if st.button('Concatenate columns'):
|
204 |
+
if len(selected_columns) == 2:
|
205 |
+
# Concatenate columns
|
206 |
+
new_df = concatenate_columns(df, selected_columns)
|
207 |
+
|
208 |
+
# Remove null values
|
209 |
+
new_df = new_df.dropna()
|
210 |
+
|
211 |
+
# Drop duplicates
|
212 |
+
new_df = new_df.drop_duplicates()
|
213 |
+
|
214 |
+
# Reset the index
|
215 |
+
new_df = new_df.reset_index(drop=True)
|
216 |
+
|
217 |
+
# Clean tweets
|
218 |
+
new_df['CleanedData'] = clean_tweets(new_df['ConcatenatedData'])
|
219 |
+
|
220 |
+
# Load the saved model
|
221 |
+
loaded_model = joblib.load('sentiment_analysis_model.pkl')
|
222 |
+
|
223 |
+
# Apply sentiment analysis
|
224 |
+
new_df['Sentiment'] = loaded_model.predict(new_df['CleanedData'])
|
225 |
+
|
226 |
+
# Display concatenated, cleaned, and sentiment analyzed DataFrame
|
227 |
+
st.subheader('Concatenated, Cleaned, and Sentiment Analyzed DataFrame:')
|
228 |
+
st.write(new_df)
|
229 |
+
|
230 |
+
# Create download link
|
231 |
+
st.markdown(create_download_link(new_df, 'concatenated_sentiment_analyzed_data'), unsafe_allow_html=True)
|
232 |
+
else:
|
233 |
+
st.warning('Please select exactly two columns to concatenate.')
|
234 |
+
|
235 |
+
# Run the app
|
236 |
+
if __name__ == '__main__':
|
237 |
+
main()
|