Spaces:
Running
Running
import gradio as gr | |
from llama_index.llms.huggingface import HuggingFaceInferenceAPI | |
from llama_index.core import ChatPromptTemplate, Settings, StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader | |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
from dotenv import load_dotenv | |
import os | |
# Load environment variables | |
load_dotenv() | |
# Configure the Llama index settings | |
Settings.llm = HuggingFaceInferenceAPI( | |
model_name="meta-llama/Meta-Llama-3-8B-Instruct", | |
tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct", | |
context_window=3000, | |
token=os.getenv("HF_TOKEN"), | |
max_new_tokens=512, | |
generate_kwargs={"temperature": 0.1}, | |
) | |
Settings.embed_model = HuggingFaceEmbedding( | |
model_name="BAAI/bge-small-en-v1.5" | |
) | |
# Define the directory for persistent storage and data | |
PERSIST_DIR = "db" | |
PDF_DIRECTORY = 'data' # Changed to the directory containing PDFs | |
# Ensure directories exist | |
os.makedirs(PDF_DIRECTORY, exist_ok=True) | |
os.makedirs(PERSIST_DIR, exist_ok=True) | |
# Variable to store current chat conversation | |
current_chat_history = [] | |
def data_ingestion_from_directory(): | |
# Use SimpleDirectoryReader on the directory containing the PDF files | |
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data() | |
storage_context = StorageContext.from_defaults() | |
index = VectorStoreIndex.from_documents(documents) | |
index.storage_context.persist(persist_dir=PERSIST_DIR) | |
def handle_query(query): | |
chat_text_qa_msgs = [ | |
( | |
"user", | |
""" | |
You are now the RedFerns Tech chatbot. Your aim is to provide answers to the user based on the conversation flow only. | |
{context_str} | |
Question: | |
{query_str} | |
""" | |
) | |
] | |
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) | |
# Load index from storage | |
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) | |
index = load_index_from_storage(storage_context) | |
# Use chat history to enhance response | |
context_str = "" | |
for past_query, response in reversed(current_chat_history): | |
if past_query.strip(): | |
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n" | |
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str) | |
answer = query_engine.query(query) | |
if hasattr(answer, 'response'): | |
response = answer.response | |
elif isinstance(answer, dict) and 'response' in answer: | |
response = answer['response'] | |
else: | |
response = "Sorry, I couldn't find an answer." | |
# Update current chat history | |
current_chat_history.append((query, response)) | |
return response | |
# Example usage: Process PDF ingestion from directory | |
print("Processing PDF ingestion from directory:", PDF_DIRECTORY) | |
data_ingestion_from_directory() | |
def predict(message, history): | |
messages = [{"role": "system", "content": "You are a helpful assistant."}] | |
for user_message, bot_message in history: | |
if user_message: | |
messages.append({"role": "user", "content": user_message}) | |
if bot_message: | |
messages.append({"role": "assistant", "content": bot_message}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for chunk in Settings.llm.create_chat_completion( | |
stream=True, | |
messages=messages, | |
): | |
part = chunk["choices"][0]["delta"].get("content", None) | |
if part: | |
response += part | |
yield response | |
# Create a Gradio chat interface | |
demo = gr.Interface( | |
fn=predict, | |
inputs=gr.Textbox(label="User Input", placeholder="Type your message here..."), | |
outputs=gr.Textbox(label="Bot Response", placeholder="Bot's response will appear here..."), | |
title="RedFernsTech Chatbot", | |
theme="compact", | |
live=True # Enables real-time updates | |
) | |
# Launch the Gradio interface | |
demo.launch() | |