File size: 3,972 Bytes
fada25c
 
a0505ca
fada25c
a0505ca
 
2b44908
 
fada25c
2b44908
fada25c
 
2b44908
 
fada25c
 
 
 
 
 
 
 
3430157
fada25c
 
 
 
2b44908
fada25c
 
 
2b44908
 
 
fada25c
 
 
 
 
 
 
 
 
 
 
 
2b44908
fada25c
 
 
 
 
 
 
 
 
 
 
 
2b44908
 
 
 
 
 
 
fada25c
 
 
2b44908
fada25c
2b44908
fada25c
2b44908
fada25c
2b44908
 
fada25c
2b44908
 
 
fada25c
 
 
a0505ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90f8a56
a0505ca
287c828
 
fada25c
 
 
a0505ca
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import gradio as gr
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from llama_index.core import ChatPromptTemplate, Settings, StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from dotenv import load_dotenv
import os

# Load environment variables
load_dotenv()

# Configure the Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
    model_name="meta-llama/Meta-Llama-3-8B-Instruct",
    tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
    context_window=3000,
    token=os.getenv("HF_TOKEN"),
    max_new_tokens=512,
    generate_kwargs={"temperature": 0.1},
)
Settings.embed_model = HuggingFaceEmbedding(
    model_name="BAAI/bge-small-en-v1.5"
)

# Define the directory for persistent storage and data
PERSIST_DIR = "db"
PDF_DIRECTORY = 'data'  # Changed to the directory containing PDFs

# Ensure directories exist
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)

# Variable to store current chat conversation
current_chat_history = []

def data_ingestion_from_directory():
    # Use SimpleDirectoryReader on the directory containing the PDF files
    documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
    storage_context = StorageContext.from_defaults()
    index = VectorStoreIndex.from_documents(documents)
    index.storage_context.persist(persist_dir=PERSIST_DIR)

def handle_query(query):
    chat_text_qa_msgs = [
        (
            "user",
            """
            You are now the RedFerns Tech chatbot. Your aim is to provide answers to the user based on the conversation flow only.
            {context_str}
            Question:
            {query_str}
            """
        )
    ]
    text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)

    # Load index from storage
    storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
    index = load_index_from_storage(storage_context)

    # Use chat history to enhance response
    context_str = ""
    for past_query, response in reversed(current_chat_history):
        if past_query.strip():
            context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"

    query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
    answer = query_engine.query(query)

    if hasattr(answer, 'response'):
        response = answer.response
    elif isinstance(answer, dict) and 'response' in answer:
        response = answer['response']
    else:
        response = "Sorry, I couldn't find an answer."

    # Update current chat history
    current_chat_history.append((query, response))

    return response

# Example usage: Process PDF ingestion from directory
print("Processing PDF ingestion from directory:", PDF_DIRECTORY)
data_ingestion_from_directory()

def predict(message, history):
    messages = [{"role": "system", "content": "You are a helpful assistant."}]
    for user_message, bot_message in history:
        if user_message:
            messages.append({"role": "user", "content": user_message})
        if bot_message:
            messages.append({"role": "assistant", "content": bot_message})
    messages.append({"role": "user", "content": message})
    
    response = ""
    for chunk in Settings.llm.create_chat_completion(
        stream=True,
        messages=messages,
    ):
        part = chunk["choices"][0]["delta"].get("content", None)
        if part:
            response += part
        yield response

# Create a Gradio chat interface
demo = gr.Interface(
    fn=predict,
    inputs=gr.Textbox(label="User Input", placeholder="Type your message here..."),
    outputs=gr.Textbox(label="Bot Response", placeholder="Bot's response will appear here..."),
    title="RedFernsTech Chatbot",
    theme="compact",
    live=True  # Enables real-time updates
)

# Launch the Gradio interface
demo.launch()