Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
-
import os
|
2 |
-
from dotenv import load_dotenv
|
3 |
import gradio as gr
|
4 |
-
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
|
5 |
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
|
|
|
6 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
|
|
|
|
7 |
|
8 |
# Load environment variables
|
9 |
load_dotenv()
|
@@ -82,35 +82,34 @@ def handle_query(query):
|
|
82 |
print("Processing PDF ingestion from directory:", PDF_DIRECTORY)
|
83 |
data_ingestion_from_directory()
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
title="RedfernsTech Chatbot",
|
111 |
theme="compact",
|
112 |
live=True # Enables real-time updates
|
113 |
)
|
114 |
|
115 |
# Launch the Gradio interface
|
116 |
-
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
|
3 |
+
from llama_index.core import ChatPromptTemplate, Settings, StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader
|
4 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
import os
|
7 |
|
8 |
# Load environment variables
|
9 |
load_dotenv()
|
|
|
82 |
print("Processing PDF ingestion from directory:", PDF_DIRECTORY)
|
83 |
data_ingestion_from_directory()
|
84 |
|
85 |
+
def predict(message, history):
|
86 |
+
messages = [{"role": "system", "content": "You are a helpful assistant."}]
|
87 |
+
for user_message, bot_message in history:
|
88 |
+
if user_message:
|
89 |
+
messages.append({"role": "user", "content": user_message})
|
90 |
+
if bot_message:
|
91 |
+
messages.append({"role": "assistant", "content": bot_message})
|
92 |
+
messages.append({"role": "user", "content": message})
|
93 |
+
|
94 |
+
response = ""
|
95 |
+
for chunk in Settings.llm.create_chat_completion(
|
96 |
+
stream=True,
|
97 |
+
messages=messages,
|
98 |
+
):
|
99 |
+
part = chunk["choices"][0]["delta"].get("content", None)
|
100 |
+
if part:
|
101 |
+
response += part
|
102 |
+
yield response
|
103 |
+
|
104 |
+
# Create a Gradio chat interface
|
105 |
+
demo = gr.Interface(
|
106 |
+
fn=predict,
|
107 |
+
inputs=gr.Textbox(label="User Input", placeholder="Type your message here..."),
|
108 |
+
outputs=gr.Textbox(label="Bot Response", placeholder="Bot's response will appear here...", readonly=True),
|
109 |
+
title="RedFernsTech Chatbot",
|
|
|
110 |
theme="compact",
|
111 |
live=True # Enables real-time updates
|
112 |
)
|
113 |
|
114 |
# Launch the Gradio interface
|
115 |
+
demo.launch()
|