Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
from http.cookies import SimpleCookie | |
from dotenv import load_dotenv | |
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings | |
from llama_index.llms.huggingface import HuggingFaceInferenceAPI | |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
import datetime | |
from gradio_client import Client | |
import requests | |
# Load environment variables | |
load_dotenv() | |
# Configure the Llama index settings with updated API | |
Settings.llm = HuggingFaceInferenceAPI( | |
model_name="meta-llama/Meta-Llama-3-8B-Instruct", | |
tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct", | |
context_window=3000, | |
token=os.getenv("HF_TOKEN"), | |
max_new_tokens=512, | |
generate_kwargs={"temperature": 0.1}, | |
) | |
Settings.embed_model = HuggingFaceEmbedding( | |
model_name="BAAI/bge-small-en-v1.5" | |
) | |
# Define the directory for persistent storage and data | |
PERSIST_DIR = "db" | |
PDF_DIRECTORY = 'data' | |
# Ensure directories exist | |
os.makedirs(PDF_DIRECTORY, exist_ok=True) | |
os.makedirs(PERSIST_DIR, exist_ok=True) | |
# Function to save chat history to cookies | |
def save_chat_history_to_cookies(chat_id, query, response, cookies): | |
if cookies is None: | |
cookies = {} | |
history = cookies.get('chat_history', '[]') | |
history_list = eval(history) | |
history_list.append({ | |
"chat_id": chat_id, | |
"query": query, | |
"response": response, | |
"timestamp": str(datetime.datetime.now()) | |
}) | |
cookies['chat_history'] = str(history_list) | |
def handle_query(query, cookies=None): | |
chat_text_qa_msgs = [ | |
( | |
"user", | |
""" | |
You are the Lily Redfernstech chatbot. Your goal is to provide accurate, professional, and helpful answers to user queries based on the company's data. Always ensure your responses are clear and concise. Give response within 10-15 words only | |
{context_str} | |
Question: | |
{query_str} | |
""" | |
) | |
] | |
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) | |
# Load index from storage | |
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) | |
index = load_index_from_storage(storage_context) | |
# Use chat history to enhance response | |
context_str = "" | |
if cookies: | |
history = cookies.get('chat_history', '[]') | |
history_list = eval(history) | |
for entry in reversed(history_list): | |
if entry["query"].strip(): | |
context_str += f"User asked: '{entry['query']}'\nBot answered: '{entry['response']}'\n" | |
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str) | |
answer = query_engine.query(query) | |
if hasattr(answer, 'response'): | |
response = answer.response | |
elif isinstance(answer, dict) and 'response' in answer: | |
response = answer['response'] | |
else: | |
response = "Sorry, I couldn't find an answer." | |
# Update current chat history dictionary (use unique ID as key) | |
chat_id = str(datetime.datetime.now().timestamp()) | |
save_chat_history_to_cookies(chat_id, query, response, cookies) | |
return response | |
# Define the button click function | |
def retrieve_history_and_redirect(cookies): | |
# Initialize the Gradio client | |
client = Client("vilarin/Llama-3.1-8B-Instruct") | |
# Retrieve and format chat history | |
history = cookies.get('chat_history', '[]') | |
history_list = eval(history) | |
history_str = "\n".join( | |
[f"User: {entry['query']}\nBot: {entry['response']}" for entry in history_list] | |
) | |
# Prepare the message | |
message = f""" | |
Chat history: | |
{history_str} | |
""" | |
# Call the Gradio API | |
result = client.predict( | |
message=message, | |
system_prompt="Summarize the text and provide client interest in 30-40 words in bullet points.", | |
temperature=0.8, | |
max_new_tokens=1024, | |
top_p=1, | |
top_k=20, | |
penalty=1.2, | |
api_name="/chat" | |
) | |
# Print the result for debugging | |
print(result) | |
# Send the result to the URL | |
response = requests.post("https://redfernstech.com/api/receive_result", json={"result": result}) | |
print(response.status_code, response.text) | |
# Define your Gradio chat interface function | |
def chat_interface(message, history): | |
cookies = {} # You might need to get cookies from the request in a real implementation | |
try: | |
# Process the user message and generate a response | |
response = handle_query(message, cookies) | |
# Return the bot response | |
return response | |
except Exception as e: | |
return str(e) | |
# Custom CSS for styling | |
css = ''' | |
.circle-logo { | |
display: inline-block; | |
width: 40px; | |
height: 40px; | |
border-radius: 50%; | |
overflow: hidden; | |
margin-right: 10px; | |
vertical-align: middle; | |
} | |
.circle-logo img { | |
width: 100%; | |
height: 100%; | |
object-fit: cover; | |
} | |
.response-with-logo { | |
display: flex; | |
align-items: center; | |
margin-bottom: 10px; | |
} | |
footer { | |
display: none !important; | |
background-color: #F8D7DA; | |
} | |
label.svelte-1b6s6s {display: none} | |
div.svelte-rk35yg {display: none;} | |
div.svelte-1rjryqp{display: none;} | |
div.progress-text.svelte-z7cif2.meta-text {display: none;} | |
''' | |
# Use Gradio Blocks to wrap components | |
with gr.Blocks(css=css) as demo: | |
chat = gr.ChatInterface(chat_interface, clear_btn=None, undo_btn=None, retry_btn=None) | |
# Button to retrieve history and redirect | |
redirect_button = gr.Button("Retrieve History & Redirect") | |
# Connect the button with the function, and handle the redirection | |
redirect_button.click(fn=retrieve_history_and_redirect, inputs=[gr.State()]) | |
# Add a JavaScript function to handle redirection after the Gradio event is processed | |
redirect_button.click(fn=None, js="() => { window.open('https://redfernstech.com/chat-bot-test', '_blank'); }") | |
# Launch the Gradio interface | |
demo.launch() | |