File size: 5,986 Bytes
fada25c
4615482
2f95558
5751d9f
4602937
cb8f565
592600b
6cd1447
cb8f565
 
dd1c2fe
2b44908
fada25c
c1c397a
a030a49
fada25c
c545b48
 
fada25c
 
 
 
 
 
 
 
3430157
fada25c
 
5751d9f
fada25c
2b44908
fada25c
 
 
2f95558
 
23b9040
 
2f95558
 
 
 
 
 
 
 
 
 
23b9040
fada25c
 
 
6dd9499
e40503c
2725fa3
6dd9499
 
 
fada25c
 
 
 
 
 
 
 
6dd9499
 
23b9040
 
 
 
 
 
6dd9499
 
 
fada25c
 
2b44908
fada25c
2b44908
fada25c
2b44908
fada25c
f941775
 
2f95558
fada25c
2b44908
 
6cd1447
cb8f565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c406e1d
4eb2710
23b9040
 
162343b
5751d9f
2f95558
162343b
 
 
 
 
 
7adc402
0a5200d
7adc402
7f3fc7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
455007f
 
 
 
6570683
7b0ee51
110c6a2
7b0ee51
0a5200d
392cef8
6cd1447
 
 
 
 
 
 
1c9719e
cb8f565
a3629b9
 
cb8f565
0e835de
f941775
c406e1d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import gradio as gr
import os
from http.cookies import SimpleCookie
from dotenv import load_dotenv
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
import datetime
from gradio_client import Client
import requests

# Load environment variables
load_dotenv()

# Configure the Llama index settings with updated API
Settings.llm = HuggingFaceInferenceAPI(
    model_name="meta-llama/Meta-Llama-3-8B-Instruct",
    tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
    context_window=3000,
    token=os.getenv("HF_TOKEN"),
    max_new_tokens=512,
    generate_kwargs={"temperature": 0.1},
)
Settings.embed_model = HuggingFaceEmbedding(
    model_name="BAAI/bge-small-en-v1.5"
)

# Define the directory for persistent storage and data
PERSIST_DIR = "db"
PDF_DIRECTORY = 'data'

# Ensure directories exist
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)

# Function to save chat history to cookies
def save_chat_history_to_cookies(chat_id, query, response, cookies):
    if cookies is None:
        cookies = {}
    history = cookies.get('chat_history', '[]')
    history_list = eval(history)
    history_list.append({
        "chat_id": chat_id,
        "query": query,
        "response": response,
        "timestamp": str(datetime.datetime.now())
    })
    cookies['chat_history'] = str(history_list)

def handle_query(query, cookies=None):
    chat_text_qa_msgs = [
        (
            "user",
            """
           You are the Lily Redfernstech chatbot. Your goal is to provide accurate, professional, and helpful answers to user queries based on the company's data. Always ensure your responses are clear and concise. Give response within 10-15 words only       
           {context_str}
            Question:
            {query_str}
            """
        )
    ]
    text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)

    # Load index from storage
    storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
    index = load_index_from_storage(storage_context)

    # Use chat history to enhance response
    context_str = ""
    if cookies:
        history = cookies.get('chat_history', '[]')
        history_list = eval(history)
        for entry in reversed(history_list):
            if entry["query"].strip():
                context_str += f"User asked: '{entry['query']}'\nBot answered: '{entry['response']}'\n"

    query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
    answer = query_engine.query(query)

    if hasattr(answer, 'response'):
        response = answer.response
    elif isinstance(answer, dict) and 'response' in answer:
        response = answer['response']
    else:
        response = "Sorry, I couldn't find an answer."

    # Update current chat history dictionary (use unique ID as key)
    chat_id = str(datetime.datetime.now().timestamp())
    save_chat_history_to_cookies(chat_id, query, response, cookies)

    return response

# Define the button click function
def retrieve_history_and_redirect(cookies):
    # Initialize the Gradio client
    client = Client("vilarin/Llama-3.1-8B-Instruct")

    # Retrieve and format chat history
    history = cookies.get('chat_history', '[]')
    history_list = eval(history)
    history_str = "\n".join(
        [f"User: {entry['query']}\nBot: {entry['response']}" for entry in history_list]
    )

    # Prepare the message
    message = f"""
    Chat history:
    {history_str}
    """

    # Call the Gradio API
    result = client.predict(
        message=message,
        system_prompt="Summarize the text and provide client interest in 30-40 words in bullet points.",
        temperature=0.8,
        max_new_tokens=1024,
        top_p=1,
        top_k=20,
        penalty=1.2,
        api_name="/chat"
    )

    # Print the result for debugging
    print(result)
    
    # Send the result to the URL
    response = requests.post("https://redfernstech.com/api/receive_result", json={"result": result})
    print(response.status_code, response.text)

# Define your Gradio chat interface function
def chat_interface(message, history):
    cookies = {}  # You might need to get cookies from the request in a real implementation
    try:
        # Process the user message and generate a response
        response = handle_query(message, cookies)

        # Return the bot response
        return response
    except Exception as e:
        return str(e)

# Custom CSS for styling
css = '''
  .circle-logo {
  display: inline-block;
  width: 40px;
  height: 40px;
  border-radius: 50%;
  overflow: hidden;
  margin-right: 10px;
  vertical-align: middle;
}
.circle-logo img {
  width: 100%;
  height: 100%;
  object-fit: cover;
}
.response-with-logo {
  display: flex;
  align-items: center;
  margin-bottom: 10px;
}
footer {
    display: none !important;
    background-color: #F8D7DA;
  }
label.svelte-1b6s6s {display: none}
div.svelte-rk35yg {display: none;}
div.svelte-1rjryqp{display: none;}
div.progress-text.svelte-z7cif2.meta-text {display: none;}
'''

# Use Gradio Blocks to wrap components
with gr.Blocks(css=css) as demo:
    chat = gr.ChatInterface(chat_interface, clear_btn=None, undo_btn=None, retry_btn=None)
    
    # Button to retrieve history and redirect
    redirect_button = gr.Button("Retrieve History & Redirect")
    
    # Connect the button with the function, and handle the redirection
    redirect_button.click(fn=retrieve_history_and_redirect, inputs=[gr.State()])
    
    # Add a JavaScript function to handle redirection after the Gradio event is processed
    redirect_button.click(fn=None, js="() => { window.open('https://redfernstech.com/chat-bot-test', '_blank'); }")

# Launch the Gradio interface
demo.launch()