Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,18 +1,100 @@
|
|
| 1 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
# Define the
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
#
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
from dotenv import load_dotenv
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate
|
| 5 |
+
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
|
| 6 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
| 7 |
+
from sentence_transformers import SentenceTransformer
|
| 8 |
+
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
|
| 9 |
+
load_dotenv()
|
| 10 |
+
# Configure the Llama index settings
|
| 11 |
+
Settings.llm = HuggingFaceInferenceAPI(
|
| 12 |
+
model_name="google/gemma-1.1-7b-it",
|
| 13 |
+
tokenizer_name="google/gemma-1.1-7b-it",
|
| 14 |
+
context_window=3000,
|
| 15 |
+
token=os.getenv("HF_TOKEN"),
|
| 16 |
+
max_new_tokens=512,
|
| 17 |
+
generate_kwargs={"temperature": 0.1},
|
| 18 |
+
)
|
| 19 |
+
Settings.embed_model = HuggingFaceEmbedding(
|
| 20 |
+
model_name="BAAI/bge-small-en-v1.5"
|
| 21 |
+
)
|
| 22 |
|
| 23 |
+
# Define the directory for persistent storage and data
|
| 24 |
+
PERSIST_DIR = "db"
|
| 25 |
+
PDF_DIRECTORY = 'data' # Changed to the directory containing PDFs
|
| 26 |
+
|
| 27 |
+
# Ensure PDF directory exists
|
| 28 |
+
os.makedirs(PDF_DIRECTORY, exist_ok=True)
|
| 29 |
+
os.makedirs(PERSIST_DIR, exist_ok=True)
|
| 30 |
+
|
| 31 |
+
def data_ingestion_from_directory():
|
| 32 |
+
# Use SimpleDirectoryReader on the directory containing the PDF files
|
| 33 |
+
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
|
| 34 |
+
storage_context = StorageContext.from_defaults()
|
| 35 |
+
index = VectorStoreIndex.from_documents(documents)
|
| 36 |
+
index.storage_context.persist(persist_dir=PERSIST_DIR)
|
| 37 |
+
|
| 38 |
+
def handle_query(query):
|
| 39 |
+
chat_text_qa_msgs = [
|
| 40 |
+
(
|
| 41 |
+
"user",
|
| 42 |
+
"""
|
| 43 |
+
You are a Q&A assistant named RedfernsTech, created by the RedfernsTech team. You have been designed to provide accurate answers based on the context provided.
|
| 44 |
+
Context:
|
| 45 |
+
{context_str}
|
| 46 |
+
Question:
|
| 47 |
+
{query_str}
|
| 48 |
+
"""
|
| 49 |
+
)
|
| 50 |
+
]
|
| 51 |
+
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
|
| 52 |
+
|
| 53 |
+
# Load index from storage
|
| 54 |
+
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
|
| 55 |
+
index = load_index_from_storage(storage_context)
|
| 56 |
+
|
| 57 |
+
query_engine = index.as_query_engine(text_qa_template=text_qa_template)
|
| 58 |
+
answer = query_engine.query(query)
|
| 59 |
+
|
| 60 |
+
if hasattr(answer, 'response'):
|
| 61 |
+
return answer.response
|
| 62 |
+
elif isinstance(answer, dict) and 'response' in answer:
|
| 63 |
+
return answer['response']
|
| 64 |
+
else:
|
| 65 |
+
return "Sorry, I couldn't find an answer."
|
| 66 |
+
|
| 67 |
+
# Example usage
|
| 68 |
+
|
| 69 |
+
# Process PDF ingestion from directory
|
| 70 |
+
print("Processing PDF ingestion from directory:", PDF_DIRECTORY)
|
| 71 |
+
data_ingestion_from_directory()
|
| 72 |
+
|
| 73 |
+
# Example query
|
| 74 |
+
query = "How do I use the RedfernsTech Q&A assistant?"
|
| 75 |
+
print("Query:", query)
|
| 76 |
+
response = handle_query(query)
|
| 77 |
+
print("Answer:", response)
|
| 78 |
+
# prompt: create a gradio chatbot for this
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
# Define the input and output components for the Gradio interface
|
| 83 |
+
input_component = gr.Textbox(
|
| 84 |
+
show_label=False,
|
| 85 |
+
placeholder="Ask me anything about the document..."
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
output_component = gr.Textbox()
|
| 89 |
+
|
| 90 |
+
# Create the Gradio interface
|
| 91 |
+
interface = gr.Interface(
|
| 92 |
+
fn=handle_query,
|
| 93 |
+
inputs=input_component,
|
| 94 |
+
outputs=output_component,
|
| 95 |
+
title="RedfernsTech Q&A Chatbot",
|
| 96 |
+
description="Ask me anything about the uploaded document."
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
# Launch the Gradio interface
|
| 100 |
+
interface.launch(server_port=7861, share=True)
|