Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
from dotenv import load_dotenv | |
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings | |
from llama_index.llms.huggingface import HuggingFaceInferenceAPI | |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
from simple_salesforce import Salesforce, SalesforceLogin | |
import random | |
import datetime | |
# Load environment variables | |
load_dotenv() | |
# Configure the Llama index settings | |
Settings.llm = HuggingFaceInferenceAPI( | |
model_name="meta-llama/Meta-Llama-3-8B-Instruct", | |
tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct", | |
context_window=3000, | |
token=os.getenv("HF_TOKEN"), | |
max_new_tokens=512, | |
generate_kwargs={"temperature": 0.1}, | |
) | |
Settings.embed_model = HuggingFaceEmbedding( | |
model_name="BAAI/bge-small-en-v1.5" | |
) | |
# Define the directory for persistent storage and data | |
PERSIST_DIR = "db" | |
PDF_DIRECTORY = 'data' | |
# Ensure directories exist | |
os.makedirs(PDF_DIRECTORY, exist_ok=True) | |
os.makedirs(PERSIST_DIR, exist_ok=True) | |
# Variable to store current chat conversation in a dictionary | |
current_chat_history = {} | |
kkk = random.choice(['Clara', 'Lily']) | |
def data_ingestion_from_directory(): | |
# Use SimpleDirectoryReader on the directory containing the PDF files | |
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data() | |
storage_context = StorageContext.from_defaults() | |
index = VectorStoreIndex.from_documents(documents) | |
index.storage_context.persist(persist_dir=PERSIST_DIR) | |
def handle_query(query): | |
chat_text_qa_msgs = [ | |
( | |
"user", | |
""" | |
You are the Lily Redfernstech chatbot. Your goal is to provide accurate, professional, and helpful answers to user queries based on the company's data. Always ensure your responses are clear and concise. give response within 10-15 words only | |
{context_str} | |
Question: | |
{query_str} | |
""" | |
) | |
] | |
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) | |
# Load index from storage | |
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) | |
index = load_index_from_storage(storage_context) | |
# Use chat history to enhance response | |
context_str = "" | |
for past_query, response in reversed(current_chat_history.values()): | |
if past_query.strip(): | |
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n" | |
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str) | |
answer = query_engine.query(query) | |
if hasattr(answer, 'response'): | |
response = answer.response | |
elif isinstance(answer, dict) and 'response' in answer: | |
response = answer['response'] | |
else: | |
response = "Sorry, I couldn't find an answer." | |
# Update current chat history dictionary (use unique ID as key) | |
chat_id = str(datetime.datetime.now().timestamp()) | |
current_chat_history[chat_id] = (query, response) | |
return response | |
def save_chat_history_to_salesforce(): | |
username =os.getenv("username") | |
password =os.getenv("password") | |
security_token =os.getenv("security_token") | |
domain = 'test' | |
# Log in to Salesforce | |
session_id, sf_instance = SalesforceLogin(username=username, password=password, security_token=security_token, domain=domain) | |
# Create Salesforce object | |
sf = Salesforce(instance=sf_instance, session_id=session_id) | |
# Iterate over chat history dictionary and push to Salesforce | |
for chat_id, (user_message, bot_response) in current_chat_history.items(): | |
data = { | |
'Name': 'Chat with user', | |
'Bot_Message__c': bot_response, | |
'User_Message__c': user_message, | |
'Date__c': str(datetime.datetime.now().date()) | |
} | |
# Insert into the custom object (replace 'Chat_History__c' with your custom object's API name) | |
sf.Chat_History__c.create(data) | |
# Define the function to handle predictions | |
def predict(message, history): | |
logo_html = ''' | |
<div class="circle-logo"> | |
<img src="https://rb.gy/8r06eg" alt="FernAi"> | |
</div> | |
''' | |
response = handle_query(message) | |
response_with_logo = f'<div class="response-with-logo">{logo_html}<div class="response-text">{response}</div></div>' | |
# Return the response with the logo | |
return response_with_logo | |
# Define your Gradio chat interface function | |
def chat_interface(message, history): | |
try: | |
# Process the user message and generate a response | |
response = handle_query(message) | |
# Return the bot response | |
return response | |
except Exception as e: | |
return str(e) | |
# Custom CSS for styling | |
css = ''' | |
.circle-logo { | |
display: inline-block; | |
width: 40px; | |
height: 40px; | |
border-radius: 50%; | |
overflow: hidden; | |
margin-right: 10px; | |
vertical-align: middle; | |
} | |
.circle-logo img { | |
width: 100%; | |
height: 100%; | |
object-fit: cover; | |
} | |
.response-with-logo { | |
display: flex; | |
align-items: center; | |
margin-bottom: 10px; | |
} | |
footer { | |
display: none !important; | |
background-color: #F8D7DA; | |
} | |
label.svelte-1b6s6s {display: none} | |
div.svelte-rk35yg {display: none;} | |
div.svelte-1rjryqp{display: none;} | |
div.progress-text.svelte-z7cif2.meta-text {display: none;} | |
''' | |
# Use Gradio Blocks to wrap components | |
with gr.Blocks() as demo: | |
chat = gr.ChatInterface(chat_interface, css=css, description="Lily", clear_btn=None, undo_btn=None, retry_btn=None) | |
# Add a button to save chat history | |
save_button = gr.Button("Save History") | |
save_button.click(fn=save_chat_history_to_salesforce) | |
# Launch the Gradio interface | |
demo.launch() | |