File size: 5,727 Bytes
fada25c
4615482
5751d9f
4602937
fada25c
 
4eb2710
dd1c2fe
5751d9f
dd1c2fe
2b44908
fada25c
c1c397a
fada25c
 
c545b48
 
fada25c
 
 
 
 
 
 
 
3430157
fada25c
 
5751d9f
fada25c
2b44908
fada25c
 
 
f941775
 
5751d9f
c1c397a
fada25c
 
 
 
 
 
 
6dd9499
fada25c
 
 
6dd9499
d9ece28
2725fa3
6dd9499
 
 
fada25c
 
 
 
 
 
 
 
6dd9499
 
f941775
6dd9499
 
 
 
 
fada25c
 
2b44908
fada25c
2b44908
fada25c
2b44908
fada25c
f941775
 
 
fada25c
2b44908
 
f941775
4eb2710
 
 
f941775
4eb2710
f941775
4eb2710
f941775
 
4eb2710
f941775
 
 
4eb2710
 
f941775
 
4eb2710
 
f941775
4eb2710
 
6dd9499
7adc402
 
 
86b945b
7adc402
 
 
 
5751d9f
f941775
7adc402
162343b
4eb2710
162343b
 
5751d9f
162343b
 
 
 
 
 
 
7adc402
0a5200d
7adc402
7f3fc7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
455007f
 
 
 
6570683
7b0ee51
110c6a2
7b0ee51
0a5200d
392cef8
f941775
 
 
 
 
 
 
4eb2710
f941775
4eb2710
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import gradio as gr
import os
from dotenv import load_dotenv
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from simple_salesforce import Salesforce, SalesforceLogin
import random
import datetime

# Load environment variables
load_dotenv()

# Configure the Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
    model_name="meta-llama/Meta-Llama-3-8B-Instruct",
    tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
    context_window=3000,
    token=os.getenv("HF_TOKEN"),
    max_new_tokens=512,
    generate_kwargs={"temperature": 0.1},
)
Settings.embed_model = HuggingFaceEmbedding(
    model_name="BAAI/bge-small-en-v1.5"
)

# Define the directory for persistent storage and data
PERSIST_DIR = "db"
PDF_DIRECTORY = 'data'

# Ensure directories exist
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)

# Variable to store current chat conversation in a dictionary
current_chat_history = {}
kkk = random.choice(['Clara', 'Lily'])

def data_ingestion_from_directory():
    # Use SimpleDirectoryReader on the directory containing the PDF files
    documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
    storage_context = StorageContext.from_defaults()
    index = VectorStoreIndex.from_documents(documents)
    index.storage_context.persist(persist_dir=PERSIST_DIR)

def handle_query(query):
    chat_text_qa_msgs = [
        (
            "user",
            """
           You are the Lily Redfernstech chatbot. Your goal is to provide accurate, professional, and helpful answers to user queries based on the company's data. Always ensure your responses are clear and concise. give response within 10-15 words only       
           {context_str}
            Question:
            {query_str}
            """
        )
    ]
    text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)

    # Load index from storage
    storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
    index = load_index_from_storage(storage_context)

    # Use chat history to enhance response
    context_str = ""
    for past_query, response in reversed(current_chat_history.values()):
        if past_query.strip():
            context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"

    query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
    answer = query_engine.query(query)

    if hasattr(answer, 'response'):
        response = answer.response
    elif isinstance(answer, dict) and 'response' in answer:
        response = answer['response']
    else:
        response = "Sorry, I couldn't find an answer."

    # Update current chat history dictionary (use unique ID as key)
    chat_id = str(datetime.datetime.now().timestamp())
    current_chat_history[chat_id] = (query, response)

    return response

def save_chat_history_to_salesforce():
    username =os.getenv("username")
    password =os.getenv("password")
    security_token =os.getenv("security_token")
    domain = 'test' 

    # Log in to Salesforce
    session_id, sf_instance = SalesforceLogin(username=username, password=password, security_token=security_token, domain=domain)

    # Create Salesforce object
    sf = Salesforce(instance=sf_instance, session_id=session_id)

    # Iterate over chat history dictionary and push to Salesforce
    for chat_id, (user_message, bot_response) in current_chat_history.items():
        data = {
            'Name': 'Chat with user',
            'Bot_Message__c': bot_response,
            'User_Message__c': user_message,
            'Date__c': str(datetime.datetime.now().date())
        }
        # Insert into the custom object (replace 'Chat_History__c' with your custom object's API name)
        sf.Chat_History__c.create(data)

# Define the function to handle predictions
def predict(message, history):
    logo_html = '''
    <div class="circle-logo">
      <img src="https://rb.gy/8r06eg" alt="FernAi">
    </div>
    '''
    response = handle_query(message)
    response_with_logo = f'<div class="response-with-logo">{logo_html}<div class="response-text">{response}</div></div>'
    
    # Return the response with the logo
    return response_with_logo

# Define your Gradio chat interface function
def chat_interface(message, history):
    try:
        # Process the user message and generate a response
        response = handle_query(message)

        # Return the bot response
        return response
    except Exception as e:
        return str(e)

# Custom CSS for styling
css = '''
  .circle-logo {
  display: inline-block;
  width: 40px;
  height: 40px;
  border-radius: 50%;
  overflow: hidden;
  margin-right: 10px;
  vertical-align: middle;
}
.circle-logo img {
  width: 100%;
  height: 100%;
  object-fit: cover;
}
.response-with-logo {
  display: flex;
  align-items: center;
  margin-bottom: 10px;
}
footer {
    display: none !important;
    background-color: #F8D7DA;
  }
label.svelte-1b6s6s {display: none}
div.svelte-rk35yg {display: none;}
div.svelte-1rjryqp{display: none;}
div.progress-text.svelte-z7cif2.meta-text {display: none;}
'''

# Use Gradio Blocks to wrap components
with gr.Blocks() as demo:
    chat = gr.ChatInterface(chat_interface, css=css, description="Lily", clear_btn=None, undo_btn=None, retry_btn=None)
    
    # Add a button to save chat history
    save_button = gr.Button("Save History")
    save_button.click(fn=save_chat_history_to_salesforce)

# Launch the Gradio interface
demo.launch()