Spaces:
Runtime error
Runtime error
File size: 5,692 Bytes
fada25c 4615482 5751d9f 4602937 fada25c 4eb2710 dd1c2fe 5751d9f dd1c2fe 2b44908 fada25c c1c397a fada25c c545b48 fada25c 3430157 fada25c 5751d9f fada25c 2b44908 fada25c f941775 5751d9f c1c397a fada25c 6dd9499 fada25c 6dd9499 d9ece28 2725fa3 6dd9499 fada25c 6dd9499 f941775 6dd9499 fada25c 2b44908 fada25c 2b44908 fada25c 2b44908 fada25c f941775 fada25c 2b44908 f941775 4eb2710 f941775 4eb2710 f941775 4eb2710 f941775 4eb2710 f941775 4eb2710 f941775 4eb2710 f941775 4eb2710 6dd9499 7adc402 86b945b 7adc402 5751d9f f941775 7adc402 162343b 4eb2710 162343b 5751d9f 162343b 7adc402 0a5200d 7adc402 7f3fc7b 455007f 6570683 7b0ee51 0a5200d 392cef8 f941775 4eb2710 f941775 4eb2710 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import gradio as gr
import os
from dotenv import load_dotenv
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from simple_salesforce import Salesforce, SalesforceLogin
import random
import datetime
# Load environment variables
load_dotenv()
# Configure the Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
model_name="meta-llama/Meta-Llama-3-8B-Instruct",
tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
context_window=3000,
token=os.getenv("HF_TOKEN"),
max_new_tokens=512,
generate_kwargs={"temperature": 0.1},
)
Settings.embed_model = HuggingFaceEmbedding(
model_name="BAAI/bge-small-en-v1.5"
)
# Define the directory for persistent storage and data
PERSIST_DIR = "db"
PDF_DIRECTORY = 'data'
# Ensure directories exist
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)
# Variable to store current chat conversation in a dictionary
current_chat_history = {}
kkk = random.choice(['Clara', 'Lily'])
def data_ingestion_from_directory():
# Use SimpleDirectoryReader on the directory containing the PDF files
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
storage_context = StorageContext.from_defaults()
index = VectorStoreIndex.from_documents(documents)
index.storage_context.persist(persist_dir=PERSIST_DIR)
def handle_query(query):
chat_text_qa_msgs = [
(
"user",
"""
You are the Lily Redfernstech chatbot. Your goal is to provide accurate, professional, and helpful answers to user queries based on the company's data. Always ensure your responses are clear and concise. give response within 10-15 words only
{context_str}
Question:
{query_str}
"""
)
]
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
# Load index from storage
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
index = load_index_from_storage(storage_context)
# Use chat history to enhance response
context_str = ""
for past_query, response in reversed(current_chat_history.values()):
if past_query.strip():
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
answer = query_engine.query(query)
if hasattr(answer, 'response'):
response = answer.response
elif isinstance(answer, dict) and 'response' in answer:
response = answer['response']
else:
response = "Sorry, I couldn't find an answer."
# Update current chat history dictionary (use unique ID as key)
chat_id = str(datetime.datetime.now().timestamp())
current_chat_history[chat_id] = (query, response)
return response
def save_chat_history_to_salesforce():
username =os.getenv("username")
password =os.getenv("password")
security_token =os.getenv("security_token")
domain = 'test'
# Log in to Salesforce
session_id, sf_instance = SalesforceLogin(username=username, password=password, security_token=security_token, domain=domain)
# Create Salesforce object
sf = Salesforce(instance=sf_instance, session_id=session_id)
# Iterate over chat history dictionary and push to Salesforce
for chat_id, (user_message, bot_response) in current_chat_history.items():
data = {
'Name': 'Chat with user',
'Bot_Message__c': bot_response,
'User_Message__c': user_message,
'Date__c': str(datetime.datetime.now().date())
}
# Insert into the custom object (replace 'Chat_History__c' with your custom object's API name)
sf.Chat_History__c.create(data)
# Define the function to handle predictions
def predict(message, history):
logo_html = '''
<div class="circle-logo">
<img src="https://rb.gy/8r06eg" alt="FernAi">
</div>
'''
response = handle_query(message)
response_with_logo = f'<div class="response-with-logo">{logo_html}<div class="response-text">{response}</div></div>'
# Return the response with the logo
return response_with_logo
# Define your Gradio chat interface function
def chat_interface(message, history):
try:
# Process the user message and generate a response
response = handle_query(message)
# Return the bot response
return response
except Exception as e:
return str(e)
# Custom CSS for styling
css = '''
.circle-logo {
display: inline-block;
width: 40px;
height: 40px;
border-radius: 50%;
overflow: hidden;
margin-right: 10px;
vertical-align: middle;
}
.circle-logo img {
width: 100%;
height: 100%;
object-fit: cover;
}
.response-with-logo {
display: flex;
align-items: center;
margin-bottom: 10px;
}
footer {
display: none !important;
background-color: #F8D7DA;
}
label.svelte-1b6s6s {display: none}
div.svelte-rk35yg {display: none;}
div.progress-text.svelte-z7cif2.meta-text {display: none;}
'''
# Use Gradio Blocks to wrap components
with gr.Blocks() as demo:
chat = gr.ChatInterface(chat_interface, css=css, description="Lily", clear_btn=None, undo_btn=None, retry_btn=None)
# Add a button to save chat history
save_button = gr.Button("Save History")
save_button.click(fn=save_chat_history_to_salesforce)
# Launch the Gradio interface
demo.launch()
|