Spaces:
Runtime error
Runtime error
File size: 5,263 Bytes
fada25c 4615482 2f95558 5751d9f 4602937 396fd7f 592600b 6cd1447 dd1c2fe 2b44908 fada25c c1c397a a030a49 fada25c c545b48 fada25c 3430157 fada25c 5751d9f fada25c 2b44908 fada25c 2f95558 23b9040 2f95558 23b9040 fada25c 6dd9499 e40503c 2725fa3 6dd9499 fada25c 6dd9499 23b9040 6dd9499 fada25c 2b44908 fada25c 2b44908 fada25c 2b44908 fada25c f941775 2f95558 fada25c 2b44908 6cd1447 0f7bc71 c406e1d 4eb2710 23b9040 162343b 5751d9f 2f95558 162343b 7adc402 0a5200d 7adc402 7f3fc7b 455007f 6570683 7b0ee51 110c6a2 7b0ee51 0a5200d 392cef8 6cd1447 0e835de 0f7bc71 0e835de 0f7bc71 a3629b9 0e835de f941775 c406e1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import gradio as gr
import os
from http.cookies import SimpleCookie
from dotenv import load_dotenv
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
from llama_index.llms.huggingface import HuggingFaceInferenceAPI # Updated import
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
import random
import datetime
# Load environment variables
load_dotenv()
# Configure the Llama index settings with updated API
Settings.llm = HuggingFaceInferenceAPI(
model_name="meta-llama/Meta-Llama-3-8B-Instruct",
tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
context_window=3000,
token=os.getenv("HF_TOKEN"),
max_new_tokens=512,
generate_kwargs={"temperature": 0.1},
)
Settings.embed_model = HuggingFaceEmbedding(
model_name="BAAI/bge-small-en-v1.5"
)
# Define the directory for persistent storage and data
PERSIST_DIR = "db"
PDF_DIRECTORY = 'data'
# Ensure directories exist
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)
# Function to save chat history to cookies
def save_chat_history_to_cookies(chat_id, query, response, cookies):
if cookies is None:
cookies = {}
history = cookies.get('chat_history', '[]')
history_list = eval(history)
history_list.append({
"chat_id": chat_id,
"query": query,
"response": response,
"timestamp": str(datetime.datetime.now())
})
cookies['chat_history'] = str(history_list)
def handle_query(query, cookies=None):
chat_text_qa_msgs = [
(
"user",
"""
You are the Lily Redfernstech chatbot. Your goal is to provide accurate, professional, and helpful answers to user queries based on the company's data. Always ensure your responses are clear and concise. Give response within 10-15 words only
{context_str}
Question:
{query_str}
"""
)
]
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
# Load index from storage
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
index = load_index_from_storage(storage_context)
# Use chat history to enhance response
context_str = ""
if cookies:
history = cookies.get('chat_history', '[]')
history_list = eval(history)
for entry in reversed(history_list):
if entry["query"].strip():
context_str += f"User asked: '{entry['query']}'\nBot answered: '{entry['response']}'\n"
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
answer = query_engine.query(query)
if hasattr(answer, 'response'):
response = answer.response
elif isinstance(answer, dict) and 'response' in answer:
response = answer['response']
else:
response = "Sorry, I couldn't find an answer."
# Update current chat history dictionary (use unique ID as key)
chat_id = str(datetime.datetime.now().timestamp())
save_chat_history_to_cookies(chat_id, query, response, cookies)
return response
# Define the button click function
def retrieve_history_and_redirect():
# Here you can retrieve the chat history if necessary
return "History retrieved. Redirecting to the chat test page..."
# Define your Gradio chat interface function
def chat_interface(message, history):
cookies = {} # You might need to get cookies from the request in a real implementation
try:
# Process the user message and generate a response
response = handle_query(message, cookies)
# Return the bot response
return response
except Exception as e:
return str(e)
# Custom CSS for styling
css = '''
.circle-logo {
display: inline-block;
width: 40px;
height: 40px;
border-radius: 50%;
overflow: hidden;
margin-right: 10px;
vertical-align: middle;
}
.circle-logo img {
width: 100%;
height: 100%;
object-fit: cover;
}
.response-with-logo {
display: flex;
align-items: center;
margin-bottom: 10px;
}
footer {
display: none !important;
background-color: #F8D7DA;
}
label.svelte-1b6s6s {display: none}
div.svelte-rk35yg {display: none;}
div.svelte-1rjryqp{display: none;}
div.progress-text.svelte-z7cif2.meta-text {display: none;}
'''
# Use Gradio Blocks to wrap components
with gr.Blocks(css=css) as demo:
chat = gr.ChatInterface(chat_interface, clear_btn=None, undo_btn=None, retry_btn=None)
# Button to retrieve history and redirect
redirect_button = gr.Button("Retrieve History & Redirect")
# Use a gr.Textbox as output for the button to display the status message
redirect_message = gr.Textbox(label="Status", interactive=False)
# Connect the button with the function, and output the status message
redirect_button.click(fn=retrieve_history_and_redirect, inputs=[], outputs=redirect_message)
# Add a JavaScript function to handle redirection after the Gradio event is processed
redirect_button.click(fn=None,js="() => { window.open('https://redfernstech.com/chat-bot-test', '_blank'); }")
# Launch the Gradio interface
demo.launch()
|