File size: 3,700 Bytes
3430157
fada25c
 
2b44908
fada25c
 
2b44908
 
fada25c
2b44908
fada25c
 
2b44908
 
fada25c
 
 
 
 
 
 
 
3430157
fada25c
 
 
 
2b44908
fada25c
 
 
2b44908
 
 
fada25c
 
 
 
 
 
 
 
 
 
 
 
2b44908
fada25c
 
 
 
 
 
 
 
 
 
 
 
2b44908
 
 
 
 
 
 
fada25c
 
 
2b44908
fada25c
2b44908
fada25c
2b44908
fada25c
2b44908
 
fada25c
2b44908
 
 
fada25c
 
 
287c828
 
 
 
 
 
 
314e609
287c828
314e609
 
287c828
 
2b44908
 
314e609
 
 
 
2b44908
287c828
fada25c
2b44908
287c828
 
 
 
 
fada25c
 
 
287c828
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import os
from dotenv import load_dotenv
import gradio as gr
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from llama_index.embeddings.huggingface import HuggingFaceEmbedding

# Load environment variables
load_dotenv()

# Configure the Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
    model_name="meta-llama/Meta-Llama-3-8B-Instruct",
    tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
    context_window=3000,
    token=os.getenv("HF_TOKEN"),
    max_new_tokens=512,
    generate_kwargs={"temperature": 0.1},
)
Settings.embed_model = HuggingFaceEmbedding(
    model_name="BAAI/bge-small-en-v1.5"
)

# Define the directory for persistent storage and data
PERSIST_DIR = "db"
PDF_DIRECTORY = 'data'  # Changed to the directory containing PDFs

# Ensure directories exist
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)

# Variable to store current chat conversation
current_chat_history = []

def data_ingestion_from_directory():
    # Use SimpleDirectoryReader on the directory containing the PDF files
    documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
    storage_context = StorageContext.from_defaults()
    index = VectorStoreIndex.from_documents(documents)
    index.storage_context.persist(persist_dir=PERSIST_DIR)

def handle_query(query):
    chat_text_qa_msgs = [
        (
            "user",
            """
            You are now the RedFerns Tech chatbot. Your aim is to provide answers to the user based on the conversation flow only.
            {context_str}
            Question:
            {query_str}
            """
        )
    ]
    text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)

    # Load index from storage
    storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
    index = load_index_from_storage(storage_context)

    # Use chat history to enhance response
    context_str = ""
    for past_query, response in reversed(current_chat_history):
        if past_query.strip():
            context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"

    query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
    answer = query_engine.query(query)

    if hasattr(answer, 'response'):
        response = answer.response
    elif isinstance(answer, dict) and 'response' in answer:
        response = answer['response']
    else:
        response = "Sorry, I couldn't find an answer."

    # Update current chat history
    current_chat_history.append((query, response))

    return response

# Example usage: Process PDF ingestion from directory
print("Processing PDF ingestion from directory:", PDF_DIRECTORY)
data_ingestion_from_directory()

# Define the input and output components for the Gradio interface
input_component = gr.Textbox(
    label="User:",
    placeholder="Type your message...",
    lines=2
)

output_component = gr.Output(
    label="Bot:",
    type="text",
    initial="Bot's response will appear here...",
)

# Function to handle queries
def chatbot_handler(query):
    with output_component:
        response = handle_query(query)
        print(f"User: {query}\nBot: {response}\n")
        return response

# Create the Gradio interface with chat-like settings
interface = gr.Interface(
    fn=chatbot_handler,
    inputs=input_component,
    outputs=output_component,
    title="RedfernsTech Chatbot",
    theme="compact",
    live=True  # Enables real-time updates
)

# Launch the Gradio interface
interface.launch()